Апериодическая составляющая тока короткого замыкания

При наступлении режима КЗ постоянные токовые величины подвергаются существенным изменениям. В самое первое мгновение появляется так называемая апериодическая составляющая тока короткого замыкания, которая достаточно быстро угасает и принимает нулевое значение. Данный временной интервал, когда наблюдаются эти перемены, представляет собой переходный период, определяемый в числовом выражении. Пока аварийное состояние тока не будет отключено, работа электрической сети производится в установившемся режиме короткого замыкания.

Физические свойства апериодической составляющей

Подобное состояние тока возникает в момент короткого замыкания. Его продолжительность и характеристики могут быть разными, в зависимости от многих факторов. Например, при наличии у двигателя демпферной обмотки, апериодическая составляющая тока короткого замыкания будет ниже, чем при ее отсутствии. Вначале возникает сверхпереходный ток, который вначале становится просто переходным, и лишь потом он начинает затухать.

Во время двухфазного замыкания, в статоре не появляются скачкообразные изменения тока. В подобных ситуациях, на холостом ходе возникает апериодическая составляющая, параметры которой совпадают с начальной величиной переменной компоненты. Поскольку ток КЗ внутри статора является однофазным, в отдельных случаях появление апериодической компоненты полностью исключается. В двигателях асинхронного типа этот показатель не учитывается, поскольку данные процессы очень быстро затухают. Он не принимается во внимание даже при расчетных вычислениях ударных токов КЗ.

В общем и целом, величина данных компонентов будет отличаться для каждой фазы. Ее начальные параметры будут зависеть от момента появления КЗ. На графиках она представляет собой сплошную кривую линию, поскольку все начальные амплитуды других составляющих будут ей равны, но направлены в обратную сторону.

Наличие апериодической составляющей устанавливается при расхождении контактов. Для ее оценки существует специальный параметр, представляющий собой соотношение между ней и периодической амплитудой в момент размыкания контактов. Время затухания составляет примерно 0,1-0,2 с и сопровождается значительным выделением тепла. Под действием высокой температуры заметно нагреваются токоведущие части и вся аппаратура в целом, несмотря на столь короткий промежуток времени.

Полный ток при наступлении КЗ

Сама по себе апериодическая компонента не может быть рассмотрена, поскольку она является одной из составных частей тока короткого замыкания. В электрической сети присутствуют сопротивления индуктивного характера, не дающие току мгновенно изменяться в момент появления КЗ. Рост нагрузочного тока проистекает не скачкообразно, а согласно определенных законов, предполагающих переходный период от нормального к аварийному значению. Расчетно-аналитическая работа значительно упрощается, когда ток КЗ во время перехода рассматривается как две составные части – апериодическая и периодическая.

Апериодическая часть представляет собой составную часть тока ia с неизменной величиной. Она появляется непосредственно в момент КЗ и в кратчайший срок падает до нулевой отметки.

Периодическая часть тока КЗ Iпm получила название начальной, поскольку по времени она появляется в самом начале процесса. Данный показатель используется для того чтобы выбрать наиболее подходящую уставку или проверить чувствительность релейной защиты. Этот ток известен еще и как сверхпереходный, поскольку его определение осуществляется с помощью сверхпереходных сопротивлений, вводимых в схему замещения. Периодический ток считается установившимся, когда затухает апериодическая часть и заканчивается сам переходный процесс.

Следовательно, полный ток короткого замыкания будет составлять сумму обоих частей – апериодической и периодической во весь период перехода состояний. В определенный момент полный ток за кратчайшее время принимает максимальное значение. Подобное состояние известно под названием ударного тока КЗ, определяемого при проверках электродинамической устойчивости установок и оборудования.

Выбор начального или сверхпереходного тока для проведения расчетов определяет скорое угасание апериодической части, которое происходит раньше, чем срабатывает защита. При этом периодическая составляющая остается неизменной.

