Пример расчета токов короткого замыкания в сети 6 кВ


Содержание

  • 1. Общая часть
  • 2. Исходные данные для расчета
  • 3. Расчет сопротивлений элементов
  • 4. Расчет токов трехфазного короткого замыкания в точке К1
  • 5. Расчет токов трехфазного короткого замыкания в точке К2
  • 5.1 Для среднего положения регулятора РПН трансформатора Т3
  • 5.2 Для минимального положения регулятора РПН трансформатора Т3
  • 5.3 Для максимального положения регулятора РПН трансформатора Т3
  • 6. Расчет токов трехфазного короткого замыкания в точке К3
  • 6.1 Сопротивление на шинах ЗРУ 6 кВ при РПН трансформатора Т3 установленном в среднее положение
  • 6.2 Сопротивление на шинах ЗРУ 6 кВ при РПН трансформатора Т3 установленном в минусовое положение
  • 6.3 Сопротивление на шинах ЗРУ 6 кВ при РПН трансформатора Т3 установленном в плюсовое положение
  • 7. Расчет тока короткого замыкания выполненного в Excel
  • 8. Список литературы

Суть процесса

При включении любого электрического прибора в цепь происходит замыкание линии. По ней начинает проходить электроток. Он течёт от источника питания через нагрузку (потребителя) и возвращается. Сила тока определяется нагрузочным сопротивлением элементов, подключённых к цепи. Если R большое, величина силы тока небольшая. В ином случае она может достигать больших значений. Ситуация, при которой происходит электрическое соединение плюсового и минусового контакта электрической линии, называют коротким замыканием.

Например, можно представить простую цепь, состоящую из источника тока и лампы накаливания. Чтобы она засветилась, один из выводов источника (фаза) следует подключить к одному из электродов лампы, а другой — ко второму контакту осветительного устройства (нулевой). В замкнутой цепи появится ток, который, проходя по вольфрамовому проводнику лампы, приведёт к его разогреву с излучением света. Такая работа называется штатной или нормальной.

Но если по каким-то причинам возникнет дополнительный контакт между выводами источника питания, причём его сопротивление будет пренебрежительно мало, практически весь генерируемый ток устремится по нему. Произойдёт шунтирование фазы питания с нулём. В результате всё напряжение окажется приложенным к выводам генерирующего устройства. И сила тока, возникшая в цепи, будет определяться только внутренним сопротивлением источника питания.

Сила тока резко возрастёт. Учитывая закон Джоуля — Ленца, определяющий тепловое действие электротока, возрастёт нагрев электрической цепи. Если сила тока при КЗ вырастет в 2 раза, выделившееся тепло увеличится в 40 раз. Явление часто сопровождается расплавлением проводов и возгоранием. Вот поэтому так важно уметь выполнять расчёт токов короткого замыкания для 110 В, 220 В или 380 В. Это те напряжения, что используются в быту и промышленности, обеспечивающие работу электроприборов и установок.

Различают следующие виды КЗ:

  • однофазное — установление контакта между фазовой линией и нулевой;
  • двухфазное — замыкание фаз между собой или их общее соединение с землёй;
  • трёхфазное — наблюдается в сетях 380 вольт при соединении трёх фаз.

Следует отметить, что КЗ возникнет лишь в том случае, если соединение будет иметь наименьшее сопротивление на замкнутом участке цепи, чем предусмотренное нормальным режимом работы. Определяется же он согласно ГОСТ и правилами устройства электроустановок (ПУЭ).

Общая часть

Требуется выполнить расчет трехфазного тока короткого замыкания (ТКЗ) на шинах проектируемого ЗРУ-6 кВ ПС 110/6 кВ «ГПП-3». Данная подстанция питается по двум ВЛ-110 кВ от ПС 110 кВ «ГПП-2». Питание ЗРУ-6 кВ «П4СР» получает от двух силовых трансформаторов ТДН-16000/110-У1, которые работаю раздельно. При отключении одного из вводов, предусмотрена возможность подачи питания на обесточенную секцию шин посредством секционного выключателя в автоматическом режиме (АВР).

