A simple method for selecting key transistors for switching power supplies


The photo shows the “difficult mistakes” method.
Shurik, this is not our method! When designing or assembling a ready-made SMPS circuit, one of the pressing issues is the choice of keys. And if you can somehow adjust the rest of the details (wind the transformer into 2 wires instead of 1, if there is not enough cross-section, or install two capacitors in parallel instead of one, if there is not enough capacity, etc.), then with the keys it’s not the same and just. The wrong choice leads to a big BOOM (remembering the famous Luc Besson film: “Bada-boom!”) due to thermal or electrical breakdown. And here, too, not everything is simple. An electrical breakdown will happen immediately (or almost immediately), but a thermal breakdown can take a long time to happen, and it will happen at the most inopportune crucial moment.

The first time I wondered about choosing keys was about 8 years ago. Where did I go first? On the Internet, of course, yeah. In general, I can now say this: I shouldn’t have done it. The issue of choosing keys for pulse technology on the Internet has become overgrown with a bunch of unreliable facts, myths and incorrect interpretations of graphs in datasheets. My way of choosing keys is also imperfect and incomplete. However, in the vast majority of cases in amateur radio practice, it will be enough and even behind the scenes, you yourself will not be happy. Let's begin!

↑ Transistor selection process

Now, let's try to figure out the issue of selecting a transistor.
No one should have any doubts about the issue of maximum voltage. Just for insurance, we take a key 200 Volts more than the maximum effective voltage in the circuit. For example, in SMPS I recommend 600-volt keys, no lower. The question is what to do with the temperature. It still counts! For thermal calculations, you just need to find out how many watts of loss will occur when the switch is operating and how much it needs to be cooled so that thermal breakdown does not occur. If the result is less than Tj

, then you can use such a transistor. If it’s more, alas, but you have to choose further.

What does heating consist of? To start with static losses

associated with the junction resistance
Rds on
, which affects the voltage drop across the junction, depending on the current flowing through the switch.
This voltage drop causes power to be released on the chip and heats up the transistor in the on state. It is calculated as the product of the square of the average pulse current Iimp
by the transition resistance
Rds on
and the duty cycle
Kzap
. The latter shows how much of the time the transistor is open.

In most amateur radio designs of bridge and half-bridge converters and amplifiers, Kzap is not higher than 0.45, and its further increase does not lead to anything particularly good, except for severe pain in the head or well... So, okay, we’ve sorted out the static losses.

Now dynamic losses.

These losses are the main problem in hard-switched FET converters. They occur when the key is turned on and off. So to speak, losses during transient processes. And the higher the conversion frequency, the higher the dynamic losses. And I also don’t want to make the frequency lower, because then the size of the transformer increases.

There are resonant or quasi-resonant circuits that can significantly reduce dynamic losses, but this is a complex technique to which the expression “simple calculation” does not fit.

So, dynamic losses consist of turn-on losses and turn-off losses. It is calculated as the product of the current at the beginning ( Ir

) or end (
If
) of the pulse, supply voltage (
Upit
) and rise time (
Tr
) or fall time (
Tf
), divided by double the pulse period. I would like to note right away: losses are calculated separately when turning on and separately when turning off, and then summed up.

Now cooling.

The main problem with cooling is the thermal resistance between different materials. The transistor has 2 such places: between the crystal and the transistor body, as well as between the transistor body and the radiator. These values ​​are tabular and do not require calculations. The first value is taken from the datasheet for the transistor. The second one can also be taken from there, if it is there. If not, then the average value is taken.

So, the losses have been calculated, it’s time to put them into action.

First of all, we add up the dynamic and static losses, we get the total losses - this is how many watts need to be removed from the crystal.

Then we add up the thermal resistances.

Now we multiply the total losses by the thermal resistance. The resulting result is the temperature that needs to be “blowed away” from the radiator. Let us subtract the result from the expected operating temperature, and at the output we will find the expected radiator temperature. It is from this that you can evaluate whether the transistor is suitable or not.

How? Very simple. The expected radiator temperature cannot be lower than the ambient temperature during natural cooling. That is, if you get a result of +24°, but outside it’s +32°, then that’s it, screw it! The transistors will experience a thermal breakdown, because no superfan can cool the radiator to 24 degrees if the air temperature is higher. It is very sad if the result is negative. If you do not have a freon or nitrogen cooling system, it is better to choose a different transistor.

Transistor as an amplifier

The transistor can also act as a small-signal amplifier, meaning it can be in any position between "fully on" and "fully off".

This means that a weak signal can drive a transistor and create a stronger copy of that signal at the collector-emitter (or drain-source) junction. In this way, the transistor can amplify weak signals.

Here's a simple amplifier for driving a speaker with a square wave signal:

↑ Subtleties

Of course, a case like this has its own subtleties and peculiarities.
In general, this can be characterized by the expression “don’t take it to extremes,” which very fully explains what not to do so as not to go crazy. First of all, this concerns temperatures.
Tj
is the maximum operating temperature of the transistor crystal, in fact the ceiling of its performance. It would be at the very least absurd to use this value in the calculation. Never push parameters into a corner, always leave room for maneuver.

For example, I use a temperature 5-10° lower in my calculations, and call it “Expected temperature” - Also.

.
Since Tj
indicated around 125° Celsius, I use 115-120° in the calculation.

Further, the ambient temperature for assessment should also not be taken at random. There are approved GOST standards, although you can simply accept +35° for the middle zone and +45° for the southern regions. This is so that in a room full of people in the summer the equipment does not burn out with a blue flame. Well, for cases of temperature fluctuations. For working outdoors under the sun, there are even more stringent conditions, but this is beyond the scope of amateur radio.

Next about voltages.

It is always worth making a safety margin for the permissible voltage.
Again, in the datasheet the Vdss
is the limit. And selecting a transistor strictly for the rectified mains voltage can play a cruel joke. Let's calculate: with a network voltage of 220 Volts, the output of the bridge rectifier will be 310 Volts. However, in reality, the network rarely has 220 Volts, and surges of up to 20% are, alas, a common occurrence. And what will happen if the voltage in the network increases by this 20%? The output of the rectifier will already be 378 Volts. Add in the noise from the welder and, voila, the 400-volt switch sparks and explodes.

