Проблема массового применения защит от ОЗЗ состоит в том, что большинство используемых на данный момент устройств показывают низкую эффективность из-за частых отказов в срабатывании, ложных и излишних срабатываний. Низкая эффективность данных защит связана со сложностью и многообразием факторов, связанных с протеканием процессов, которые используются для защит от замыканий на землю. Основные факторы, влияющие на работу защиты от замыканий на землю, это:
1. Вид замыкания (металлическая связь, замыкание через переходное сопротивление, замыкание через дугу);
2. Устойчивость замыкания (устойчивые и неустойчивые: прерывистое замыкание и замыкание через перемежающуюся дугу);
3. Наличие небалансов в сети;
4. Переходные процессы схожие с процессами при ОЗЗ (включение линии, наводка от других ЛЭП при ОЗЗ на них и т.д.).
Рассмотрим различные варианты защиты от ОЗЗ по мере повышения их сложности и эффективности. В основном можно разделить защиты от ОЗЗ на два типа — индивидуальные и централизованные защиты.
Индивидуальные защиты наиболее просты, но при этом имеют высокий процент ложных срабатываний.
1.Токовая защита нулевой последовательности.
Наиболее простой и распространенной из защит от ОЗЗ является токовая индивидуальная защита нулевой последовательности, реагирующая на ток нулевой последовательности (далее НП) рабочей частоты. Однако для обеспечения условия селективности действия эти защиты должны отстраиваться от собственного ёмкостного тока фидера, что с учетом бросков ёмкостного тока в момент замыкания ограничивает чувствительность защиты.
В целом индивидуальные ненаправленные токовые защиты от ОЗЗ могут быть эффективны лишь в установках, с большим количеством подключенных к секции присоединений, каждое из которых имеет малый емкостный ток. Тогда отстройка от этого тока не приведет к недопустимому снижению чувствительности. Этот случай характерен, например, для цехов предприятий с большим количеством маломощных электродвигателей, включенных через короткие кабели. Однако если в такой сети установлен дугогасящий реактор, то защита, построенная на данном принципе не способна обеспечить устойчивость функционирования, так как емкостной ток 50 Гц поврежденного присоединения будет скомпенсирован.
2.Токовая направленная защита нулевой последовательности.
Защиты, использующие только один сигнал тока НП, несмотря на свою простоту, имеют существенные недостатки, которые будут приводить к их неселективным действиям. В ходе дальнейшего усовершенствования таких защит стали использовать два сигнала – ток и напряжение НП для определения направления. Большое число направленных защит реагируют на направление мощности нулевой последовательности в установившемся режиме. Чувствительность таких защит выше, чем ненаправленных, так как их ток срабатывания отстраивается только от тока небаланса в максимальном рабочем режиме, а отстройка защиты от собственного ёмкостного тока линии не требуется, поскольку от этого тока она отстроена по направлению. Общим недостатком защит такого типа являются их неселективные действия или отказ в срабатывании при перемежающихся дуговых ОЗЗ.
3.Защита по активной мощности нулевой последовательности.
Другим методом определения поврежденного присоединения с использованием сигналов тока и напряжения НП является расчет активной мощности нулевой последовательности в установившемся режиме. Защиты, реализованные на этом принципе, обладают более высокой устойчивостью функционирования в режимах с перемежающейся дугой в месте ОЗЗ и отстроены в большей мере от бросков ёмкостных токов в переходных процессах. Обеспечить стабильное функционирование таких защит возможно в основном в сетях с резистивным заземлением нейтрали.
Феррорезонанс и способы защиты от него
Феррорезонансный контур в сети с изолированной нейтралью — это контур нулевой последовательности с нелинейной характеристикой намагничивания. Трехфазный заземляемый трансформатор напряжения, по конструктиву, это три однофазных трансформатора, соединенные по схеме звезда/звезда, с обособленной магнитной системой. При перенапряжениях в сети индукция в магнитопроводе увеличивается, как минимум в 1,73 раза. В таких режимах возможно насыщение магнитопровода и, как следствие, возникновение феррорезонанса в сети. По данным служб энергоснабжения, ежегодно в эксплуатации повреждается 7–9% трансформаторов напряжения по причине феррорезонанса.