Электрические сети, подключенные к генераторным установкам или энергетической системе с ограниченной мощностью, отличаются значительным изменением напряжения при появлении КЗ. В связи с этим, токи, начальный и установившийся, не будут равны между собой. Для того чтобы сделать расчет релейной защиты, можно воспользоваться показателями изначального тока. В этом случае погрешность будет незначительной в сравнении с установившимся током, подверженным воздействию различных факторов. Прежде всего, это увеличенное сопротивление в поврежденной точке, нагрузочные токи и прочие параметры, которые чаще всего не учитываются при выполнении расчетов.

Расчёт трёхфазного короткого замыкания

а) Изменение тока при коротком замыкании

Рассчитать трёхфазное короткое замыкание — это значит определить токи и напряжения, имеющие место при этом виде повреждения как в точке к. з., так и в отдельных ветвях схемы.

Ток в процессе короткого замыкания не остаётся постоянным, а изменяется, как показано на рис. 1-23. Из этого рисунка видно, что ток, увеличившийся в первый момент времени, затухает до некоторой величины, а затем под действием автоматического регулятора возбуждения (АРВ) достигает установившегося значения.

Промежуток времени, в течение которого происходит изменение величины тока к. з., называется переходным процессом. После того как изменение величины тока прекращается и до момента отключения короткого замыкания продолжается установившийся режим к. з. В зависимости от того, производится ли выбор уставок релейной защиты или проверка электрооборудования на термическую и динамическую устойчивость, могут интересовать значения тока в разные моменты времени к. з.

Поскольку всякая сеть имеет определённые индуктивные сопротивления, препятствующие мгновенному изменению тока при возникновении короткого замыкания, величина его не изменяется скачком, а нарастает по определённому закону от нормального до аварийного значения.

Для упрощения расчёта и анализа ток, проходящий во время переходного процесса к. з., рассматривают как состоящий из двух составляющих: апериодической и периодической.

Апериодической называется постоянная по знаку составляющая тока ia

, которая возникает в момент короткого замыкания и сравнительно быстро затухает до нуля (рис. 1-23).

Периодическая составляющая тока к. з. в начальный момент времени Inmo

называется начальным током короткого замыкания. Величину начального тока к. з. используют, как правило, для выбора уставок и проверки чувствительности релейной защиты. Начальный ток короткого замыкания называют также сверхпереходным, так как для его подсчёта в схему замещения вводится так называемое сверхпереходное сопротивление генератора и сверхпереходная э. д. с.

Установившийся ток к. з. представляет собой периодический ток после окончания переходного процесса, обусловленного как затуханием апериодической составляющей, так и действием АРВ. Полный ток к. з. представляет собой сумму периодической и апериодической составляющих в любой момент переходного процесса. Максимальное мгновенное значение полного тока называется ударным током к. з. и вычисляется при проверке электротехнического оборудования на динамическую устойчивость.

Как уже отмечалось выше, для выбора уставок и проверки чувствительности релейной защиты используется обычно начальный или сверхпереходный ток к. з., расчёт величины которого производится наиболее просто. Используя начальный ток при анализе быстродействующих защит и защит, имеющих небольшие выдержки времени, пренебрегают апериодической составляющей. Допустимость этого очевидна, так как апериодическая составляющая в сетях высокого напряжения затухает очень быстро, за время 0,05—0,2 с, что обычно меньше времени действия рассматриваемых защит.

При к. з. в сети, питающейся от мощной энергосистемы, генераторы которой оснащены АРВ, поддерживающими постоянным напряжение на её шинах, периодическая составляющая тока в процессе к. з. не меняется (рис. 1-23, б). Поэтому расчётное значение начального тока к. з. в этом случае можно использовать для анализа поведения релейной защиты, действующей с любой выдержкой времени.

