Лекция №3. Современные способы получения электрической энергии

Сначала — кое-что о силах

Школьный учебник физики гласит, что существует четыре вида взаимодействий (т.е. сил) — гравитационные, электромагнитные, сильные и слабые. И дает некоторое их сравнение — по радиусу действия, величине силы и области применения. Заметим сразу, что сравнивать силы по радиусу действия можно только, если этот радиус определен однозначно, а вообще-то лучше говорить «зависимость от расстояния». Далее, если уж сказали про зависимость от расстояния, то можно что-то изречь и про зависимость от времени, т.е. про скорость распространения. Про скорость распространения одного из этих четырех взаимодействий учебник весьма упрощенно, но хоть что-то говорит, про другую скорость если и говорит, то лишь предположительно, а еще про две вообще все молчат (хотя иногда авторы упоминают про время взаимодействия). То, что эти взаимодействия реально распространяются на столь малые расстояния, что время не имеет значения, не отговорка. Логика должна соблюдаться, упомянуть надо. Ну и наконец, сравнивать силы разной природы странно — они зависят от разных параметров (да еще и по-разному от расстояния).

Вопрос 1.
Что можно сказать о скорости распространения всех взаимодействий?

Раз у нас четыре типа взаимодействий, то можно ожидать, что все, о чем рассказано в учебнике, привязано к этим взаимодействиям. Гравитационное взаимодействие проявляется в движении планет и спутников, более серьезные проблемы учебники не рассматривают, хотя рассказать кое-что о точках Лагранжа

,
кривой вращения галактик
,
проблеме трех тел
,
гравитационном маневре
и
устойчивости Солнечной системы
вполне было бы можно. И это — частью как решение, а частью как постановка задачи — вполне было бы полезно для уяснения картины мира и применения физики. Электромагнитное взаимодействие проявляется в учебнике в заряде и поле, потом — в токе и индукции, третий и последний раз — в электромагнитном поле, т.е. в свете и радио. Два других взаимодействия остаются на уровне слов. Возникает вопрос: а весь остальной учебный мир — трение, реакция опоры, упругость, свойства твердых тел, жидкостей и газов — это что?

Приходится признать, что это все — электромагнетизм, но об этом учебник иногда что-то говорит, иногда молчит. А когда становится совсем невтерпеж, т.е. когда заходит речь о батарейках, — вводятся понятия «сторонние силы» и «химическая энергия». Так вот — все это электромагнетизм, но построить на основе законов электромагнетизма полную и последовательную теорию трения, упругости, прочности и т.д. современная физика может лишь частично. А в тех сегментах, в которых это возможно, теория получается настолько сложной, что изложить ее и в университетском учебнике — а в школьном тем более — нельзя. Поэтому люди прибегают к промежуточным моделям, параметры которых (коэффициент трения, упругость, прочность и т.д.) определяют экспериментально, а потом пытаются связать эти параметры между собой, продвигаясь к чаемому пониманию устройства нашего мира. Иногда это можно, на качественном уровне, сделать и в школе.

Вопрос 2.
Какой коэффициент трения больше — твердого материала по твердому или того же твердого по мягкому? Как выглядит зависимость диэлектрической проницаемости от частоты для неполярной жидкости (например, жидкий аргон) и полярной (например, вода)?

Принцип действия

Каждая маркировка источников тока определяет принцип его действия. В стандартной ситуации выработка энергии производится посредством взаимодействия составляющих частей, а именно:

  • Механический тип. В результате взаимодействия деталей механизма, возникает трение. Благодаря такому явлению, возникает статическое электричество, преобразуемое в ток.
  • Механические конструкции работают посредством образования последовательно движущихся заряженных частиц. Явление возникает благодаря взаимодействию химического элемента с электролитом. Заряженные частицы покидают структуру кристаллической решётки металла, входя в состав проводящей жидкости.
  • Солнечные батареи (световые источники) работают за счет выбивания заряженных частиц из диэлектрической (кремниевой) основы под воздействием светового потока. Благодаря этому возникает постоянное напряжение.
  • Тепловые. Как правило, это 2 последовательно соединенных металлических основания. Одна часть нагревается, а вторая остается охлажденной. При изменении температурного режима возникает разница температур, в результате чего происходит движение заряженных частиц.