Существует множество способов защиты ТН от резонансных явлений в сети:
- изготовление ТН с максимально уменьшенной рабочей индукцией;
- включение в цепь ВН и НН дополнительных демпфирующих сопротивлений;
- изготовление трехфазных трансформаторов напряжения с единой магнитной системой в пятистержневом исполнении;
- применение специальных устройств, включаемых в цепь разомкнутого треугольника;
- заземление нейтрали трехфазного трансформатора напряжения через токоограничивающий реактор;
- применение специальных компенсационных обмоток и т.д.;
- применение специальных релейных схем, для защиты обмотки ВН от сверхтоков.
Все эти меры в той или иной степени защищают измерительный трансформатор напряжения, но не решают проблему в корне.
4.Защита нулевой последовательности на токах высших гармоник.
Так как основной недостаток защит, использующих токи и напряжения НП промышленной частоты, в том, что они не способны работать в сетях с компенсированной нейтралью из-за отсутствия устойчивого полезного сигнала 50 Гц, то были разработаны защиты от однофазных замыканий на землю, реагирующие на высшие гармоники электрических величин. При возникновении дуговых ОЗЗ содержание высших гармонических составляющих в сети резко увеличивается, особенно в токе повреждённой линии, где их доля значительно больше, чем в токах нулевой последовательности неповреждённых линий. Эти процессы наблюдаются в сетях всех видов заземления нейтрали.
Общие недостатки устройств, выполненных с использованием высших гармоник:
! | — вероятность отказа в срабатывании при ОЗЗ через переходные сопротивления; — нестабильность состава и уровня высших гармоник в токе НП. |
Условия селективности несрабатывания при внешних ОЗЗ и устойчивости срабатывания при внутренних повреждениях для устройств абсолютного замера высших гармоник обеспечиваются в основном на крупных подстанциях и электростанциях с большим числом присоединений.
Последствия ОЗЗ
Несмотря на преимущества изолированной нейтрали, такой режим работы имеет ряд недостатоков:
- В зависимости от разветвленности сети емкостной ток может находиться в пределах от 0,1 до 500 ампер. Такая величина тока может представлять опасность для животных и людей, находящихся рядом с местом замыкания, по этой причине данные замыкания нужно выявлять и отключать, так же, как это делается и в сетях с глухозаземленной нейтралью.
- В большинстве случаев при ОЗЗ возникает дуговое замыкание на землю, которое может носить прерывистый характер. В таком случае, в процессе дугового замыкания возникают перенапряжения, превышающие в 2-4 раза номинальное фазное напряжение. Изоляция в процессе замыкания может не выдержать такие перенапряжения, вследствие чего возможны возникновения пробоя изоляции в любой другой точке сети и тогда замыкание развивается в двойное короткое замыкание на землю.
- В процессе развития и ликвидации ОЗЗ в трансформаторах напряжения возникает эффект феррорезонанса, что с высокой вероятностью приводит к их преждевременному выходу из строя.
Несмотря на перечисленные недостатки ОЗЗ не требует немедленного ликвидации повреждения. Согласно ПУЭ, при возникновении ОЗЗ возможно эксплуатация сети без отключения аварии в течении 4 часов, которые выделяются на поиск поврежденного участка.
Защита, реагирующая на наложенный ток.
Для повышения устойчивости функционирования защит от однофазных замыканий на землю, реагирующих на ток замыкания не промышленной частоты, была разработана защита, реагирующая на наложенный ток. Наложенный ток может быть частотой как выше промышленной, так и ниже. Для создания тока повышенной частоты возможно использование нелинейного сопротивления, включенного между нейтралью сети и землёй. Однако данное устройство значительно повышает стоимость таких защит и может снизить надёжность функционирования защиты. Также можно отметить тот факт, что значительная высокочастотная составляющая может присутствовать в токах присоединений и в нормальном режиме. Это в первую очередь относится к сетям, связанным с производствами, имеющими нелинейную нагрузку. В таких случаях описанный способ защиты непригоден. Кроме того, как показывают некоторые исследования, гармоники с частотой 100 Гц появляются почти в 2 раза чаще, чем, например, с частотой 25 Гц и амплитуды их намного больше.
К основным недостаткам защит, реагирующих на наложенный ток частотой ниже промышленной, можно отнести необходимость подключения в нейтрали сети специального устройства для создания контрольного тока, влияние на устойчивость функционирования защиты погрешностей ТТНП, возрастающих при уменьшении рабочей частоты, усложнение схемы первичной коммутации из-за необходимости подключения источника наложенного тока и трудности подключения источника вспомогательного тока при использовании в сети нескольких ДГР, установленных на разных объектах. Также не исключены сложности отстройки от естественных гармонических составляющих при внешних дуговых перемежающихся ОЗЗ, при которых спектр тока зависит от параметров сети и режима заземления её нейтрали, положения точки ОЗЗ в сети.