В сетях же, питающихся от генератора или системы определённой ограниченной мощности, напряжение на шинах которой в процессе к. з. не остаётся постоянным, а изменяется в значительных пределах, начальный и установившийся ток к. з. не равны (рис. 1-23, а). При этом для расчёта защит, имеющих выдержку времени порядка 1—2 с и более, следовало бы использовать установившийся ток к. з. Однако поскольку расчёт установившегося тока к. з. сравнительно сложен, допустимо в большинстве случаев использовать начальный ток к. з. Такое допущение, как правило, не приводит к большой погрешности. Объясняется это следующим. На величину установившегося тока к. з. значительно большее влияние, чем на величину начального тока, оказывают увеличение переходного сопротивления в месте повреждения, токи нагрузки и другие факторы, не учитываемые обычно при расчёте токов к. з. Поэтому расчёт установившегося тока к. з. может иметь весьма большую погрешность.

Принимая во внимание всё сказанное выше, можно считать целесообразным и в большинстве случаев вполне допустимым использование для анализа релейных защит, действующих с любой выдержкой времени, начального тока к. з. При этом возможное снижение тока в течение короткого замыкания следует учитывать для защит, имеющих выдержку времени, введением в расчёт повышенных коэффициентов надёжности по сравнению с быстродействующими защитами.

б) Определение начального тока к. з. в простой схеме

Поскольку при трёхфазном к. з. (рис. 1-24) э. д. с. и сопротивления во всех фазах равны, все три фазы находятся в одинаковых условиях. Векторная диаграмма для такого короткого замыкания, которое, как известно, называется симметричным, приведена на рис. 1-18, б. Расчёт симметричной цепи может быть существенно упрощён. Действительно, так как все три фазы находятся в одинаковых условиях, достаточно произвести расчёт для одной фазы и результаты его затем распространить на две другие. Расчётная схема при этом будет иметь вид, показанный на рис. 1-24, б. Совершенно очевидно, что даже в рассматриваемом простейшем случае последняя схема значительно проще, чем показанная на рис. 1-24, а.

В сложных же электрических цепях, имеющих много параллельных и последовательных ветвей, разница будет ещё более очевидной.

Итак, в симметричной системе расчёт токов и напряжений можно производить только для одной фазы. Расчёт начинается с составления схемы замещения, в которой отдельные элементы расчётной схемы заменяются соответствующими сопротивлениями, а для источников питания указывается их э. д. с. или напряжение на зажимах. Каждый элемент вводится в схему замещения своими активным и реактивным сопротивлениями. Сопротивления генераторов, трансформаторов, реакторов определяются на основании паспортных данных и вводятся в расчёт, как указано ниже.

Реактивные сопротивления линий электропередачи рассчитываются по специальным формулам или могут приниматься приближенно по следующему выражению:

где l

— длина участка линии, км;
худ
— удельное реактивное сопротивление линии, Ом/км, которое можно принимать равным:

Активные сопротивления медных и алюминиевых проводов могут быть подсчитаны по известному выражению

Допускается при расчётах токов к. з. не учитывать активного сопротивления и вводить в схему замещения только реактивные сопротивления элементов, если суммарное реактивное сопротивление больше чем в 3 раза превышает суммарное активное сопротивление

В дальнейшем для упрощения рассуждений будем считать, что условие (1-23), которое, как правило, выполняется для сетей напряжением 110 кВ и выше, действительно, и в расчёты будем вводить только реактивные сопротивления расчётной схемы.

Определение тока к. з. при питании от системы неограниченной мощности. Ток к. з. в расчётной схеме (рис. 1-25) определится согласно следующему выражению, кА:

где xрез

— результирующее сопротивление до точки к. з., равное в рассматриваемом случае сумме сопротивлений трансформатора и линии, Ом;

— междуфазное напряжение на шинах системы неограниченной мощности, кВ.

