Частота колебаний — определение, формулы и характеристики

Период и частота

Эти термины используют для выражения повторного движения. Период – время, которое тратится на одно повторение. Один полноценный проход – цикл. Частота – количество циклов за конкретный временной промежуток (f).

Синусоидальные волны разных частот. Нижние обладают более высокими частотами, а горизонтальная ось отображает время.

Понятия выражаются в формуле: F = 1/T.

Допустим, частота сердца новорожденного составляет 120 раз в минуту, а период – половина секунды. Если вы отточите интуицию на ожидание сопряженности больших частот с короткими периодами (и наоборот), то избежите ошибок.

Примеры движения

Колебательное движение является одним из наиболее распространенных в природе. Например, можно представить себе струны музыкальных инструментов, качели или голосовые связки человека.

В физике колебаниями называются процессы, которые повторяются через равные промежутки времени. Подобные движения рассматривается посредством нескольких моделей:

  • тела, подвешенного на пружине (двигающееся по направлению вверх-вниз);
  • груза на нитке;
  • электрического контура и других.

Амплитуда и фаза колебаний

Амплитуда колебаний – модуль наибольшего смещения тела от положения равновесия. Обозначение – ​\( A\, (X_{max}) \)​, единицы измерения – м.

Фаза колебаний – это величина, которая определяет состояние колебательной системы в любой момент времени. Обозначение – ​\( \varphi \)​, единицы измерения – рад (радиан).

Фаза колебаний – это величина, стоящая под знаком синуса или косинуса. Она показывает, какая часть периода прошла от начала колебаний. Фаза гармонических колебаний в процессе колебаний изменяется. ​\( \varphi_0 \)​ – начальная фаза колебаний. Начальная фаза колебаний – величина, которая определяет положение тела в начальный момент времени.

Важно! Путь, пройденный телом за одно полное колебание, равен четырем амплитудам.

Метрологические аспекты

  1. Измеряют частоту импульсов. Они представлены электронно-счётными и конденсаторными типами.
  2. Определяют частоту спектральных составляющих. Существуют гетеродинные и резонансные типы.
  3. Производят анализ спектра.
  4. Воспроизводят необходимую частоту с заданной точностью. При этом могут применяться различные меры: стандарты, синтезаторы, генераторы сигналов и другая техника этого направления.
  5. Сравнивают показатели полученных колебаний, в этих целях используют компаратор или осциллограф.

Резонанс

Резонанс – явление резкого возрастания амплитуды колебаний, которое происходит при совпадении частоты вынуждающей силы и собственной частоты колебаний тела.

Условие резонанса:

​\( v_0 \)​ – собственная частота колебаний маятника.

На рисунке изображены резонансные кривые для сред с разным трением. Чем меньше трение, тем выше и острее резонансная кривая.

Явление резонанса учитывается при периодически изменяющихся нагрузках в машинах и различных сооружениях. Также резонанс используется в акустике, радиотехнике и т. д.

Маятник

Для рассмотрения базовых понятий колебательных процессов в качестве примера удобно взять маятник – подвешенную на тонкой легкой нити небольшую массу. Если ее качнуть, она начнет совершать равномерные движения.

Каждое движение маятника, начинающееся от крайней точки, и заканчивающееся в ней же, называется колебанием.

Пример работы: звук

Всё выше написанное может быть довольно сложным для понимания, поскольку нами использовался сухой язык физики. Чтобы осознать приведённую информацию, можно привести пример. В нём всё будет детально расписано, основываясь на анализе случаев из современной жизни. Для этого рассмотрим самый известный пример колебаний – звук. Его свойства, а также особенности осуществления механических упругих колебаний в среде, находятся в прямой зависимости от частоты.

Человеческие органы слуха могут улавливать колебания, которые находятся в рамках от 20 Гц до 20 кГц. Причём с возрастом верхняя граница будет постепенно снижаться. Если частота колебаний звука упадёт ниже показателя в 20 Гц (что соответствует ми субконтроктавы), то будет создаваться инфразвук. Этот тип, который в большинстве случаев не слышен нам, люди всё же могут ощущать осязательно. При превышении границы в 20 килогерц генерируются колебания, которые называются ультразвуком. Если частота превысит 1 ГГц, то в этом случае мы будем иметь дело с гиперзвуком. Если рассматривать такой музыкальный инструмент, как фортепиано, то он может создавать колебания в диапазоне от 27,5 Гц до 4186 Гц. При этом следует учитывать, что музыкальный звук не состоит только из основной частоты – к нему ещё примешиваются обертоны, гармоники. Это всё вместе определяет тембр.

Герц — единица измерения частоты периодического процесса в системе СИ

Определение
Частота периодических процессов ($\nu$) — это физическая величина, которая равна количеству циклов, которые происходят в единицу времени. Это определение говорит о том, что:

\[\nu =\frac{1}{T}\left(1\right),\]

где $T$ — период процесса.

Из выражения (1) очевидно, что единицей измерения частоты служит обратная секунда:

\[\left[\nu \right]=с^{-1}.\]

В Международной системе единиц (СИ) эта единица измерения имеет специальное название, ее называют герцем (Гц) с 1960 г (начала существования системы). Герц — единица измерения частоты периодического процесса, при которой за время в одну секунду протекает один цикл процесса.

Единица измерения частоты периодического процесса называется в честь немецкого ученого Г. Герца, который много и успешно занимался электродинамикой.