Защиты на централизованном принципе лишены недостатков индивидуальных защит, таких как ложные срабатывания, связанные с переходными процессами на неповрежденных линиях. В централизованных защитах в основном применяют сравнение амплитудных или действующих значений токов нулевой последовательности. Поврежденный фидер определяется на основе сравнения токов нулевой последовательности по всем присоединениям и выборе присоединения с максимальным током нулевой последовательности. Расчет этих значений может проводиться как в начальный момент времени, то есть, основываясь на переходных величинах замыкания, так и в установившемся режиме. Кроме того, возможно применение высших гармонических составляющих токов нулевой последовательности либо наложенного тока с частотой, отличной от промышленной. Для расширения области применения на подстанциях с большим числом присоединений, возможно введение в такие защиты дополнительной информации, которая позволяет произвести отстройку от действия в некоторых сложных режимах, например, получение информации о напряжении нулевой последовательности с другой секции шин подстанции может повысить чувствительность.
Заземляемые ТН
Заземляемые трансформаторы напряжения применяются в сетях с изолированной нейтралью. Заземление нейтрали ТН позволяет осуществлять контроль изоляции сети с помощью дополнительных вторичных обмоток, соединенных по схеме звезда/треугольник. На наш взгляд, это основная функция заземляемых трансформаторов, функция измерения и учета — дополнительная. Зачастую, в электрических сетях эксплуатируются заземляемые трансформаторы напряжения, у которых защитные обмотки не используются. Применение заземляемых трансформаторов без использования функции контроля изоляции сети — неоправданный риск.
Это связано с тем, что:
- заземляемые трансформаторы напряжения подвержены влиянию феррорезонансных явлений;
- изоляцию обмотки ВН невозможно испытать в условиях эксплуатации приложенным одноминутным напряжением промышленной частоты.
2.Централизованная защита с параллельным опросом каналов.
За счет применения микропроцессорных систем и специальных физических элементов для устройств релейной защиты появилась возможность реализовать параллельное сравнение токов нулевой последовательности между каждым присоединением. Первые такие системы сравнивали амплитуды переходных токов, но в дальнейшем как показала практика данные системы имели ложные срабатывания из-за несинхронности или несинфазности сравниваемых сигналов, поскольку частоты и фазы переходных токов в повреждённом и неповреждённых присоединениях могут различаться между собой.
3.Централизованная защита с параллельным синхронизированным опросом каналов.
Следующий шаг в развитии защит от ОЗЗ требовал разработку устройств защиты, работающих в режиме импульсного сравнения токов нулевой последовательности во всех присоединениях, тем самым устраняя влияния несинфазности и несинхронности сравниваемых сигналов. Одной из таких разработок является защита типа Геум производства НПП «Микропроцессорные технологии» для сетей с изолированной (также способно работать и с резистивно-заземленной нейтралью) и компенсированной (комбинированной) нейтралью. Защита по принципу действия является централизованной токовой ненаправленной, сравнивающей амплитуды бросков емкостных токов нулевой последовательности во всех присоединениях защищаемой секции в момент срабатывания пускового органа, включенного на напряжение нулевой последовательности и определяющей повреждённое присоединение по наибольшей амплитуде. Ток срабатывания этой защиты не требуется отстраивать от ёмкостного тока каждого из защищаемых присоединений, что существенно повышает чувствительность защиты и тем самым выгодно отличает её от описанных ранее устройств ненаправленной токовой защиты нулевой последовательности. Являясь передовой разработкой в выявлении ОЗЗ данная защита, основываясь только на алгоритме относительного замера не способна охватить все многообразие режимов связанных с процессами, влияющими на работу защит от ОЗЗ, которые описаны выше. Таким образом, в данную защиту были внедрены еще дополнительные алгоритмы.
Однофазные замыкания на землю в распределительных сетях 6-35 кВ – что это? Последствия ОЗЗ
Дугогасящий реактор
Для ограничения емкостных токов в нейтраль трансформатора вводится специальный дугогасящий реактор (рис. 3).
Рисунок 3 – Дугогасящий реактор
Этот способ является наиболее эффективным средством защиты электрооборудования от замыканий на землю и компенсации емкостного тока. С его помощью удаётся снизить (компенсировать) ток однофазного замыкания на землю, возникающий сразу после аварии.