Под определением система неограниченной мощнoсти подразумевается мощный источник питания, напряжение на шинах которого остаётся постоянным независимо от места к. з. во внешней сети. Сопротивление системы неограниченной мощности принимается равным нулю. Хотя в действительности системы неограниченной мощности быть не может, это понятие широко используют при расчетах коротких замыканий. Можно считать, что рассматриваемая система имеет неограниченную мощность в тех случаях, когда её внутреннее сопротивление много меньше сопротивления внешних элементов, включенных между шинами системы и точкой к. з.

Пример 1-1.

Определить ток. проходящий при трёхфазном к. з. за реактором сопротивлением 0,4 Ом, который подключен к шинам генераторного напряжения 10,5 кВ мощной электростанции.

Решение.

Поскольку сопротивление реактора значительно больше, чем сопротивление системы, можно считать, что он подключен к шинам неограниченной мощности.

Тогда

Определение тока к. з. при питании от системы ограниченной мощности. Если сопротивление системы, питающей точку короткого замыкания, сравнительно велико, его необходимо учитывать при определении тока к. з. В этом случае в схему замещения вводится дополнительное сопротивление хспст

и принимается, что за этим сопротивлением находятся шины неограниченной мощности.

Величина тока к. з. определяется по следующему выражению (рис. 1-26):

где xвн

— сопротивление цепи короткого замыкания между шинами и точкой к. з.;
хсист
— сопротивление системы, приведенное к шинам источника.

Сопротивление системы можно определить, если задан ток трёхфазного к. з. на её шинах Iк.з.зад

.:

Пример 1-2.

Определить ток трёхфазного к. з. за сопротивлением 15 Ом линии 110 кВ, питающейся от шин подстанции. Ток трёхфазного к. з. на шинах подстанции, приведенный к напряжению 115 кВ, равен 8 кА.

Решение.

Согласно (1-26) определяется
хсист
:

Определяется ток в месте к. з. в соответствии с (1-25):

Сопротивление системы при расчётах к. з. может быть задано не током, а мощностью короткого замыкания на шинах подстанции. Мощность короткого замыкания — условная величина, равная

где Iк.з

. — ток короткого замыкания;
Ucp
— среднее расчётное напряжение на той ступени трансформации, где вычисляется ток короткого замыкания.

Пример 1-3.

Определить ток трёхфазного к. з. за реактором сопротивлением 0,5 Ом. Реактор питается от шин 6,3 кВ подстанции, мощность к. з. на которых равна 300 MB • А.

Решение.

Определим сопротивление системы:

в) Определение остаточного напряжения

В схеме, приведенной на рис. 1-26, величина остаточного напряжения на шинах определяется согласно следующим выражениям:

где x
к.з
. — сопротивление от шин подстанции, на которых определяется остаточное напряжение, до места к. з., или

х

— сопротивление от шин источника питания до точки, в которой определяется остаточное напряжение.

Поскольку сопротивление рассматриваемой цепи принято чисто реактивным, в выражения (1-27) и (1-28) входят абсолютные величины, а не векторы.

Пример 1-4.

Определить остаточное междуфазное напряжение на шинах подстанции в примере 1-2.

Решение.

По первому выражению (1-27):

г) Расчёты токов короткого замыкания и напряжений в разветвлённой сети

В сложной разветвлённой сети, для того чтобы определить ток в месте к. з., необходимо предварительно преобразовать схему замещения так, чтобы она имела простой вид, по возможности с одним источником питания и одной ветвью сопротивления. С этой целью производится сложение последовательно и параллельно включенных ветвей, треугольник сопротивлений преобразуется в звезду и наоборот.

Пример 1-5.

Преобразовать схему замещения, приведенную на рис. 1-27, определить результирующее сопротивление и ток в месте к. з. Значения сопротивлений указаны на рис. 1-27.

Решение.

Преобразование схемы замещения производим в следующей последовательности.

Для распределения тока к. з. по ветвям схемы можно воспользоваться формулами, приведенными в табл. 1-1. Распределение токов производится последовательно в обратном порядке начиная с последнего этапа преобразования схемы замещения.

Пример 1-6.

Распределить ток к. з. по ветвям схемы, приведенной на рис. 1-27.