I had the opportunity to repair a lot of amplifiers in which numerous Uncle Liaos skimped on transistors. Don't do this, there will be much more disappointment and savings.

Somehow, while wandering around the Internet, I came across an IR application note that recommended choosing keys with a margin of 200 - 250 Volts from the maximum voltage in the circuit. Alas, I did not save this appnote, and then I could not find it. Some people have doubts that it even exists, but the recommendation itself sounds quite sober, albeit relatively expensive.

Now about the transition resistance.

In the open state, an ideal switch should pass all the current without loss.
Alas, we live in an imperfect world. So imperfect that marketers are happy to take advantage of it. Opening the datasheet of any field-effect transistor, you can see a small characteristic Rds on
, written in large font. So: this is the transition resistance at a certain “room” temperature of 20-25 degrees. For the same IRFS840B, 0.8 Ohm is indicated.

This is all beautiful in words only, but in reality the crystal will heat up during operation, which will inevitably lead to an increase in the resistance of the open junction. Few people remember this, but this is exactly what you need to rely on when choosing a suitable transistor. Most often, datasheets do not indicate these sad figures, but only provide a graph of the temperature coefficient of resistance of the TCS, here it is for the transistor we have chosen:


As you can see in the graph, when heated, the resistance of the open junction quickly increases, and for the maximum operating 120° I recommended, the TCR of the open channel is already 2.1 Ohms, which means that from a pleasant 0.8 Ohms, an unpleasant 1.68 Ohms is already obtained. It’s sad, and that’s all, but we have to take it into account.

Well, the last of the subtleties. Be sure to consider the extreme characteristics of the transistor.

Datasheet tables always indicate three values: minimum, typical and maximum (or best, typical and worst). This applies to almost everything. For example, opening time and closing time. Moreover, from a marketing point of view, the emphasis is placed precisely on typical opening and closing times. So, for example, for the IRFS840B the typical rise time is 65 ns, which is what is written everywhere, although some instances go up to 140 ns, which is more than 2 times longer! Accordingly, for the calculation it is necessary to use exactly the worst value if there is no desire to select transistors for the design.

Tables of foreign analogues of transistors

If you find an inaccuracy in the tables of analogues or want to supplement them, write about it in the comments at the bottom of the page!

Table of bipolar transistor analogues

Foreign

Domestic
2SC32172T9155A
2SC36602T9155B
2SC32182T9155B
Bak0510-502T9156BS
BF423C2T3129V9-G9,2T3152V
KF4232T3129D9, 2T3152B
BFY802Т3130А9
2N24632T3130B9
2N24592Т3130В9
2N735A2T3130G9
2N8442Т3130Д9
PBC108A,B2Т3133А2
2N42602Т3135А1
2N42612T3135B1
S923TS2T3152A, G, D
PBC107B2Т3158А2
2N2906A2Т3160А2
DC51082Т370А9
CX9542T370B9
BD8252Т642А2
2N22182Т649А2
SF123A2Т672А2
BD2022Т818А
1561-10152Т874А
1561-10082T874B
SDT695042T880D
2N35842T881D
2SA1009AM2T887A, B
BLY47A2T892A, 2T892B
2N50502Т892В
2SC20932T9102A2, B2, 2T9103B2
2307(A)2Т9103А2
NE2434992Т9108А2
NE080481E-122Т9109А
THA-152Т9111А
THX-152T9111B
AM14162002T9114A, B
SDR0752Т9117А, 2Т9118А
2DR405B2T9117B
MRF8462Т9117В
LDR405B2T9118B
MRF8462Т9118В
NE30012Т9119А2
PZB27020V2Т9122А
PH1214-602T9122B
MSC81400M2T9127V, G
MSC81325M2T9127D, E
TN202Т9130А
2SA15842Т9143А
2023-62Т9146А
2023-122T9146B
2023-162Т9146В
2SC32172Т9155А
2SC32182T9155B, KT9142A
2SC36602T9155V, KT9152A
2224302Т9158А
2023-62T9158B
MRF5442Т9159А
AM14162002T986A, B
MPF8732Т987А
AM14162002Т994А2—2Т994В2
2N51772Т998А
2SC3218*KT9142A
2SC3660*KT9152A
SD1483KT9174A
SD1492*G101A
ADY25GT 701A, P210B
SD1492GT101A
AC128GT402I
AC127GT404B
AD162GT703G
AU106GT810A, KT812B
BC239BKT 3102Zh
SS9012KT209
2N2784KT3101AM
BC109BPKT3102I
BC455DKT3107E1
BC456BKT3107I1
BC526CKT3107K1-L1
BF680KT3109A1
BF979KT3109B1
BF970KT3109V1
2N2615KT3132D2
2N2616KT3132E2
2N2906KT313A1
2N2906AKT313B1
2SA1090KT313V1
2SA876HKT313G1
PXT2222KT3153A9
BFP720KT315V1
2N3397KT315R1
2SD1220QKT3169A9, 2T3129A9
2SA1660KT3171A9, 2T3129B9
2SD814KT3176A9
MPS6513KT3184B9
TBC547AKT3186A
BCW47BKT3187A
BC408KT342A
BC107BKT342B, KT3102B
2SC404KT359A3
SS9015KT361, KT3107
2SA556KT361Zh (I)
BSW62AKT361K (L, M)
BSW63AKT361N (P)
MD5000AKT363A
2N3839KT370A9
2N5651KT370B9
BC147KT373A
2N3904KT375A, KT375B
2SC601KT396A2
2N709KT397A2
MJE13001KT538A
2SC64KT6110A (B)
2N1051KT6110V (G, D)
BF337KT6113A (B, V)
BF338KT6113G (D, E)
2SA738BKT6116A (B)
2N3114KT6117A
2N3712KT6117B
BD136KT626E, KT6109A
BC527-6KT629A2
BD386KT629A3
2N2368KT633A
2N3303KT635A
BD370A6KT639A1
BD372KT639B1
2N2218AKT647A2
MPS706KT648A2
2SA715CKT664B9
BF177KT671A2, 2T3130E9
BF179BKT682B2
BD166KT720A
2N4238KT721A
BD168KT722A
2N3054KT723A
BD170KT724A
BD165KT728A
BUY90KT8107V (G)
MIE13005KT8121A2
MIE13004KT8121B2
2SD401AKT8146A
2SC4055KT8146B
TIP41CKT8212A-B
BU2506DKT8248A1
BUD44D2KT8261A
STD18202KT828G
BU205KT838B
2SB834KT842V
2SD1279KT846B
BVX14KT846V
BD223KT856A1
BD944KT856B1
2N5839KT862B
2N5840KT862V
2SC1173KT862G
2SC1624KT863B
2SC1625KT863V
2SC2794KT866A
2N4913KT866B
BU508KT872
2SA1682-5KT9115A, B, KT9143A, B, V
SD1015KT9116A
MRF422KT9116A, B
I02015AKT9116B
2SC3596FKT9142A
TCC2023-6LKT9150A, 2T9155V
2SC3812KT9151AS
2023-15TKT9152A
27AM05KT9170A
SDT3207KT9171A, B
LT1739KT9171V
2SB596KT9176A
MJE2801TKT9177A
SD1483KT917A
2N6180KT9180A, B, 2T877G
2N6181KT9180V, G
D44H7KT9181A, B
MRF430KT9181V, G
2N5102KT921A, B
2N2219KT928B
BC303KT933A
2N5996KT945B
2N5642KT945V, G
2N5643KT949A
2SC2331KT961, KT9171
2N4440KT972V
2N5995KT972G
LOT-1000D1-12BKT979A
2N4976KT996A2
2SC976KT996B2
2N4128KT997V
MP42MP42B
ASZ18P217V, GT711