Вам это будет интересно Особенности полупроводников

Важно! Любое изменение в строении вещества может привести к необратимым последствиям, которые проявятся при работе устройства.

Эквивалентная схема — что это?

Сейчас прибегнем к промежуточной модели и введем понятие внутреннего сопротивления

источника электроэнергии. Подключим наш источник к переменному сопротивлению, измерим зависимость выходного напряжения и тока в нагрузке от сопротивления и построим график зависимости напряжения от тока (рис. 1). Эта зависимость называется
нагрузочной характеристикой
или
вольт-амперной характеристикой
. Во многих случаях (например, для гальванических источников — батареек и аккумуляторов) она близка к прямой. А раз так, то возникает мысль — представить источник
эквивалентной схемой
из идеального источника ЭДС и сопротивления. Эквивалентная схема — это схема из идеальных в каком-то смысле элементов, которая ведет себя примерно так же, как реальное устройство.

Рис. 1

Почему вообще эквивалентные схемы получили широкое распространение? Причина этого «случайна»: люди поздно создали компьютеры. Дело в том, что компьютеру можно сообщать информацию о компонентах схемы в любой форме и можно написать программу, которая — если эта информация полна и непротиворечива — сделает расчет схемы. Но если зависимости, которые характеризуют элементы, например вольт-амперные характеристики, нелинейные, то объем вычислений оказывается слишком велик для расчетов вручную. Поэтому и возникло когда-то понятие эквивалентных схем.

На заре физики электричества, когда люди о том, как течет вода, хоть что-то знали, а электричество было совсем внове, для рассмотрения электричества при преподавании применялась «гидродинамическая аналогия» — протекание тока рассматривали как течение воды. Со временем ситуация инвертировалась — для описания гидродинамики стали использовать электрические схемы, тоже в некотором смысле эквивалентные. Для расширения кругозора можно спросить в интернете эквивалентные схемы гидравлических систем

или
эквивалентные схемы электромоторов
.

Теперь вернемся к нагрузочной характеристике, сделаем несколько замечаний и зададим вопросы. Замечание первое — крайние точки называются напряжением холостого хода и током короткого замыкания, их связь с параметрами эквивалентной схемы очевидна — ее можно увидеть на рисунке. Замечание второе — понятие внутреннего сопротивления создано для описания нагрузочной характеристики, и оно соответствует именно линейной модели. Если мы хотим использовать его расширительно и вычислять его для разных участков реальной характеристики, то оно окажется для них несколько различным.

Вопрос 3.
Если вольт-амперная характеристика при малых токах выпукла вниз, а при больших — вверх, как на рисунке 1, то при каких токах внутреннее сопротивление окажется больше и при каких меньше? И еще — можно ли использовать понятие внутреннего сопротивления для определения тепловыделения внутри источника электроэнергии?

Замечание третье — вы, наверное, заметили, что здесь используется термин «источник электроэнергии». Лишь один раз мелькнуло «источник ЭДС», и это было не случайно. В школе вы вперемежку используете выражения «источник ЭДС» и «источник тока». В физике, а точнее в ее инженерно-физической области, которая называется ТОЭ — Теоретические Основы Электротехники (некоторые студенты вздрогнули), эти два термина означают некоторые идеализированные источники электроэнергии. А именно, «источник ЭДС» — это такой, у которого на выходных клеммах всегда одно и то же напряжение (именно это имелось в виду выше, там, где он единственный раз был упомянут). А «источник тока» — это такой, через клеммы которого и через внешнюю цепь протекает всегда один и тот же ток.

Вопрос 4.
Объясните, почему это не всегда возможно. Подумайте, в каких условиях работает такая модель, и придумайте модель реального источника с использованием не источника ЭДС (как выше), а источника тока.