Решение.

Определим токи в параллельных ветвях 4 и 7 в соответствии с формулами (табл. 1-1):

Ток I7

проходит по сопротивлению
х5
и затем разветвляется по параллельным ветвям
х2
и
х3
:

Остаточное напряжение в любой точке разветвлённой схемы может быть определёно путём последовательного суммирования и вычитания падений напряжения в её ветвях.

Пример 1-7.

Определить остаточное напряжение в точках а и б схемы, приведенной на рис. 1-27. Решение.

Если в схему замещения входят две или несколько э. д. с, точки их приложения объединяются и они заменяются одной эквивалентной э. д. с. (рис. 1-28).

Если э. д. с. источников равны по величине, то эквивалентная э. д. с. будет иметь такую же величину

Если же э. д. с. не равны, эквивалентная э. д. с. подсчитывается по следующей формуле:

д) Расчёт токов короткого замыкания по паспортным данным реакторов и трансформаторов

Во всех примерах, рассмотренных выше, сопротивления отдельных элементов схемы задавались в омах. Сопротивления же реакторов и трансформаторов в паспортах и каталогах не задаются в омах.

Параметры реактора обычно задаются в процентах как относительная величина падения напряжения в нём при прохождении номинального тока хP

, %.

Сопротивление реактора (Ом) можно определить по следующему выражению:

гле UHOM

и
IHOM
— номинальное напряжение и ток реактора.

Сопротивление трансформатора также задаётся в процентах как относительная величина падения напряжения в его обмотках при прохождении тока, равного номинальному, uK

, %.

Для двухобмоточного трансформатора можно записать сопротивление (Ом):

где uK

, %, и
UHOM
,
кВ
, — указаны выше, а
S HOM
— номинальная мощность трансформатора, MB• А.

При коротком замыкании за реактором или трансформатором подключенными, к шинам системы неограниченной мощности, ток и мощность к. з. определяются по следующим выражениям:

где IHOM

— номинальный ток соответствующего реактора или трансформатора.

Пример 1-8.

Вычислить максимально возможный ток трёхфазного к. з. за реактором РБA-6-600-4. Реактор имеет следующие параметры:
UH
= 6 кВ,
IH
= 600 А,
хP
= 4%.

Решение.

Поскольку требуется определить максимально возможный ток к. з., считаем, что реактор подключен к шинам системы неограниченной мощности.

В соответствии с (1-33) ток к. з. за реактором определится как

Пример 1-9.

Определить максимально возможный ток и мощность трёхфазного к. з. за понизительным трансформатором:
SH
= 31,5MB • А,
UН1
= 115 кВ,
UН2
= 6,3 кВ,
uK
= 10,5%

Решение.

Принимая, как и в предыдущем примере, что трансформатор подключен со стороны 115 кВ к шинам системы неограниченной мощности, определяем ток к. з.

Номинальный ток обмотки 6,3 кВ трансформатора равен:

Как вычислить апериодическую компоненту

Первоначальная величина апериодической части в модульном выражении определяется как разница между мгновенным показателем периодической части в начале КЗ и величиной тока непосредственно перед замыканием. То есть, апериодическая составляющая с максимальным первоначальным значением, сравняется с амплитудными параметрами периодической части тока при появлении КЗ. Это утверждение определяет формула: ia0 = √2Iп0, действующая при условии сниженной активной доли сопротивления в точке КЗ относительно индуктивной составляющей.

1. 2.

Кроме того, перед началом замыкания в расчетной точке не должно быть нагрузки, а напряжение какой-либо фазы к этому времени проходит по нулевому проводнику. Если же перечисленные требования не будут выполнены, то апериодическая часть в первоначальной стадии снизит свои показатели по отношению к амплитуде периодической составляющей.