Bipolar transistors up to 40 V

ForeignDomesticTransition typeU max, VI max, AFrame
SG7692Т3133Аnpn0.3TO-126
2T837V,Epnp8TO-220
2SA10202T860Vpnp2TO-39
2T877Vpnp20TO-3
KT315Hnpn200.1
KT503Anpn250.15
KT503Bnpn250.15
KT686Fpnp250.8
KTJ107Bpnp250.1
avzttpnp307.5
GT313Apnp150.03
GT313Bpnp150.03
GT313Vpnp150.03
GT328Apnp150.01
GT328Bpnp150.01
GT328Vpnp150.01
GT346Apnp200.01
GT346Bpnp200.01
GT346Vpnp200.01
K13115G-2npn70.08
KG117Gn-base300.05
KG201A(M)npn200.02
KT117An-baea300.05
KT117Bn-baea300.05
KT117Vn-base300.05
KT201B(M)npn200.02
KT201V(M)npn100.02
KT201G(M)npn100.02
KT201D(M)npn100.02
KT203B(M)pnp300.01
KT203V(M)pnp150.01
KT208A(1)pnp200.3
KT208B(1)pnp200.3
KT208V(1)pnp200.3
KT208G(1)pnp300.3
KT208D(1)pnp300.3
KT208E(1)pnp300.3
KT209Apnp150.3
KT209Bpnp150.3
KT209B1pnp150.3
KT209Vpnp150.3
KT209V1pnp150.3
KT209V2pnp150.3
KT209Gpnp300.3
KT209Dpnp300.3
KT209Epnp300.3
KT306B(M)npn100.03
kt306v(M)npn100.03
kt306g(M)npn100.03
kt306d(M)npn100.03
KT3101A-2npn150.02
KT3102K(M)npn200.1
KT3102V(M)npn300.1
KT3102G(M)npn200.1
KT3102D(M)npn300.1
KT3102E(M)npn200.1
KT3102Zh(M)npn200.1
KT3102I(M)npn200.1
KT3107Gpnp250.1
BC179APKT3107Dpnp250.1
BC179KT3107Epnp200.1
KT3107Zhpnp200.1
KT3107Kpnp250.1
KT3107Lpnp200.1
KT3109Apnp250.05
KT3109Bpnp200.05
KT3109Vpnp200.05
KT3115A-2npn100.08
KT3115V-2npn100.08
KT3120Anpn150.02
KT3123A-2pnp150.03
KT3123B-2pnp150.03
KT3123V-2pnp100.03
KT3126Apnp200.02
KT3126Bpnp200.02
KT3127Apnp200.02
kt3128A(1)pnp400.02
KT3129V-9pnp300.1
KT3129G-9pnp300.1
KT3129D-9pnp200.1
KT312Anpn200.03
BFY39KT312Bnpn350.03
KT312Vnpn200.03
KT3130V-9npn300.1
KT3130G-9npn200.1
KT3130D-9npn300.1
KT3130E-9npn200.1
KT3130Zh-9npn300.1
2N2712KT315Anpn250.1
2N2926KT315Bnpn200.1
KT315Vnpn400.1
KT315Gnpn350.1
BFP722KT315G1npn350.1
2SC634KT315Dnpn400.1
KT315Enpn350.1
2SC641KT315ZHnpn200.05
KT315Rnpn350.1
KT3168A-9npn150.03
KT316A(M)npn100.05
KT316B(M)npn100.05
KT316V(M)npn100.05
KT316G(M)npn100.05
KT316D(M)npn100.05
KT325A(M)npn150.03
KT325B(M)npn150.03
KT325V(M)npn150.03
KT326A(M)pnp150.05
KT326B(M)pnp150.05
KT339A(M)npn250.03
KT339Bnpn150.03
KT339Vnpn250.03
KT339Gnpn250.03
KT339Dnpn250.03
KT342A(M)npn300.05
KT342B(M)npn250.05
KT342V(M)npn100.05
KT342GMnpn300.05
KT342DMnpn250.05
KT345Apnp200.2