На рисунке 1 приведена расчетная схема сети

Рисунок 1 – Расчетная схема сети

Поскольку цепь от I с.ш. «ГПП-2» до I с.ш. «ГПП-3» идентична цепи II с.ш. от «ГПП-2» до II с.ш. «ГПП-3» расчет ведется только для первой цепи.

Схема замещения для расчета токов короткого замыкания приведена на рисунке 2.

Рисунок 2 – Схема замещения сети

Расчет будет производиться в именованных единицах.

Общие положения

Данная методика предназначена для производства измерений полного сопротивления цепи фаза-нуль и измерению тока короткого замыкания при испытаниях электроустановок зданий и сооружений с целью оценки срабатывания автоматического отключения питания при повреждении изоляции для предотвращения появления напряжения прикосновения в соответствии с нормами сотрудниками электролаборатории. Защитное устройство, предназначенное для автоматического отключения питания цепи или электрооборудования, должно обеспечивать защиту от косвенного прикосновения при замыкании токоведущей части на открытую проводящую часть или защитный проводник цепи или электрооборудования таким образом, что время отключения питания должно обеспечивать электробезопасность человека при одновременном прикосновении к проводящим частям, также в случае возможного повышения значений напряжения прикосновения 50 В переменного тока (действующее значение) и 120 В выпрямленного тока. Время отключения, независимо от значения напряжения прикосновения, для распределительных цепей не должно превышать 5 секунд. Наибольшее время отключения для системы TN с номинальным напряжением 220 В не должно превышать 0,4 секунд. Полное сопротивление цепи фаза-нуль должно удовлетворять условию: Zs ? Uн/Iк , где, Zs — полное сопротивление цепи фаза-нуль; Uн — номинальное напряжение между фазой и землей; Iк — номинальный ток короткого замыкания, вызывающий срабатывание защитного устройства. В полное сопротивление цепи фаза-нуль входят сопротивления: обмотки силового трансформатора, фазного провода, нулевого рабочего провода, контактов автоматов, пускателей и т.д. По измеренному полному сопротивлению петли «фаза-нуль» определяется ток однофазного короткого замыкания. С помощью время-токовой характеристики защитного аппарата по полученной расчетом величине этого тока определяется время срабатывания защитного аппарата. Ток должен иметь определенную кратность по отношению к номинальному току плавкой вставки предохранителя или электромагнитного расцепителя автоматического выключателя согласно п. 1.7.79. и п. 7.3.139. ПУЭ.

Исходные данные для расчета

  • 1. Данные системы: Iкз=22 кА;
  • 2. Данные ВЛ — 2хАС-240/32 (Данные даны для одной цепи АС-240/32, РД 153-34.0-20.527-98, приложение 9):
  • 2.1 Индуктивное сопротивление прямой последовательности — Х1уд=0,405 (Ом/км);
  • 2.2 Емкостная проводимость — bуд=2,81х10-6 (См/км);
  • 2.3 Активное сопротивление при +20 С на 100 км линии — R=R20C=0,12 (Ом/км).
  • 3. Данные трансформатора (взяты с ГОСТ 12965-85):
  • 3.1 ТДН-16000/110-У1, Uвн=115 кВ, Uнн=6,3 кВ, РПН ±9*1,78, Uк.вн-нн=10,5 %;
  • 4. Данные гибкого токопровода: 3хАС-240/32, l=20 м. (Для упрощения расчета, сопротивление гибкого токопровода не учитывается.)
  • 5. Данные токоограничивающего реатора — РБСДГ-10-2х2500-0,2 (взяты из ГОСТ 14794-79):
  • 5.1 Номинальный ток реактора — Iном. = 2500 А;
  • 5.2 Номинальные потери мощности на фазу реактора — ∆P= 32,1 кВт;
  • 5.3 Индуктивное сопротивление – Х4=0,2 Ом.