Для того чтобы выполнить расчет апериодической составляющей тока короткого замыкания в любое произвольное время, заранее прорабатывается вариант замещения. Согласно первоначальной расчетной схеме, все составные элементы учитываются в качестве активных и индуктивных сопротивлений. Учет синхронных генераторов и компенсаторов, асинхронных и синхронных электродвигателей проводится путем перевода их в категорию индуктивных сопротивлений с обратной последовательностью. Обязательно учитываются сопротивления обмоток статора постоянному току с рабочей температурой установленной нормы.

3.

Когда в изначальной схеме расчетов присутствуют лишь компоненты, соединенные последовательно, в этом случае величина апериодической доли в любой момент времени определяется формулой 1, в которой Та является постоянной величиной, определяющей время затухания данной части. В свою очередь, Та можно вычислить по формуле 2, в которой Xэк и Rэк будут индуктивной и активной составляющими, а ωсинх является синхронной угловой частотой сетевого напряжения. Если же при расчетах необходимо учесть величину генераторного тока непосредственно перед коротким замыканием, тогда уже используется формула 3.

Расчет тока короткого замыкания в сети 0,4 кВ

В закладки

  1. Введение

В соответствии с пунктом 3.1.8. ПУЭ электрические сети должны иметь защиту от токов короткого замыкания, обеспечивающую по возможности наименьшее время отключения при этом указано что защита должна проверяться по отношению наименьшего расчетного тока короткого замыкания (далее — тока КЗ) к номинальному току плавкой вставки предохранителя или расцепителя автоматического выключателя. (Подробнее о выборе защиты от токов короткого замыкания читайте статью: Расчет электрической сети и выбор аппаратов защиты)

В сетях 0,4 кВ с глухозаземленной нейтралью наименьшим током КЗ является ток однофазного короткого замыкания методика расчета которого и приведена в данной статье.

  1. Основные понятия и принцип расчета

Сама формула расчета тока короткого замыкания проста, она выходит из закона ома для полной цепи и имеет следующий вид:

Iкз=Uф/Zф-о

где:

  • — фазное напряжение сети (230 Вольт);
  • Zф-о — полное сопротивление петли (цепи) фаза-нуль в Омах.

Что такое петля фаза-нуль (фаза-ноль)? Это электрическая цепь состоящая из фазного и нулевого проводников, а так же обмотки трансформатора к которым они подключены.

В свою очередь сопротивление данной электрической цепи и называется сопротивлением петли фаза нуль.

Как известно есть три типа сопротивлений: активное (R), реактивное (X) и полное (Z). Для расчета тока короткого замыкания необходимо использовать полное сопротивление определить которое можно из треугольника сопротивлений:

Примечание: Сумма полных сопротивлений нулевого и фазного проводников называется полным сопротивлением питающей линии.

Рассчитать точное сопротивление петли фаза-нуль довольно сложно, т.к. на ее сопротивление влияет множество различных факторов, начиная с переходных сопротивлений контактных соединений и сопротивлений внутренних элементов аппаратов защиты, заканчивая температурой окружающей среды. Поэтому для практических расчетов используются упрощенные методики расчета токов КЗ одна из которых и приведена ниже.

Справочно: Расчетным путем ток короткого замыкания определяется, как правило, только для новых и реконструируемых электроустановок на этапе проектирования электрической сети и выбора аппаратов ее защиты. В действующих электроустановках наиболее целесообразно определять ток короткого замыкания путем проведения соответствующих измерений (путем непосредственного измерения тока КЗ, либо путем косвенного измерения, т.е. измерения сопротивления петли-фаза-нуль и последующего расчета тока КЗ).

  1. Методика расчета тока кз

1) Определяем полное сопротивление питающей линии до точки короткого замыкания:

Zл = √(R2л+X2л), Ом

где:

  • Rл — Активное сопротивление линии, Ом;
  • Xл — Реактивное сопротивление линии, Ом;

Примечание: Расчет производится для каждого участка линии с различным сечением и/или материалом проводника, с последующим суммированием сопротивлений всех участков (Zпл=Zл1+Zл2+…+Zлn).