KT345Bpnp200.2
KT345Vpnp200.2
KT347Apnp150.05
KT347Bpnp90.05
KT347Vpnp60.05
KT349Apnp150.05
BC178KT349Bpnp150.05
KT349Vpnp150.05
KT350Apnp200.6
KT351Apnp15(-0.4)
KT351Bpnp15(-0.4)
KT352Apnp15(-0.2)
KT352Bpnp15(-0.2)
KT355AMnpn150.03
2SA555KT361Apnp250.1
KT361Bpnp200.1
KT361Vpnp400.1
KT361Gpnp350.1
KT361G1pnp350.1
KT361Dpnp400.05
KT361Epnp350.05
BC251KT361Ipnp150.05
KT363A(M)pnp150.03
KT363B(M)pnp120.03
KT368A(M)npn150.03
KT371Anpn100.02
KT372Anpn150.01
KT372Bnpn150.01
KT382A(M)npn100.02
KT382B(M)npn100.02
KT391A-2npn100.01
KT391B-2npn100.01
KT391V-2npn100.01
KT399Anpn150.02
KT399AMnpn150.03
2N3906KT501 ZH,I,Kpnp0.3TO-92
KT501Apnp150.3
KT501Bpnp150.3
KT501Vpnp150.3
KT501Gpnp300.3
KT501Dpnp300.3
KT501Epnp300.3
KT502Apnp250.15
KT502Bpnp250.15
KT502Vpnp400.15
KT502Gpnp400.15
2SC1815KT503 A, Bnpn0.15TO-92
KT503Vnpn400.15
KT503Gnpn400.15
KT603Anpn300.3
KT603Bnpn300.3
Kt603vnpn150.3
KT603Gnpn150.3
Kt603dnpn100.3
KT603Enpn100.3
Kt603inpn300.3
BC547KT6111 (A-G)npn0.1TO-92
2SA1266KT6112 (A-B)pnp0.1TO-92
KT6127Gpnp302
KT6127Dpnp122
KT6127Epnp122
2N4403KT626Apnp0.5TO-126
KT626Gpnp200.5
KT626Dpnp200.5
BD136KT639A,B,Vpnp1.5TO-126
KT639Ipnp301.5
KT644Vpnp400.6
KT644Gpnp400.6
2N3904KT645Bnpn400.3TO-92
2N4401KT646Bnpn401TO-126
BC337KT660Anpn0.8TO-92
KT660Bnpn300.8
BC557KT668 (A-B)pnp0.1TO-92
KT680Anpn250.6
KT681Apnp250.6
BC635KT684Anpn1TO-92
KT685 A,Bpnp400.6TO-92
KT685dpnp250.6
KT685Epnp250.6
KT685ZHpnp250.6
BC327KT686 A, B, Vpnp450.8TO-92
KT686Gpnp250.8
KT686Dpnp250.8
KT686Zhpnp250.8
BC636KT692Apnp1TO-39
KT695Anpn250.03
KT698Gnpn302
KT698Dnpn122
KT698Enpn122
KT8111B'npn400.02
KT8111V"npn300.02
KT8130A*pnp404
KT8131A*npn404
KT814Apnp251.5TO-126
KT814Bpnp401.5
BD135KT815Anpn301.5TO-126
BD434KT816Apnp403
KT816A2pnp403
2SB856KT816Bpnp3TO-126
BD435KT817A,Bnpn403TO-126
TIP33KT818Apnp4010TO-220
KT818AMpnp4015
TIP34KT819A,Bnpn4010TO-220,
9527KT819AMnpn4015
KT825E*pnp300.02
KT829Gnpn8TO-220
KT835Apnp303
KT835Bpnp7.5TO-220
KT837Zhpnp307.5
KT837Ipnp307.5
KT837Kpnp307.5
FMMT717KT852Gpnp2TO-220
KT853Gpnp8TO-220
2SD1062KT863Anpn3010TO-220
KT896V*pnp300.02
KT943Anpn2TO-126
KT972Bnpn4TO-126
2SB857KT973Bpnp4TO-126
ktzb1Zhpnp100.05
ktzevB(M)npn150.03
KTZOVA(M)npn100.03
KTE72Vnpn1510
ST837Upnp307.5
ST837Fpnp307.5