Зачем нужно знать значения тока КЗ и сопротивления петли “Фаза-ноль”?

Я уже много чего рассказал в статье. Но какой нам толк от знания этих параметров электросети?

Знание тока КЗ (или сопротивления петли “Фаза-ноль”) и мощности нагрузки позволяет нам правильно и оптимально (по соотношениям безопасность/функциональность/надежность/цена) выбрать основные элементы энергосистемы – аппараты защиты и сечение кабелей. Далее немного подробнее.

Безопасность

Об этом я уже говорил, но повторю. Электрические сети должны быть безопасными на всех участках и во всех режимах. Для этого, кроме изоляции, применяют автоматические выключатели и устройства, управляемые дифференциальным током (УЗО). Вкупе с защитным заземлением, эти устройства защищают оборудование от КЗ и перегрузок, а человека – от опасности прямого или косвенного прикосновения.

Функциональность

Зная ток КЗ, можно выдать заключение о необходимости установки стабилизатора, или замены кабельной линии на новую. Кроме того, можно сделать вывод о селективности – можно ли её обеспечить хотя бы частично?

Надежность

В случае высокого тока КЗ необходимо применить выключатели с высокой отключающей способностью для надежного функционирования в момент КЗ. Кроме того, должны быть предъявлены высокие требования к качеству монтажа и комплектующих.

Цена

Тут понятно – выполнение предыдущих пунктов значительно влияет на цену всей электросети.

Расчет сопротивлений элементов

3.1 Сопротивление системы (на напряжение 115 кВ):

3.2 Сопротивление воздушной линии (на напряжение 115 кВ):

где: n — Количество проводов в одной воздушной линии ВЛ-110 кВ;

3.3 Суммарное сопротивление до трансформатора (на напряжение 115 кВ):

Х1,2=Х1+Х2=3,018+0,02025=3,038 (Ом)

R1,2=R2=0,006 (Ом)

3.4 Сопротивление трансформатора:

3.4.1 Активное сопротивление трансформатора (РПН находится в среднем положении):

3.4.2 Активное сопротивление трансформатора (РПН находится в крайнем «минусовом» положении):

3.4.3 Активное сопротивление трансформатора (РПН находится в крайнем «плюсовом» положении):

3.4.4 Индуктивное сопротивление трансформатора в среднем положении РПН:

Минимальное индуктивное сопротивление трансформатора (РПН находится в крайнем «минусовом» положении)

где:

— половина полного (суммарного) диапазона регулирования напряжения на стороне высокого напряжения трансформатора.

Максимальное индуктивное сопротивление трансформатора (РПН находится в крайнем «плюсовом» положении)

Величина входящая в формулу приведенную выше – напряжение, соответствующее крайнему положительному положению РПН, и она равна Uмакс.ВН=115*(1+0,1602)=133,423 кВ, что превышает наибольшее рабочее напряжение электрооборудования равное 126 кВ (ГОСТ 721-77 «Системы электроснабжения, сети, источники, преобразователи и приемники электрической энергии. Номинальные напряжения свыше 1000 В»). Напряжению UмахВН соответствует Uк%max=10,81 (ГОСТ 12965-85).

Если Uмах.ВН, получается больше максимально допустимого для данной сети (табл.5.1), то Uмах.ВН следует принимать по этой таблице. Значение Uк%, соответствующее этому новому максимальному значению Uмах.ВН, определяют либо опытным путем, либо находят из приложений ГОСТ 12965-85.

3.4.5 Сопротивление токоограничивающего реактора (на напряжении 6,3 кВ):

Х4=0,2 (Ом)

В чем заключается угроза КЗ?

Замыкание в первую очередь представляет угрозу здоровью и жизни человека. Это связано с пожарной опасностью: возгорание изоляции проводов, воспламенение окружающих предметов, способность изоляции распространять горение. Так же изменение силы тока может быть губительным для используемых устройств и приборов, приводя к катастрофическим последствиям. КЗ может стать причиной экономического убытка Поэтому важно использовать меры профилактики возникновения явления и прибегать к установке методов защиты.