А теперь попробуем выйти за пределы концов нагрузочной прямой. Ведь не зря же мы назвали ее прямой, а не отрезком (это, конечно, шутка). Но сначала еще один, чисто школьный, вопрос: как вдоль нашей прямой — которая пока что отрезок — меняются мощность источника, мощность в нагрузке и коэффициент полезного действия? Если пользоваться моделью с источником ЭДС, как на рисунке 1, то мощность, создаваемая источником, растет с током от P

= 0 до
P
= \( \mathscr{E} \)
I
= \( \mathscr{E}^2 \)/
r
. Мощность в нагрузке проходит через максимум при сопротивлении нагрузки
R
=
r
, а мощность, выделяющаяся в источнике, растет как
rI
2, т.е. всю дорогу — не спалите источник! Ну, а КПД соответственно падает от 100% до 0. При согласованной нагрузке это 50%. Все эти ответы можно дать без вычислений, просто посмотрев на схему и немного подумав.

А теперь — «поверх барьеров»! Что будет с нагрузочной характеристикой, если ток будет больше тока короткого замыкания или будет течь в обратную сторону? Вы все (ну, почти все) делаете это, а некоторые — ежедневно. Разумеется, для того чтобы пропустить через нагрузку ток в обратную сторону, нужен еще один источник напряжения, причем не какой попало. Какой же? И как его включить? А чтобы пропустить через нагрузку ток, больший тока короткого замыкания, тоже нужен дополнительный источник, причем тут его и включать надо иначе, и требований к нему будет не одно, а два. Ток в обратную сторону — это просто режим заряда. А почему аккумуляторы заряжаются, а батарейки или совсем нет или очень плохо, читайте в интернете, ключевое слово — деполяризатор

. Так вот, чтобы ток через нагрузку тек в обратную сторону, в нагрузку включаем источник с большей ЭДС, чем у основного источника, причем навстречу. А чтобы тек ток, больший тока короткого замыкания, в нагрузку включаем источник с большей ЭДС, чем у основного, причем такой, чтобы \( (\mathscr{E}_1 + \mathscr{E}_2)/(r_1 + r_2) > \mathscr{E}_1/r_1 \).

Атомные электростанции

АЭС работают на использовании атомной (ядерной) энергии. КПД АЭС примерно равен ТЭС – 35%. В качестве топлива применяется ядерное горючее – уран, плутоний. При сжигании 1 кг урана можно извлечь столько же теплоты сколько из 3000 т каменного угля.

К недостаткам относится проблема захоронения атомных отходов, а также выброс в окружающую средурадионуклидов, оказывающих на человека и все живые существа мутагенное действие, и вызывающих лучевую болезнь. Потенциальная опасность радиационного загрязнения при авариях, представляет угрозу для жизни в течение многих лет.

Исходя из всего вышесказанного можно сделать следующие выводы, а именно:

  1. Негативное влияние большинства электростанций на окружающую среду.
  2. Неэффективное использование невозобновляемых природных ресурсов.
  3. Потенциальная опасность для окружающего мира.

Исходя из всего этого, можно заключить, что необходима модернизация существующих электростанций или введение и поиск новых альтернативных видов источников энергии. Это требует значительных денежных затрат.

Об устройстве батарейки

Пришла пора спросить, от чего зависят параметры \( \mathscr{E} \) и r

. Когда мы опускаем проводник (в частности, металл) в электролит, ионы из металла начинают переходить в раствор и обратно. Эти потоки зависят, в частности, от прочности решетки проводника, концентрации ионов в растворе и температуры. При переходе ионов электрод заряжается и возникает разность потенциалов между электродом и раствором, образуется
двойной электрический слой
. В итоге устанавливается такая разность потенциалов, чтобы потоки сравнялись и возникло динамическое равновесие. Если опустить в этот же электролит другой проводник, то у него появляется свой потенциал относительно электролита, отличающийся от того, который появился на первом электроде. Таким образом возникла разность потенциалов между электродами, мы изобрели
гальванический элемент
.

Чтобы расширить образование и поразиться человеческой изобретательности, можно набрать в интернете резервные гальванические элементы

. Кстати, вы даже из школьного учебника знаете, что бывают элементы с двумя разными электролитами, разделенными полупроницаемой мембраной; так что здесь дана сильно упрощенная картина.