Bipolar transistors up to 60 V

ForeignDomesticTransition typeU max, VI max, AFrame
2T708Bpnp2.5TO-39
MJE29552T709Vpnp10TO-3
2Т709В2*pnp6010
BDX852Т716В,В1npn6010TO-3
BDX782T818Vpnp6015
2T819Vpnp6015
2T825Vpnp20TO-3
2Т825В2pnp6015TO-220
2T830Bpnp2TO-39
2T831Bnpn2TO-39
2T836Vpnp3TO-39
2T837B,Dpnp8TO-220
MJE30552T875Vnpn10TO-3
2T877Bpnp20TO-3
2T880Vpnp2TO-39
2Т881Вnpn2TO-39
2SC3402503V,Gnpn0.15TO-92
ICT814Bpnp601.5
KT6S8Bnpn502
GT806Gpnp5015
GT905Bpnp603
KT203A(M)pnp600.1
KT208Zh(1)pnp450.3
KT208I(1)pnp450.3
KT208K(1)pnp450.3
KT208L(1)pnp600.3
KT208M(1)pnp600.3
KT209ZHpnp450.3
KT209Ipnp450.3
KT209Kpnp450.3
KT209Lpnp600.3
KT209Mpnp600.3
BC182KT3102A(M)npn500.1
KT3102B(M)npn500.1
BC212KT3107Apnp450.1
BCY78KT3107Bpnp450.1
BCY78KT3107Ipnp450.1
KT3108Apnp600.2
KT3108Bpnp450.2
KT3108Vpnp450.2
PN5132KT3117A(1)npn600.4
KT3129A-9pnp500.1
KT3129B-9pnp500.1
KT3130A-9npn500.1
KT3130B-9npn500.1
KT313A(M)pnp600.35
2N2907KT313B(M)pnp600.35
KT315Inpn600.05
KT361Kpnp600.05
KT501Zhpnp450.3
KT501Ipnp450.3
KT501Kpnp450.3
KT501Lpnp600.3
KT501Mpnp600.3
KT502Dpnp600.15
KT502Epnp600.15
BSR41KT530Anpn1TO-92
KT6127Vpnp502
BD138KT626Bpnp600.5TO-126
BC637KT630D,Enpn1TO-39
KT639Apnp451.5
KT639Bpnp451.5
KT639Vpnp451.5
KT639Gpnp601.5
BD138KT639G,Dpnp601.5TO-126
2N3545KT644(A-G)pnp600.6TO-126
KT645Anpn600.3TO-92
BD137KT646Anpn0.5TO-126
KT659Anpn1.2TO-39
2SA684KT661Apnp0.6TO-39
BC556KT662Apnp0.4TO-39
KT668Apnp450.1
KT668Bpnp450.1
KT668Vpnp450.1
KT683Dnpn601
2SD1616KT683D,Enpn601TO-126
KT685Bpnp600.6
BC638KT685B,Gpnp600.6TO-92
SA1245KT686Apnp450.8
KT686Bpnp450.8
KT686Vpnp450.8
2SC2655KT698Vnpn2TO-92
KT801Bnpn602
KT8106Bnpn450.02TO-220
KT8111A'npn500.02
KT8111V9npn20TO-218
KT8116Vnpn8TO-220
KT8118B*npn608
2SA1469KT8130Bpnp604TO-126
KT8131B'npn604
KT815Bnpn451.5
2SB1366KT816Vpnp603TO-126
KT817Bnpn453
KT817B2npn453
2N5191KT817Vnpn603TO-126
KT818Bpnp5010
9535KT818BMpnp5015
KT819Bnpn5010
2N3055KT819BMnpn5015
KT825D*pnp6020
KT827Vnpn6020TO-3
TIP3055KT8284Anpn12TO-220
TIP120KT829Vnpn608TO-220
KT837Bpnp607.5
KT837Vpnp607.5
KT837Gpnp457.5
KT837Dpnp457.5
KT837Lpnp607.5
KT837Mpnp607.5
KT852Vpnp2TO-220
KT853Vpnp8TO-220
KT896Bpnp20TO-220
KT908Anpn6010
KT908Bnpn6010
BD137KT961Vnpn451.5TO-126
BD677KT972Anpn604TO-126
BD678KT973Apnp4TO-126
KT973A'pnp604
KT997Anpp4510
KT997Bnpn4510
KTM7Epnp457.5
OG837Npnp607.5
SG837Ppnp457.5
SG837Rpnp457.5
Т852В*pnp602.5
T852Gpnp452.5
Т853В*pnp608
T853Gpnp458
TV37Spnp457.5

Bipolar transistors up to 70 V

ForeignDomesticTransition typeU max, VI max, AFrame
2Т831Вnpn2TO-39
2Т837А,Гpnp8TO-220
2T860Bpnp2TO-39
2T875Bnpn10TO-3
2T876Bpnp10TO-3
KT6127Bpnp702
KT698Bnpn2TO-92
KT69VBnpn702
KT808GMnpn10TO-3
KT814Vpnp651.5TO-126
KT815Vnpn1.5TO-126
KT818Vpnp7010TO-220,
KT818VMpnp7015
KT919Vnpn7010
KT919VMnpn7015
KT943 B,Dnpn2TO-126

Bipolar transistors up to 80 V

ForeignDomesticTransition typeU max, VI max, AFrame
TIP33B2T709Bpnp10TO-3
2T709B2*pnp8010
2T716B,B1npn10TO-3
2T716b1*npn8010
BD2042T818Bpnp8015
2T819Bpnp8015
2T825Bpnp20TO-3
2T825B2pnp8015TO-220
BD1402T830Vpnp2TO-39
2T836A,Bpnp3TO-39
2Т875А,Гnpn10TO-3
2Т876А,Гpnp10TO-3
2Т877Аpnp20TO-3
2T880Bpnp2TO-39
BD1392T881Bnpn2TO-39
GT806Apnp7515
GT905Apnp753
GT906A(M)pnp756
KDT8281Apnp60TO-218
PN3691KT3117Bnpn750.4
2SC1627KT503Dnpn0.15TO-92
KT602Vnpn800.075
KT602Gnpn800.075
2SA935KT626Vpnp800.5TO-126
KT684Bnpn1TO-92
KT801Anpn802
KT808VMnpn10TO-3
KT8106Anpn8020TO-220
TIP151KT8111B9npn20TO-218
2SD2025KT8116Bnpn808TO-220
KT8130V*pnp804
KT8131V*npn804
TIP34BKT819B,V*npn10TO-220
KT827Bnpn8020TO-3
KT8284Bnpn12TO-220
BD679KT829Bnpn808TO-220
KT837Apnp807.5
KT852Bpnp2TO-220
BDX34BKT853Bpnp8TO-220
2N6039KT943V,Gnpn2TO-126
KT961Bnpn1.5TO-126
KTD8280Anpn60TO-218
KTD8283Apnp60TO-218
T852B*pnp802.5
T853B'pnp808