Расчет токов трехфазного короткого замыкания в точке К2

5.1 Для среднего положения регулятора РПН трансформатора Т3

5.1.1 Суммарное сопротивление до точки К2:

Х∑==Х1+Х2+Х3ср=3,018+0,02025+86,789=89,827 (Ом) R∑=R2+К3=0,006+4,391=4,397 (Ом)

5.1.2 Ток трехфазного короткого замыкания:

5.1.3 Ток в месте короткого замыкания, приведенный к действующему напряжению 6,3 кВ, равен:

5.1.4 Ударный ток короткого замыкания:

5.2 Для минимального положения регулятора РПН трансформатора Т3

5.2.1 Значение суммарного сопротивления в точке К1, приводим к напряжению сети 96,577 кВ:

5.2.2 Ток трехфазного короткого замыкания:

5.2.3 Ток в месте короткого замыкания, приведенный к действующему напряжению 6,3 кВ, равен:

5.2.4 Ударный ток короткого замыкания:

5.3 Для максимального положения регулятора РПН трансформатора Т3

5.3.1 Значение суммарного сопротивления в точке К1, приводим к напряжению сети 126 кВ:

5.3.2 Ток трехфазного короткого замыкания:

5.3.3 Ток в месте короткого замыкания, приведенный к действующему напряжению 6,3 кВ, равен:

5.3.4 Ударный ток короткого замыкания:

Метод измерений.

Предлагаемые методы дают только приближенные значения величины полного сопротивления цепи фаза-нуль или токов короткого замыкания, так как они не учитывают векторную природу напряжения, то есть реальные условия, существующие в действительное время замыкания на “землю”. Эта степень приближенности приемлема при условии, что реактивное сопротивление испытываемой цепи незначительно. До выполнения измерения сопротивления цепи фаза-нуль рекомендуется провести испытания сопротивлений защитных проводников, их непрерывности, а также сопротивлений изоляции элементов электроустановки здания.

Расчет токов трехфазного короткого замыкания в точке К3

6.1 Сопротивление на шинах ЗРУ 6 кВ при РПН трансформатора Т3 установленном в среднее положение

6.1.1 Значение суммарного сопротивления в точке К2, приводим к напряжению сети 6,3 кВ:

6.1.2 Ток в месте короткого замыкания, приведенный к действующему напряжению 6,3 кВ, равен:

6.1.3 Ударный ток короткого замыкания:

6.2 Сопротивление на шинах ЗРУ 6 кВ при РПН трансформатора Т3 установленном в минусовое положение

6.2.1 Значение суммарного сопротивления в точке К2 приводим к напряжению сети 6,3 кВ:

6.2.2 Ток в месте короткого замыкания, приведенный к действующему напряжению 6,3 кВ, равен:

6.2.3 Ударный ток короткого замыкания:

6.3 Сопротивление на шинах ЗРУ 6 кВ при РПН трансформатора Т3 установленном в плюсовое положение

6.3.1 Значение суммарного сопротивления в точке К2, приводим к напряжению сети 6,3 кВ:

6.3.2 Ток в месте короткого замыкания, приведенный к действующему напряжению 6,3 кВ, равен:

6.3.3 Ударный ток короткого замыкания:

Результаты расчетов заносим в таблицу РР1.3

Таблица РР1.3 – Данные расчета токов трехфазного короткого замыкания

Положение РПН трансформатораТоки КЗТочка короткого замыкания
К1К2К3
РПН в среднем положенииТок КЗ, кА21,85513,4717,739
Ударный ток КЗ, кА35,54935,54920,849
РПН в минусовом положенииТок КЗ, кА13,957,924
Ударный ток КЗ, кА36,621,325
РПН в плюсовом положенииТок КЗ, кА13,127,625
Ударный ток КЗ, кА34,5920,553