Что касается внутреннего сопротивления, то оно связано, как обычно, с сопротивлением среды, по которой вынужден течь ток. Это — электролит, т.е. то, что находится между электродами (и выводы, но их сопротивление обычно пренебрежимо мало). Впрочем, раз нагрузочная характеристика не линейна, то сопротивление не постоянно, а само сложно зависит от тока. Причем если мы произнесли слова «двойной электрический слой», значит, мы признали, что среда неоднородна. Внутреннее сопротивление, как ему и положено (помните R

= ρ
L
/
S
?) действительно уменьшается при уменьшении толщины и увеличении площади слоя. Но оно уменьшается и при увеличении шероховатости электродов, а это говорит о большом вкладе в сопротивление именно прикатодного слоя, того самого двойного слоя. В общем, поле для исследований у вас будет — причем эта область физики очень и очень востребована техникой.

Химические источники электрической энергии создают на своих клеммах разность потенциалов, а вокруг них, соответственно, появляется электрическое поле. В электростатике эти вещи неразделимы — у заряда есть поле, силовые линии (при всей условности этого понятия) кончаются и начинаются на зарядах. Вне электростатики может быть и не так — если контур пронизывает переменный магнитный поток, то в контуре возникает электрическое поле, его силовые линии замкнуты, они не начинаются и не кончаются на зарядах. Разумеется, такое поле не потенциально — запустив в этот контур заряд или просто поместив в него замкнутый проводник, мы извлечем из него энергию.

Вопрос 5.
Откуда, кстати, она возьмется?

Пусть источник электроэнергии имеет разность потенциалов между клеммами \( \mathscr{E} \) при I

= 0, т.е. при отсутствии потребления, в режиме холостого хода. Будет ли на клеммах заряд? Иногда уточняют — избыточный заряд, чтобы не услышать, что «какие-то заряды есть всегда — протоны и электроны в атомах». Естественно, клеммы будут заряжены зарядом
Q
= \( \mathscr{E} \)
C
, где
C
— емкость между клеммами, пропорциональная размеру клемм
D
. Когда мы соединим клеммы сопротивлением
R
, по нему и по ним потечет ток. Если ток будет не бесконечно мал, то напряжение между клеммами уменьшится:
U
<� \( \mathscr{E} \), уменьшится и заряд. Разность зарядов сбросится через это самое сопротивление в виде импульсного тока, длительность этого импульса будет порядка τ = max(
RC
,
D
/
c
), где
c
— скорость света,
R
— сопротивление клемм и нагрузки, оно не включает сопротивление источника
r
. Иными словами, обмен зарядами между клеммами произойдет, даже если мы разорвем цепь источника, т.е. сделаем
r
неограниченно большим.

Казалось бы, экзотическая ситуация? Да, но абсолютно реальная, например — оксфордский электрический звонок

. Если сильно упрощать ситуацию, то это — маятник, шарик на конце нити колеблется, поочередно касаясь контактов высоковольтной батареи и в момент касания заряжающийся от них. При этом внутреннее сопротивление батареи огромно, средний ток потребления ничтожно мал (устройство работает от одной батареи больше века), но время заряда весьма мало, поэтому в импульсе ток значителен. При большом сопротивлении батареи заряд касающегося клемм шарика происходит не током «батареи», а током накопленного на клеммах заряда. Вот оценка параметров: \( \mathscr{E} \) = 103 B,
C
= 10−12 Ф,
Q
= 10−9 Кл, τ = 3 · 10−11 c,
Imax
=
Q
/τ = 30 A, однако средний ток равен отношению
Q
к периоду колебания
T
= 1 c, т.е. 10−9 A.

Назначение и применение термогенератора

Устройства этого типа известны еще с середины прошлого века. Они позволяют преобразовать тепловую энергию в электрическую. Современный вариант термогенератора промышленного производства предназначен для установки на газовые котлы или дровяные печи длительного горения мощностью не менее 200 Вт.

Один из самых известных и востребованных в быту вариантов термогенератора работает в тандеме с керосиновой лампой:

Галерея изображений

Фото из

Термогенератор на керосиновой лампе

Использование энергии сгорающего керосина

Преобразователь тепла в электроэнергию

Удобство эксплуатации и подключения

Такой прибор позволяет в зимнее время, когда отопительные приборы работают непрерывно, получать около 150 кВт/ч электроэнергии в месяц.

Можно рассматривать его как дополнительный вариант в сочетании с солнечными батареями или как способ компенсировать частые отключения электроэнергии.