Bipolar transistors up to 130 V

ForeignDomesticTransition typeU max, VI max, AFrame
1Т813Аpnp10030
1T813Bpnp12530
2Т708Аpnp2.5TO-39
BDX34C2T709Apnp10010TO-3
BDX33C2Т716А,А1npn10TO-3
2T716AG*npn10010
2T819Apnp10015
2Т825Аpnp20TO-3
2Т825А2pnp15TO-220
2T830Gpnp2TO-39
SD17652T831Gnpn2TO-39
2Т860Аpnp2TO-39
2Т880А,Гpnp2TO-39
2Т881А,Гnpn2TO-39
2T935Bnpn20TO-220
GT806Bpnp10015
GT806Vpnp12015
KT503Enpn0.15TO-92
SK3835KT601A,AMnpn1000.03TO-126
KT602A,AMnpn0.075TO-126
KT602B(M)npn1000.075
2SA715DKT6102Apnp1.5TO-92
BF336KT6103Anpn1.5TO-92
KT6127Apnp902
KT6127Zhpnp1202
BSY52KT630Anpn1201TO-39
KT630Bnpn1201TO-39
2N1613KT630Gnpn1001TO-39
2SC2240KT638A,Bnpn0.1TO-92
KT639Epnp1001.5
KT6836npn1201
KT683Bnpn1201TO-126
KT683Vnpn1201TO-126
KT683Gnpn1001TO-126
BC639KT684Vnpn1TO-92
BD237KT698Anpn2TO-92
KT698ZHnpn1202
2N4237KT719Anpn1.5TO-126
KT802Anpn1305
KT805BM,VMnpn5TO-220
KT807Anpn1000.5
KT807A,Bnpn1000.5TO-126
KT808 AM,BMnpn10TO-3
TIP150KT8111A9npn20TO-218
KT8115Apnp8TO-220
KT8116Anpn1008TO-220
2N5400KT814Gpnp1.5TO-126
KT815Gnpn851.5TO-126
TIP42CKT816Gpnp903TO-126
KT817Gnpn903TO-126
KT817G2npn903
TIP33BKT818Gpnp9010TO-220
KT818GMpnp9015
TIP34CKT819A,Gnpn10010TO-220
2N3055KT819GMnpn10015
KT8246 A, Bnpn15TO-220
KT825*pnp9020
KT827Anpn10020TO-3
KT8284Vnpn12TO-220
TIP122KT829Anpn1008 (5)TO-220
KT852Apnp2TO-220
KT853Apnp8TO-220
BD946KT896Apnp20TO-220
KT961Anpn1.5TO-126
ktvzezhpnp1001.5
KTD8257Anpn20TO-220
KTD8278B,Vnpn20TO-220
KTD8280Bnpn60TO-218
KTD8281Bpnp60TO-218
KTD8283Bpnp60TO-218
PYLON-3Anpn15TO-220
T852A-pnp1002.5
Т853А-pnp1008

Bipolar transistors up to 160 V

ForeignDomesticTransition typeU max, VI max, AFrame
1Т813Вpnp15030
GT806Dpnp14015
2N5401KT6116pnp0.6TO-92
2N5551KT6117npn0.6TO-92
2SC2383KT630Vnpn1501TO-39
KT663Anpn1501
KT683Anpn1TO-126
KT698Inpn1602
2SA1186KT712Bpnp10TO-220
KT805AMnpn5TO-220
BU289KT8101Anpn16016TO-218
KT8101Bnpn16TO-218
2SA1294KT8102Apnp16016TO-218
2SA1216KT8102Bpnp16TO-218
KT8123Anpn1502TO-220
KT8246V,Gnpn15TO-220
KT850Vnpn2TO-220
2SA940KT851Vpnp2TO-220
KT855Bpnp1505
KT855B,Vpnp1505TO-220
2SC3907KT863BSnpn12TO-220
KT899Anpn1508TO-220
KT940Vnpn1600.1TO-126
2N5996KT945Anpn15015TO-3
KTD8257Bnpn20TO-220
PIR-2 (KT740A)npn20TO-220
2SC2230Т611В,Гnpn0.1TO-126
Т850Вnpn1502
Т851Вpnp1502

Bipolar transistors up to 200 V

ForeignDomesticTransition typeU max, VI max, AFrame
KGvi AMnpn1800.1
KT504Bnpn2001TO-39
2SC1473KT611A,Bnpn0.1TO-126
KT611BMnpn1800.1
KT6127Kpnp2002
KT698Knpn2002
KT712Apnp10TO-220
KT8105Anpn20020
KT8124Anpn2007
KT8124Bnpn2007
KT8140Anpn2007
KT842Bpnp5TO-3
KT851Apnp2TO-220
BU406KT864Anpn10TO-3
KT865Apnp10TO-3
BVR11KT867Anpn25TO-3
KT879Anpn20050KT-5
BVT91KT879Bnpn20050
KT897Bnpn20020TO-218
2N6077KT898Bnpn20020TO-218
KTD8257(A-G)npn20TO-220
KTD8278Anpn20TO-220
T850Anpn2002
T851Apnp2002

Bipolar transistors up to 250 V

ForeignDomesticTransition typeU max, VI max, AFrame
2T862A,Bnpn15TO-3
2Т882Вnpn1TO-220
2SA18372T883Bpnp1TO-220
KT3157Apnp2500.03
KT504Vnpn1TO-39
KT505Bpnp2501TO-39
KT604A(M)npn2500.2
KT604B(M)npn2500.2
KT605A(M)npn2500.1
0.1KT605A,Bnpn2500.1TO-126
KT844Anpn10TO-3
KT850A,Bnpn2TO-220
KT851Bpnp2TO-220
KT855Apnp5TO-220
MJE15032KT857Anpn2507TO-220
KT940Bnpn2500.1TO-126
KT969Anpn0.1TO-126
KT999Anpn2500.05
KTEvEAnpn2500.1
T850Bnpn2502
T851Bpnp2502
T855Apnp2505

Bipolar transistors up to 300 V

ForeignDomesticTransition typeU max, VI max, AFrame
MJE3402T882Bnpn1TO-220
2Т883Аpnp1TO-220
MJE13002KT504Anpn1TO-39
KT505Apnp3001
2SA1371KT6104Apnp0.15TO-92
BFJ57KT6105Anpn0.15TO-92
KT8109A,Bnpn7TO-220
KT8109B*npn3007
KT8121Bnpn3004TO-220
KT8124Vnpn7TO-220
KT812Vnpn3008
KT8232A,Bnpn20TO-218
KT8258Bnpn4TO-220
KT8259Bnpn8TO-220
KT8260Anpn15TO-220
KT8285Anpn30TO-218
KT842Apnp5TO-3
KT854Bnpn10TO-220
KT890(A-B)npn20TO-218
KT892A,Bnpn15TO-3
KT897Anpn20TO-218
KT898Anpn20TO-218
2SA1091KT9115Apnp3000.1TO-126
KT940Anpn3000.1
KTD8252(A-G)npn15TO-220
KTD8262(A-B)npn7TO-220
KTD8279(A-B)npn10TO-220
MJE350T505Apnp1TO-39
2SC2482Т940Аnpn0.1TO-126