2.1. Порядок измерения прибором MZC-300, MZC-303E

2.1.1 Условия выполнения измерений и получения правильных результатов

Чтобы начать измерение, необходимо соблюдение нескольких условий. Измеритель автоматически блокирует возможность начала измерений (это не касается измерения напряжения сети) в случае обнаружения каких-либо из ниже перечисленных ненормальных условий: Ситуация Отображаемые символы и предупреждающие сигналы Пояснения Напряжение, приложенное к измерителю, больше 250В. Надпись OFL и длительный звуковой сигнал. Незамедлительно отсоедините измеритель от испытуемой сети! Нарушена целостность провода PE/N. Отображается символ _—_ и звучит продолжительный звуковой сигнал. Символ и звуковой сигнал появляются после нажатия клавиши [start] Необходимо принять меры предосторожности, так как в испытуемой сети отсутствует защита от сверхтоков! Напряжение, приложенное к измерителю, слишком мало для измерения сопротивления – менее 180В. Отображается надпись -U- и звучат два длинных звуковых сигнала. Надпись и звуковые сигналы появляются после нажатия клавиши [start] Термическая защита блокирует измерение, что возможно при очень интенсивных измерениях. Отображается символ Т на дисплее и звучат два длинных звуковых сигнала. Символ и звуковые сигналы появляются после нажатия клавиши [start] Во время Автокалибровки сумма полного сопротивления цепи и полного сопротивления измеряемого провода очень велика. Вместо результата измерения отображается символ ]-[, прибор дополнительно генерирует два длинных звуковых сигнала. Измеритель также сигнализирует о ситуации, в которой результат измерения не может быть признан верным: ¦ Если элементы питания разряжены, то на дисплее попеременно с результатом измерения напряжения отображается надпись bAt . Заданное измерение можно произвести, однако полученные результаты не могут быть основанием для правильной оценки электробезопасности испытуемой электроустановки.

2.1.2 Способы подключения измерителя

Рис.6. Измерение в рабочей цепи (L-N)

Рис. 7. Измерение в защитной цепи (L-PE) а) сети TN (с занулением) б) сети ТТ (с защитным заземлением)

Рис. 8. Тестирование эффективности защиты корпуса электроустановки

Измеритель подключается к тестируемой цепи или к устройству как показано на Рис.6, 7 и 8. Следует обратить внимание на правильный подбор измерительных наконечников, так как точность выполняемых измерений сильно зависит от качества выполненных подключений. Следует обеспечить хорошее соединение и сделать возможным непрерывное протекание большого измерительного тока. Недопустимо, например, присоединение зажима «Крокодил» к грязным или ржавым элементам — необходимо их тщательно очистить или использовать для измерений остроконечные зонды.

2.1.3 Измерение напряжения переменного тока

Приборами семейства MZC-300 можно измерить напряжение переменного тока в диапазоне 0…250В. Прибор измеряет напряжение между измерительными гнёздами L и PE/N. Входное сопротивление вольтметра не менее 150 кОм. Включение режима вольтметра происходит автоматически после включения питания измерителя, а также примерно через 5 секунд после: • Выполнения измерения полного сопротивления, ожидаемого тока короткого замыкания либо сопротивления измерительного провода (во время Автокалибровки); • Последнего нажатия какой-либо из клавиш, связанных с выводом на дисплей результатов измерения.