Существуют и походные модели теплогенераторов, которые могут перерабатывать тепловую энергию обычного костра. Их можно использовать во время строительства там, где нет электричества как альтернативу генератору, работающему на сжиженном топливе.

Необычные источники

Однако не все источники электрической энергии имеют нагрузочную характеристику, похожую на прямую, есть и совершенно другие ситуации. В частности, иначе ведут себя источники электрической энергии, использующие энергию, выделяющуюся при радиоактивном распаде. Распадающийся атом — сам по себе преобразователь видов энергии, т.е. внутриядерную энергию он преобразует в механическую энергию, точнее в кинетическую энергию, продуктов распада плюс потенциальную, если они заряжены, плюс электромагнитную, если это кванты. Далее есть несколько вариантов преобразования, один из них — через тепло. Частицы тормозятся в среде, энергия преобразуется в тепло (часть — в разрушение межатомных связей), а дальше есть много разных способов, самый распространенный — через термоэлектричество (РИТЭГ

), возможны и другие. Общие обзоры этих методов есть в интернете.

Рассмотрим не тепловые пути превращения энергии радиоактивного распада в электричество. Возьмем две пластины из проводника, нанесем на одну из них радиоактивный изотоп, поместим эти пластины в вакуум, сделав от них выводы. В некоторой ситуации между выводами начнет расти напряжение. Быстро ли оно будет расти и какой величины достигнет? Расти оно будет, только если при распаде вылетают заряженные частицы (α или β) и попадают на вторую пластину. Скорость роста пропорциональна количеству распадов за единицу времени, заряду частиц и обратно пропорциональна емкости: U

=
Q/C
, а Δ
U

t
= Δ
Q
/(
C
Δ
t
) =
I
/
C
, где
I
— ток этих частиц. Расти
U
будет до тех пор, пока что-то не прекратит этот ток или не возникнет ток утечки по оболочке, или не произойдет вакуумный пробой либо пробой по воздуху. Но если все сконструировано правильно, то утечек и пробоев не будет, а напряжение между электродами постепенно увеличится до такого, что заряженные частицы просто перестанут долетать до второго электрода. Это произойдет именно тогда, когда напряжение, умноженное на их заряд, сравняется с их исходной энергией (рис. 2; здесь сплошная линия — идеализация, штриховая линия — ближе к реальности,
e
— заряд, \( \mathscr{E} \) — энергия,
Imax
— ток заряженных частиц). Теперь мы можем сообразить, какой будет нагрузочная кривая для атомной батареи именно такой конструкции — мы оговариваем это потому, что реальные атомные батареи устроены иначе, и далее расскажем, как именно. Но пока — вот эта принципиальная конструкция, предложенная Генри Мозли более 100 лет назад. (Для расширения кругозора можно попробовать найти в интернете статью
«Пять фотографий Генри Мозли»
и прочитать ее.) А нагрузочная кривая будет совершенно фантастической — просто горизонтальная прямая от нуля тока до максимального, когда все заряженные частицы имеют строго одну энергию и долетают куда надо, и спад до нуля при достижении критического значения тормозящего напряжения. Потому что ток, больший тока заряженных продуктов распада, получить из атомной батареи простейшей конструкции нельзя.

Рис. 2

Реально энергии частиц немного различаются хотя бы потому, что не все распадающиеся атомы лежат на поверхности, некоторым заряженным частицам приходится пробираться к поверхности и часть энергии при этом остается на пластине — источнике частиц. Кроме того, не все заряженные частицы летят перпендикулярно поверхностям электродов, а для того чтобы не допустить до пересечения зазора частицу, вылетевшую под углом, нужно меньшее тормозящее поле. Поэтому реальная зависимость станет менее категоричной.