Bipolar transistors up to 400 V

ForeignDomesticTransition typeU max, VI max, AFrame
2SA16252Т509Аpnp0.02TO-39
MJE130092Т862Вnpn10TO-3
2SC41382T862Gnpn10TO-3
MJE130032Т882Аnpn1TO-220
2Т885Аnpn40TO-3
av40Bnpn3508
BUX84KT704B,Vnpn2.5
KT809Anpn4003
BU208AKT8104Anpn35020
2SC2625KT8117Anpn40010TO-218
KT8121Anpn4004TO-220
2SC3039KT8124A,Bnpn7TO-220
MJE13007KT8126Anpn8TO-220
KT8136Anpn40010
MJE13005KT8258Anpn4TO-220
2SC4834KT8259Anpn8TO-220
KT8260Bnpn15TO-220
KT8285Bnpn30TO-218
KT834Vnpn40015TO-3
2SD1409KT840A,Bnpn6TO-3
2SC3306KT841Bnpn10TO-3
BUT11KT845Anpn5TO-3
KT848Anpn15TO-3
2SC2335KT858Anpn4007TO-220
2N4914KT890A*npn35020
2N4915KT890B*npn35020
KT890V*npn35020
MI10000KT892Bnpn40015TO-3
KTD8279Anpn10TO-220
Т840Аnpn4006
Т848Аnpn40015
T854Bnpn40010

Bipolar transistors up to 500 V

ForeignDomesticTransition typeU max, VI max, AFrame
2T812Bnpn50010
2T856Vnpn10TO-3
2T885Bnpn40TO-3
ICT8110Bnpn4507
KT8120Anpn4508
SF123CKT6107Anpn0.13TO-92
BD140KT6108Apnp0.13TO-92
2SC3970KT704Anpn2.5
KT8108Anpn5005
KT8108Bnpn5005
KT8110Anpn4507
KT8110Bnpn4507
BUL310KT8120Anpn3TO-220
KT812Bnpn5008TO-3
KT8260Vnpn15TO-220
KT8285Vnpn30TO-218
KT834Anpn50015
KT834A,Bnpn45015TO-3
KT854Anpn10TO-220
PIR-1npn20TO-218

Bipolar transistors up to 600 V

ForeignDomesticTransition typeU max, VI max, AFrame
2SC52492T884Bnpn2TO-220
KT506Bnpn6002TO-39
KT8107Vnpn6005
KT8144Bnpn25TO-3
2SC5386KT8286Anpn5TO-218
2SC2027KT828Bnpn6005
2SD2499KT828B,Gnpn5TO-3
2SC5387KT841A,Bnpn10TO-3
2SC4706KT847Anpn15TO-3
ST1803KT856A1,B1npn10TO-218
KT878Vnpn60030TO-3
2SA1413KT887Bpnp2TO-3
KT888Bpnp0.1TO-39
ST841Anpn60010
ST841Vnpn60010
T854Anpn60010

Bipolar transistors up to 700 V

ForeignDomesticTransition typeU max, VI max, AFrame
2Т812Аnpn70010
2T856Bnpn10TO-3
KT8107(A-G)npn7008TO-220
KT8114Anpn7008
KT8127A(1)npn7005
KT8127B(1)npn7005
KT8127V(1)npn7005
KT8129Anpn7005
BUH100KT812Anpn70010TO-3
KT8137Anpn1.5TO-126
KT826(A-B)npn7001TO-3
KT8286Bnpn5TO-218
KT887Apnp2TO-3
Т847Аnpn65015

Bipolar transistors up to 800 V

ForeignDomesticTransition typeU max, VI max, AFrame
2Т884Аnpn2TO-220
KT506Anpn2TO-39
KT8118Anpn8003TO-220
2SC3998KT8144Anpn25TO-3
KT8286Vnpn5TO-218
SML804KT828A,Bnpn8005TO-3
2SC3150KT859Anpn8003TO-220
2SC5002KT868Bnpn6KT-9
BVP38KT878Bnpn80030TO-3
ST841Bnpn80010

Bipolar transistors up to 900 V

ForeignDomesticTransition typeU max, VI max, AFrame
KT888Apnp0.1TO-39
2SC3979KT868Anpn6KT-9
2Т856Аnpn10TO-3
KT878Anpn30TO-3

Bipolar transistors up to 1500 V

ForeignDomesticTransition typeU max, VI max, AFrame
BU108KT8107Anpn15008
BU508KT838Anpn5TO-3
BU2520KT839Anpn10TO-3
BU2506KT846Anpn5TO-3
BU2508KT872A,Bnpn8TO-218
2SC5270KT886A1npn10TO-218
BU1508KT886B1npn8TO-218
Т846Аnpn15005
Т846Вnpn15005
T848Bnpn12005

Bipolar transistors over 2000 V

ForeignDomesticTransition typeU max, VI max, AFrame
2Т713Аnpn25003TO-3
KT710Anpn5TO-3