2.1.4 Измерение параметров петли короткого замыкания

В приборах семейства MZC-300 используется метод измерения полного сопротивления петли короткого замыкания путём «искусственного короткого замыкания» испытуемой цепи через резистор, ограничивающий величину измерительного тока. Измеряется напряжение на гнёздах прибора непосредственно перед протеканием измерительного тока и в процессе протекания измерительного тока с учётом векторной структуры напряжения и тока. Далее процессор вычисляет полное сопротивление петли короткого замыкания, выделяет его активную и реактивную компоненты, а также фазовый угол, который возникнет в испытуемой цепи в случае короткого замыкания. Ограничивающий резистор имеет величину 10 Ом, а время протекания измерительного тока составляет З0 мс. Измеритель самостоятельно выбирает диапазон измерения полного сопротивления. Отображение результата измерения в виде сопротивления или тока Результат измерения можно отобразить в виде полного сопротивления петли короткого замыкания или ожидаемого тока короткого замыкания. Нажатие клавиши Z/I во время отображения одной из этих величин переводит прибор на отображение другой. Прибор всегда измеряет полное сопротивление, а отображаемый на дисплее ожидаемый ток короткого замыкания вычисляется по формуле: где: Uo =220В — номинальное напряжение исследуемой сети, Zs — измеренное полное сопротивление. Поэтому в сетях с иным номинальным напряжением необходимо при расчёте тока короткого замыкания внести соответствующую поправку. Например, в сети с Uo =230B ожидаемый ток короткого замыкания будет в 230/220=1,045 раза больше, чем отображаемый на приборе. В дальнейшем термин «измерение полного сопротивления» будет означать выполнение измерения и отображение результата в виде тока или сопротивления.

2.1.5 Выполнение измерения и считывание результата

Процесс измерения может быть начат нажатием клавиши START в момент, когда измеритель отображает на дисплее величину напряжения. Если нет причин для блокировки измерения, прибор выполняет измерение и в зависимости от установок, выполненных Пользователем клавишей Z/I, отображает на дисплее величину полного сопротивления либо ожидаемого тока короткого замыкания. Остальные компоненты результата измерения: активное сопротивление, реактивное сопротивление и фазовый угол можно вызвать на дисплей нажатием клавиши SEL. После автоматического возврата прибора в режим измерения напряжения результат измерения остаётся доступным. Он может быть снова вызван на дисплей клавишей SEL. Полное сопротивление, активное сопротивление и реактивное сопротивление указываются до величины 199,9 Ом. Если в режиме измерения сопротивления, показания будут более 199,9 Ом, на дисплее появится символ превышения диапазона измерения OFL, а режиме тока короткого замыкания измеритель отобразит символ очень малой величины UFL. Если в точке измерения предполагаются величины полного сопротивления более 199,9 Ом и такой результат является допустимым для данной электроустановки, то в приборе MZC-ЗОЗЕ можно использовать функцию RCD, которая увеличивает диапазон измерения до 1999 Ом. ВНИМАНИЕ: Выполнение большого количества измерений за короткий промежуток времени может привести к выделению большого количества тепла на ограничивающем резисторе. В связи с этим корпус прибора может нагреваться. Это нормальное явление. Измеритель имеет защиту от перегрева.

2.1.6 Измерение сопротивления заземления

Измерители семейства MZC-300 можно использовать для приблизительных измерений сопротивления заземления. В этих целях в качестве дополнительного источника напряжения, позволяющего создать измерительный ток, используется фазный проводник сети, как показано на рисунке 9.

рис. 9. Способ подключения для измерения сопротивления заземления

Результат измерения есть сумма сопротивлений измеряемого заземлителя, рабочего заземления, источника и фазного проводника. Если полученный результат не превышает допустимой величины для испытуемого заземления, то можно сделать вывод о том, что заземление выполнено правильно и нет необходимости использования более точных методов измерения.

2.1.7 Безопасные приемы работы.

Работы по измерению полного сопротивления петли «фаза-нуль» и токов однофазных замыканий выполняется по наряду-допуску или по распоряжению. Вид оформления работ определяет работник, имеющий право выдачи нарядов и распоряжений. К работе допускаются лица из электротехнического персонала не моложе 18 лет, обученные и аттестованные на знание ПТБ, и данной методики, обеспеченные инструментом, индивидуальными защитными средствами, спецодеждой. Состав бригады должен быть не менее двух человек: — производитель работ с группой по электробезопасности не ниже III; — член бригады с группой по электробезопасности не ниже III. При подаче напряжения от постороннего источника питания должны быть оформлены и выполнены организационные и технические мероприятия, как в месте подключения, так и на рабочем месте. Соединительные провода, питающий кабель, понижающий трансформатор должны иметь двойную изоляцию. Запрещается выполнять работы при высокой влажности, а также в огне-, пожаро- и во взрывоопасных средах и помещениях. По результатам измерений составляется протокол установленной формы. Лица, допустившие нарушения ПТБ или ПТЭЭП, а также допустившие искажения достоверности и точности измерений, несут ответственность в соответствии с законодательством и положением о передвижной электролаборатории.