Однако это только начало биографии атомных батарей

или, как их еще называют,
изотопных батарей
. Вся применяемая людьми электротехника использует вполне определенный диапазон напряжений и токов. Вы редко встретите напряжения больше 20–30 кВ, потому что при этих напряжениях возникают серьезные проблемы с изоляцией, а если это вакуумные приборы и электроны имеют в них высокую энергию, еще и возникает рентгеновское излучение. Другими словами, если надо все это использовать, есть электронные приборы с напряжением 300 кВ и более и есть линии электропередач 500 кВ и более — но это промышленность, а не быт, хотя и очень важные для цивилизации, но узкие области. Что касается тока, то тоже особо большие токи не слишком удобны — растет сечение проводов. Так что если для какого-то применения нужна определенная мощность, то сочетания напряжения и тока могут быть разные, определяется это экономикой, схемными возможностями, традицией и т.д. Но в общем и целом, то сочетание напряжения и тока, которые могли бы давать атомные батареи тривиальной конструкции, категорически неудобны. Хорошо бы иметь напряжение порядка на три-четыре меньше, а ток, соответственно, больше.

Путей решения этой проблемы предложено несколько, причем важно понимать две принципиальные вещи. Чем лучше мы используем ту большую энергию, с которой вылетают частицы, тем выше будет КПД. Другое ограничение — малогабаритное устройство не может иметь на выходных клеммах высокое напряжение, иначе произойдет пробой. Малогабаритное устройство с высоким КПД должно как-то использовать высокую энергию частиц внутри себя, во что-то ее преобразовывая. Посмотрим, какие варианты предложены.

Первый — заряженные частицы попадают в пленку полупроводника, где они тормозятся и отдают свою энергию электронам. Само по себе это просто увеличивало бы проводимость, поэтому пленка не однородна, это p–n

-переход с двумя, как ему и положено, выводами. Тормозящиеся в
p–n
-переходе быстрые первичные электроны порождают электронно-дырочные пары, поле перехода растаскивает электроны и дырки в разные стороны, на выводах накапливаются заряды, и, подсоединив к выводам нагрузку, мы получим ток. Один электрон с энергией в килоэлектронвольты порождает тысячи пар, каждая имеет в тысячи раз меньшую энергию, но зато их в тысячу раз больше — это и обеспечит увеличение тока. Правда, при отборе тока электронам приходится пробираться сквозь слой полупроводника, и вольт-амперная характеристика приобретает черты того варианта, что был у батареек — при отборе тока напряжение заметно падает.

Проблем у такой конструкции несколько, и одна — общая со всеми атомными батареями. А именно, выбор изотопа и его количества. Период полураспада — это темп падения мощности со временем и срок службы батареи; количество изотопа и энергия продуктов распада — это мощность батареи, ее опасность для окружающих, а если она будет летать в космосе — то это последствия прибытия на Землю с разрушением в атмосфере и заражением (уже были прецеденты) и ее опасность для окружающих устройств. Например, полупроводниковые приборы не любят, когда их облучают. Естественно, есть еще общетехнические проблемы — вес, габариты, стоимость, срок службы, надежность, иногда ремонтопригодность, патентная чистота. Патентная чистота важна, если собираются производить и легально продавать приборы. Вес и габариты — если это носимая, возимая, бортовая аппаратура летательного средства. Самое интересное — срок службы и надежность, потому что иногда лучше срок службы 10000 часов с надежностью 0,9, а иногда лучше 5000 и 0,95 или 1000 и 0,99… (подумайте, когда и почему).

Рис. 3
Еще одна проблема, которую тоже можно назвать общетехнической, — это принципиальная конструкция, оптимизация параметров, выбор материалов и размеров. Например, в данном случае нужно выбрать оптимальную толщину слоя, содержащего изотоп, — чтобы частицы не затормозились в нем самом. И выбрать оптимальный полупроводник, чтобы он, например, не разрушался излучением. Эти вопросы исследуются, обсуждения вы легко найдете в литературе. По ситуации на сегодня, в качестве изотопа используют тритий Т (он же 3H) и никель-63 (он же 63Ni), в качестве полупроводника — кремний Si, карбид кремния SiC, нитрид и арсенид галлия GaN и GaAs или алмаз С. На рисунке 3 представлена вольт-амперная характеристика оптимизированного источника на никеле и алмазе.

Вопрос 6.
Как вы думаете, будет ли при работе эта батарейка греться, в какой точке характеристики батарейка будет отдавать в нагрузку максимальную мощность и в какой точке будет минимален нагрев.