Активное сопротивление линии определяется по формуле:

Rл =Lфо*p/S, Ом

где:

  • Lфо — Сумма длин фазного и нулевого проводника линии, м;
  • p — Удельное сопротивление проводника (для алюминия — 0,028, для меди – 0,0175), Ом* мм2/м;
  • S — Сечение проводника, мм2.

Примечание: формула приведена с учетом, что сечения и материал фазного и нулевого проводников линии одинаковы, в противном случае расчет необходимо выполнять по данной формуле для каждого из проводников индивидуально с последующим суммированием их сопротивлений.

Реактивное сопротивление линии определяется по формуле:

Хл =Lфо*0,6/1000, Ом

2) Определяем сопротивление питающего трансформатора

Сопротивление трансформатора зависит от множества факторов, таких как мощность, конструкция трансформатора и главным образом схема соединения его обмоток. Для упрощенного расчета сопротивление трансформатора при однофазном кз (Zтр(1)) можно принять из следующей таблицы:

3) Рассчитываем ток короткого замыкания

Ток однофазного короткого замыкания определяем по следующей формуле:

Iкз=Uф/(Zтр(1)+Zпл), Ампер

где:

  • Uф — Фазное напряжение сети в Вольтах (для сетей 0,4кВ принимается равным 230 Вольт);
  • Zтр(1) — Сопротивление питающего трансформатора при однофазном кз в Омах (из таблицы выше);
  • Zпл — Полное сопротивление питающей линии (цепи фаза-ноль) от питающего трансформатора до точки короткого замыкания в Омах.
  1. Пример расчета тока кз

Для примера возьмем следующую упрощенную однолинейную схему:

  1. Определяем полное сопротивление питающей линии до точки короткого замыкания

Как видно из схемы всего имеется три участка сети, расчет сопротивления необходимо производить для каждого в отдельности, после чего сложить рассчитанные сопротивления всех участков.

  • Участок 1

Rл1 =Lфо*p/S=150*0,028/35=0,12 Ом

Хл1 =Lфо*0,6/1000=150*0,6/1000=0,09 Ом

Zл1 = √(R2л+X2л)=√(0,122+0,092)=0,15 Ом

  • Участок 2

Rл2 =Lфо*p/S=20*0,028/16=0,035 Ом

Хл2 =Lфо*0,6/1000=20*0,6/1000=0,012 Ом

Zл2 = √(R2л+X2л)=√(0,0352+0,0122)=0,037 Ом

  • Участок 3

Rл3 =Lфо*p/S=40*0,0175/2,5=0,28 Ом

Хл3 =Lфо*0,6/1000=40*0,6/1000=0,024 Ом

Zл3 = √(R2л+X2л)=√(0,282+0,0242)=0,281 Ом

Таким образом полное сопротивление питающей линии (цепи фаза-ноль) от питающего трансформатора до точки кз составит:

Zпл=Zл1 +Zл2 +Zл3 =0,15+0,037+0,281=0,468 Ом

  1. Определяем сопротивление трансформатора

Как видно из схемы источником питания является трансформатор на 160 кВА, со схемой соединения обмоток «звезда — звезда с выведенной нейтралью». Определяем сопротивление трансформатора по таблице выше:

Zтр(1)=0,16 Ом

  1. Рассчитываем ток короткого замыкания

Iкз=Uф/(Zтр(1)+Zпл)=230/(0,16+0,468)=366 Ампер

Была ли Вам полезна данная статья? Или может быть у Вас остались вопросы? Пишите в комментариях!

Не нашли на сайте статьи на интересующую Вас тему касающуюся электрики? Напишите нам здесь. Мы обязательно Вам ответим.

↑ Наверх

5

https://elektroshkola.ru/elektrotexnicheskie-raschety/raschet-toka-korotkogo-zamykaniya-v-seti-04-kv/

Рейтинг
( 1 оценка, среднее 4 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]