Герц, как единица измерения частоты может использоваться со стандартными приставками системы СИ для обозначения десятичных кратных и дольных единиц. Например, гГц (гектогерц): $1г\ Гц=100\ Гц$; мкГц (микрогерц): $1мкГц={10}^{-6}Гц.$ Биения здорового человеческого сердца в спокойном состоянии происходят с частотой 1Гц.

Иногда частоту периодических колебаний обозначают буквой $f$.

Часто в расчётах используют циклическую частоту (угловую частоту, радиальную частоту, круговая частота) ($\omega $), которая равна:

\[\omega =2\pi {\mathbf \nu }\left(2\right).\]

Угловая частота измеряется в радианах, деленных на секунду:

\[\left[\omega \right]=\frac{рад}{с}.\]

В системах СИ и СГС единицы измерения круговой частоты одинаковы.

Гармонические колебания

Гармонические колебания – простейшие периодические колебания, при которых координата тела меняется по закону синуса или косинуса:

где ​\( x \)​ – координата тела – смещение тела от положения равновесия в данный момент времени; ​\( A \)​ – амплитуда колебаний; ​\( \omega t+\varphi_0 \)​ – фаза колебаний; ​\( \omega \)​ – циклическая частота; ​\( \varphi_0 \)​ – начальная фаза.

Если в начальный момент времени тело проходит положение равновесия, то колебания являются синусоидальными.

Если в начальный момент времени смещение тела совпадает с максимальным отклонением от положения равновесия, то колебания являются косинусоидальными.

Скорость гармонических колебаний Скорость гармонических колебаний есть первая производная координаты по времени:

где ​\( v \)​ – мгновенное значение скорости, т. е. скорость в данный момент времени.

Амплитуда скорости – максимальное значение скорости колебаний, это величина, стоящая перед знаком синуса или косинуса:

Ускорение гармонических колебаний Ускорение гармонических колебаний есть первая производная скорости по времени:

где ​\( a \)​ – мгновенное значение ускорения, т. е. ускорение в данный момент времени.

Амплитуда ускорения – максимальное значение ускорения, это величина, стоящая перед знаком синуса или косинуса:

Если тело совершает гармонические колебания, то сила, действующая на тело, тоже изменяется по гармоническому закону:

где ​\( F \)​ – мгновенное значение силы, действующей на тело, т. е. сила в данный момент времени.

Амплитуда силы – максимальное значение силы, величина, стоящая перед знаком синуса или косинуса:

Тело, совершающее гармонические колебания, обладает кинетической или потенциальной энергией:

где ​\( W_k \)​ – мгновенное значение кинетической энергии, т. е. кинетическая энергия в данный момент времени.

Амплитуда кинетической энергии – максимальное значение кинетической энергии, величина, стоящая перед знаком синуса или косинуса:

При гармонических колебаниях каждую четверть периода происходит переход потенциальной энергии в кинетическую и обратно. В положении равновесия:

  • потенциальная энергия равна нулю;
  • кинетическая энергия максимальна.

При максимальном отклонении от положения равновесия:

  • кинетическая энергия равна нулю;
  • потенциальная энергия максимальна.

Полная механическая энергия гармонических колебаний При гармонических колебаниях полная механическая энергия равна сумме кинетической и потенциальной энергий в данный момент времени:

Важно! Следует помнить, что период колебаний кинетической и потенциальной энергий в 2 раза меньше, чем период колебаний координаты, скорости, ускорения и силы. А частота колебаний кинетической и потенциальной энергий в 2 раза больше, чем частота колебаний координаты, скорости, ускорения и силы.

Графики зависимости кинетической, потенциальной и полной энергий всегда лежат выше оси времени.

Если сила сопротивления отсутствует, то полная энергия сохраняется. График зависимости полной энергии от времени есть прямая, параллельная оси времени (в отсутствие сил трения).

Выборка. Объем. Размах

Что такое выборка? Если говорить простым языком, то это отобранная нами информация для исследования. Например, мы можем сформировать следующую выборку — суммы денег, потраченных в каждый из шести дней. Давайте нарисуем таблицу в которую занесем расходы за шесть дней

Выборка состоит из n-элементов. Вместо переменной n может стоять любое число. У нас имеется шесть элементов, поэтому переменная n равна 6

n = 6

Элементы выборки обозначаются с помощью переменных с индексами . Последний элемент является шестым элементом выборки, поэтому вместо n будет стоять число 6.

Обозначим элементы нашей выборки через переменные

Количество элементов выборки называют объемом выборки. В нашем случае объем равен шести.

Размахом выборки называют разницу между самым большим и маленьким элементом выборки.

В нашем случае, самым большим элементом выборки является элемент 250, а самым маленьким — элемент 150. Разница между ними равна 100

Частота дискретных событий, частота вращения

Определение Частотой дискретных колебаний

($n$) — называют физическую величину, которая равна количеству действий (событий) в единицу времени.

Если время, которое занимает одно событие обозначить как $\tau $, то частота дискретных событий равна:

\[n=\frac{1}{\tau }\left(7\right).\]

Единицей измерения частоты дискретных событий является обратная секунда:

\[\left[n\right]=\frac{1}{с}.\]

Секунда в минус первой степени равна частоте дискретных событий, если за время, равное одной секунде происходит одно событие.

Частотой вращения ($n$) — называют величину, равную количеству полных оборотов, которое совершает тело в единицу времени. Если $\tau $ — время, затрачиваемое на один полный оборот, то:

\[n=\frac{1}{\tau }\left(8\right).\]

Рейтинг
( 2 оценки, среднее 5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]