Подобное устройство может и не иметь двух электродов — с изотопом и без оного, изотоп может просто контактировать с полупроводником. В этом случае высокоэнергетичным частицам не нужно пересекать вакуумный зазор — родившись, они сразу начинают распространяться сквозь полупроводник, тормозясь и порождая многочисленные электронно-дырочные пары. Такие батареи (рис. 4) уже выпускаются серийно, их напряжение 0,75–2,4 В, ток 0,05–0,3 мкА, срок службы 20 лет. Распадающийся изотоп — тритий Т, поэтому через 12 лет ток падает вдвое, полупроводник — кремний Si.

Рис. 4

Более того, можно, по крайней мере теоретически, поискать вариант, когда изотоп является одним из элементов, входящих в полупроводник. Например, если использовать изотоп углерод-14 (он же 14C), то можно попробовать в качестве полупроводника алмаз C или карбид кремния SiC. Такие идеи предлагались, и поскольку период полураспада здесь 5 700 лет, то батарейка получается вечной. Но этот параметр почти для всех применений (кроме полета к экстрасолнечным планетам

) будет избыточен, а мощность относительно мала. Кстати, при некоторых условиях и графен становится полупроводником — так что есть, о чем пофантазировать.

Рис. 5

Предлагался и такой вариант — высокоэнергетичные частицы возбуждают люминесценцию, этот эффект известен и используется. Вот, например, имеются брелоки с тритием и люминофором (рис. 5). Далее свет преобразуется в электричество фотоэлементом. Но каждое преобразование вообще уменьшает КПД, а у фотоэлементов он не слишком велик.

Известны варианты конструкций (некоторые реально использующиеся, некоторые на уровне первых лабораторных образцов) с полетом заряженных частиц через вакуум, причем «плоскость прилета» сделана гибкой. В этом случае при попадании на нее заряженных частиц она изгибается, и если в итоге касается «плоскости вылета», то заряд сбрасывается обратно. В итоге мы получаем генератор не постоянного, а переменного напряжения — что тоже для чего-то может пригодиться. Периодически изгибающаяся консоль может быть использована как механический двигатель, а если сама консоль сделана из пьезоэлектрика

— то как еще один источник напряжения, такая идея предлагалась. Во всех случаях остаются в силе соображения, изложенные выше, — или высокое напряжение, но тогда значительные габариты, или малые габариты, но тогда низкий КПД. В последнем случае он становится еще меньше из-за наличия второго преобразования.

Пьезокристалл — это еще один источник электроэнергии. Точнее — преобразователь работы в электрическую энергию и обратно, т.е. электроэнергии в перемещение. Сопротивление пьезокристалла весьма велико, поэтому мощность его, как преобразователя механической работы в электрическую мощность, мала. Обычно он применяется либо как источник высокого напряжения и малой мощности, например в зажигалках, либо как датчик перемещений — там мощность не столь важна. В обратном направлении — как способ создания малых перемещений. Это — генераторы ультразвука и устройства для точного перемещения объектов в микроскопии и оптике. Отдельная область применения — использование механического резонанса в кристалле.

Принципиальное отличие вольт-амперной характеристики атомных батарей от обычных, химических, состоит в том, что атомные батареи переносят заряженные частицы и этот поток ограничен в принципе. Его можно прекратить, подав на выводы соответствующее напряжение, но ни сменить его направление, ни пропустить через атомную батарею ток, больший тока короткого замыкания, невозможно (если, конечно, мы не подадим напряжение, большее напряжения вакуумного пробоя — но при этом мы батарею выведем из строя).

Условия работы источников тока

Любой источник тока работает при определенных условиях. В отсутствие химической реакции внутри элементов не смогут образовываться заряженные частицы. Если будет отсутствовать анод и катод, то движения частиц не возникнет даже при наличии реакции.

В аккумуляторах происходит похожий процесс, но толчком для возникновения химической реакции является замыкание во внешней электрической цепи. Заряженные элементы начинают двигаться от анода к катоду и наоборот, создавая постоянный поток.

Световые типы не могут работать без наличия источника света. КПД зависит от типа используемого диэлектрического элемента. Дополнительно необходимо иметь в наличии приспособление ля преобразования полученной энергии.

Тепловой вариант не будет работать, если в его основу входит 1 тип металла. Если будет отсутствовать источник тепла, то ни о каком возникновение движущихся частиц не может быть и речи.