Unijunction transistors

ForeignDomestic
2N1573KT117VM
2N1923KT117AM

Powerful field effect transistors

ImportedDomestic
IRFZ10KP739B
IRFZ15KP739V
IRF740KP740
IRFZ24KP740A
IRFZ20KP740B
IRFZ25KP740V
IRFZ48KP741A
IRFZ46KP741B
STH75N06KP742A
STH75N05KP742B
IRF510KP743A
IRF511KP743B
IRF512KP743V
IRF520KP744A
IRF521KP744B
IRF522KP744V
IRL520KP744G
IRF530KP745A
IRF531KP745B
IRF532KP745V
IRL530KP745G
IRF540KP746A
IRF541KP746B
IRF542KP746V
IRL540KP746G
IRFP150KP747A
IRF610KP748A
IRF611KP748B
IRF612KP748V
IRF620KP749A
IRF621KP749B
IRF622KP749V
IRF640KP750A
IRF641KP750B
IRF642KP750V
IRL640KP750G
IRF720KP751A
IRF721KP751B
IRF722KP751V
IRF730KP752A
IRF731KP752B
IRF732KP752V
IRF830KP753A
IRF831KP753B
IRF832KP753V
STP40N10KP771A
IRF820KP820
IRF830KP830
IRF840KP840
IRF150KP150
IRF240KP240
IRF250KP250
IRF340KP340
IRF350KP350
BF410CKP365A
BF960KP382A
IRF440KP440
IRF450KP450
ZVN2120KP501A
BSS124KP502
BSS129KP503
BSS88KP504
BSS295KP505
IRF510KP510
IRF520KP520
IRF530KP530
IRF540KP540
IRF610KP610
IRF620KP620
IRF630KP630
IRF640KP640
BUZ90KP707B1
IRF710KP710
IRF350KP717B
BUZ45KP718A
IRF453KP718E1
IRF720KP720
BUZ36KP722A
IRFZ44KP723A
IRFZ45KP723B
IRFZ40KP723V
IRLZ44KP723G
MTP6N60KP724A
IRF842KP724B
TPF450KP725A
BUZ90AKP726A
BUZ71KP727A
IRFZ34KP727B
IRLZ34KP727V
BUZ80AKP728A
IRF730KP730
IRGPH50FKP730A
IRF710KP731A
IRF711KP731B
IRF712KP731V
IRF630KP737A
IRF634KP737B
IRF635KP737V
IRFZ14KP739A

Weak field effect transistors

ImportedDomestic
U1899EKP329A
2N2841KP301G
2N3332KP301B
2N3365KP329A
2N3368KP329A
2N3369KP333A
2N3331KP307B
2N3370KP329A
2N3436KP329A
2N3438KP333A
2N3458KP333A
2N3459KP329A
2N3460KP329A
2N3796KP303B
2N3797KP303G
2N3819KP307B
2N3823KP329A
2N3909KP301B
2N3971KP902A
2N3972KP902A
2N4038KP329A
2N4091KP902A
2N4092KP902A
2N4220KP329B
2N4220AKP329B
2N4221KP333A
2N4221AKP329A
2N4222AKP329A
2N4224KP329A
2N4302KP329B
2N4303KP329B
2N4304KP329B
2N4351KP333A
2N4352KP304A
2N4360KP301B
2N4393KP902A
2N4416AKP329A
2N4860KP333B
2N4867KP333A
2N5078KP333A
2N5163KP307Zh
2N5458KP304A
2N5457KP307E
2N5459KP307B
2N5654KP329B
2N6656KP801B
2SK11KP303D
2SK12KP303G
2SK15KP303G
2SK68AKP329A
2SK21HKP306A
2SK39KP350A
BFW11KP333B
BF244KP329A
BF245KP329A
BF256BKP329A
BF960KP327A
BF981KP327B
BSV79KP333A
BSV80KP333A
BUZ20KP704A
CP652KP907B
E100KP333B
E102KP333B
E111KP329B
E112KP333B
IRF120KP922B
MPF103KP307B
MPF102KP303E
M103KP304A
TIS68KP307E
UC714KP329B
U1897EKP333A

↑ Let's summarize

To select a key transistor you must:

  1. Always remember that environmental conditions are not ideal
  2. Use the parameters of the worst instances in the calculations
  3. Always leave some margin and room for maneuver
  4. Keep in mind thermal changes in parameters
  5. Do not let the crystal overheat
  6. Avoid overvoltage due to poor network

Everything else is considered and selected.

And here I have a bonus for you.

Since I’m still lazy, I made a table in Excel that will calculate everything itself. All that remains is to draw a conclusion about the suitability or unsuitability of the transistor.

↑ Technical specifications

As always, I believe that an amateur design, as a rule, should be simple, cheap, technologically advanced, and consist of non-scarce parts. In addition, I long ago came to the conclusion that for such purposes it is better to make small simple boards without a power supply, without a digital indicator, without a complex case. It is enough to provide clamps for connecting an external laboratory regulated power supply, an indicator in the form of a simple digital tester or pointer instrument, and, if necessary, an oscilloscope, etc.

Such devices are quickly made and remade, and most importantly, they work and are useful. If you think of a multifunctional, self-sufficient device in a separate beautiful case, it will usually remain in the spotlights. In addition, if the device is made, it suddenly turns out that it is necessary to add another function, for example, a capacitance viewer, but there is no more space on the front panel and the design must be spoiled... Therefore, I believe that unsightly amateur narrowly functional products have a right to life.

So, it is planned to test silicon transistors in the mode - current 200 mA, voltage K-E = 2 V. You can quickly change the current in the range of approximately 150...300 mA, voltage K-E up to 5...7 V. You can check (by slightly changing the settings) composite transistors with two serial PN junctions.

Using a toggle switch you can change the current, for example, 10 times. This will allow you to test low-power transistors at a current of 15...30 mA (by replacing one resistor you can set any reasonable current). I think it’s important to connect any transistors conveniently. For transistors KT814-819 there are sockets on the board, for powerful transistors in cases like TO-247, TO-3R, there are clamps. They install wires with “crocodiles”, which allow you to connect transistors in the TO-3 housing, any transistors with bent solder leads, etc.

The change in the C-E voltage is carried out by an external power source, the goal is to check the identity of the modes at higher voltages and significant heating of the transistors. At 5 V and 200 mA, we get the maximum power for KT814 without a heat sink - 1 W. For larger cases without heatsinks, thermal power is typically = 2 W.

It is easy to see that the transistor gain depends to some extent on both voltage and temperature, so determining the absolute value of the transistor gain using a microprocessor with an accuracy of up to the seventh digit does not make sense. For this reason, the simplest circuit solution was chosen, which provides sufficient accuracy for practice and allows you to do without an op-amp, microcontroller and several power supplies. Any digital tester, for example M-832, is suitable for measuring the base current.

↑ Files

Rating
( 1 rating, average 4 out of 5 )
Did you like the article? Share with friends:
For any suggestions regarding the site: [email protected]
Для любых предложений по сайту: [email protected]