Для выработки электрической энергии требуется выбрать источник тока, соответствующий потребностям в конкретной сфере применения. Существует несколько вариантов таких приспособлений, каждый из которых имеет определенное строение, принцип работы и индивидуальные технические показатели.

Основные составные части электрической сети

Электроэнергетической сетью (Рис. 5) называется совокупность электроустановок для передачи и распределения электрической энергии, состоящая из подстанций, распределительных устройств, токопроводов, воздушных и кабельных линий электропередачи, работающих на определенной территории.

Рисунок 5 — Электрическая сеть, и электроустановки для передачи и распределения электрической энергии

Все встречающиеся на практике схемы представляют собой сочетания отдельных элементов — фидеров, магистралей и ответвлений.

Электрические сети, в свою очередь, подразделяются на магистральные электрические сети и распределительные электрические сети.

К магистральным сетям относятся все высоковольтные линии электропередач (ЛЭП), к распределительным – ЛЭП мощностью ниже 110 кВ. Виды электрических сетей представлены на рисунке 6.

Рисунок 6 — Виды электрических сетей

Сети связаны между собой трансформаторными и распределительными подстанциями. Для обеспечения установленных требований, энергосистемы оборудуют специальными диспетчерскими пунктами, оснащёнными средствами контроля, управления, связи и специальными схемами расположения электростанций, линий передач и понижающих подстанций.

Электрические сети делятся по:

  • напряжению;
  • степени подвижности;
  • назначению;
  • роду тока и числу проводов;
  • схеме электрических соединений:

а) разомкнутые (нерезервированные). Схемы разомкнутых сетей представлена на рисунке 7.

Рисунок 7 — Схемы разомкнутых сетей: а — радиальные (нагрузка только на конце линии); б — магистральные (нагрузка присоединена к линии в разных местах)

б) замкнутые (резервированные) (Рис. 8).

Рисунок 8 — Схемы замкнутых сетей: а — сеть с двухсторонним питанием; б — кольцевая сеть; в — двойная магистральная линия; г сложнозамкнутая сеть (для питания ответственных потребителей по двум и более направлениям)

Магистральные схемы электроснабжения применяются в следующих случаях:

  • а) когда нагрузка имеет сосредоточенный характер, но отдельные узлы ее оказываются расположенными в одном и том же направлении по отношению к подстанции и на сравнительно незначительных расстояниях друг от друга, причем абсолютные величины нагрузок отдельных узлов недостаточны для рационального применения радиальной схемы;
  • б) когда нагрузка имеет распределенный характер с той или иной степенью равномерности.

По конструкции: электропроводки (силовые и осветительные), токопроводы — для передачи электроэнергии в больших количествах на небольшие расстояния, воздушные линии — для передачи электроэнергии на большие расстояния, кабельные линии — для передачи электроэнергии на далекие расстояния в случаях, когда сооружение ВЛ невозможно.

Наибольшее распространение для местных распределительных сетей получили радиальные, магистральные, смешанные (радиальномагистральные) и петлевые схемы.

При радиальной схеме электроснабжения каждая линия является как бы лучом, соединяющим узел сети (подстанцию, распределительный пункт) с единственным потребителем.

При магистральной схеме электроснабжения одна линия — магистраль — обслуживает, как указано, несколько распределительных пунктов или приемников, присоединенных к ней в различных ее точках.

Смешанные схемы распределительных местных сетей применяются при различном расположении потребителей относительно ЦП и сочетаются принципы построения как радиальной, так и магистральных схем.

К электрическим сетям предъявляются следующие требования: надежность, живучесть и экономичность.

Надежность — основное техническое требование, под которым понимается свойство сети выполнять свое назначение в пределах заданного времени и условий работы, обеспечивая электроприемники электроэнергией в необходимом количестве и надлежащего качества.

Живучесть электрической сети — это свойство выполнять свое назначение в условиях разрушающих воздействий в том числе и в боевой обстановке при воздействиях средств поражения противника.

Экономичность — это минимум затрат на сооружение и эксплуатацию сети при условии выполнения требований надежности и живучести.

Рейтинг
( 1 оценка, среднее 5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]