Расчет тока короткого замыкания выполненный в Excel

Если выполнять данный расчет с помощью листка бумаги и калькулятора, уходит много времени, к тому же Вы можете ошибиться и весь расчет пойдет насмарку, а если еще и исходные данные постоянно меняются – это все приводит к увеличению времени на проектирование и не нужной трате нервов.

Поэтому, я принял решение выполнить данный расчет с помощью электронной таблицы Excel, чтобы больше не тратить в пустую свое время на перерасчеты ТКЗ и обезопасить себя от лишних ошибок, с ее помощью можно быстро пересчитать токи КЗ, изменяя только исходные данные.

Надеюсь, что данная программа Вам поможет, и Вы потратите меньше времени на проектирование Вашего объекта.

Как предотвратить короткое замыкание

На этот вопрос есть короткий ответ: чтобы не произошло короткое замыкание, соблюдайте правила эксплуатации электрических приборов. Конкретные рекомендации ниже помогут предупредить короткое замыкание.

Не включайте частично поврежденные приборы

Если в утюге или холодильнике перетерся кабель и видна внутренняя оболочка, не включайте его, до того, как отремонтируете. Сначала аккуратно снимите верхний слой изоляции в поврежденном участке и осмотрите внешнее состояние изоляции. Все повреждения и трещины плотно замотайте изолентой. Затем верните назад верхнюю оболочку и тоже перемотайте.

Часто требуется замена штепсельной вилки, например, если она сильно расшатана или поврежден корпус. Она продается в любом переходе или магазине, потому не откладывайте с покупкой.

Повреждения могут быть не только на шнуре питания, но и внутри. Например, если Вы включаете что-либо и слышите внутри искрение. Это уже говорит о серьезной неисправности, даже если электрооборудование работает, на первый взгляд, нормально. В таком случае, выключите его из розетки и отнесите в сервисный центр (или отремонтируйте самостоятельно).

Помните, что включение неисправного электроприбора часто приводит к КЗ, которое уничтожит всю проводку в доме и с большой вероятностью спровоцирует пожар. Если Вы будете находиться поблизости, то рискуете получить серьезные травмы.

Даже если Вы проверили всю проводку и включаете только новую исправную технику, это не дает 100%-ой гарантии, что в вашей сети не случится аварии. Потому, всегда устанавливайте в щиток качественные автоматические выключатели и УЗО.

Советуем к прочтению: SMD справочник, SMD коды, маркировка радиодеталей

Используйте подходящие автоматические предохранители

Рекомендация в первую очередь касается бытовых потребителей: владельцев квартир, домов, дач. Использование вместо предохранителей так называемых «жучков», а также установка неподходящих автоматических выключателей повышает риск нагрева кабеля и короткого замыкания.

Пример: поставщик электроэнергии согласовал установку «автомата» 16А. Этот предохранитель рассчитан на разрешенную потребляемую мощность и силу тока. Он срабатывает, когда сила тока превышает 16 ампер и защищает сеть от аварии. Если установить в эту сеть «автомат» 40А или «жучок», потребитель не будет страдать от частых срабатываний предохранителя. Но сеть останется незащищенной от ненормативных нагрузок. Это повышает риск повреждения кабеля и короткого замыкания.

«Жучком» называют самодельный или самостоятельно модифицированный предохранитель. Обычно это предохранитель, в котором вместо плавкой вставки используется толстая проволока.

Предохранитель с «жучком»

Проверяйте работоспособность кабеля

Перед монтажом проводки проверяйте кабель на целостность изоляции и отсутствие короткого замыкания. Кабель с ленточной броней надо проверять на замыкание на броню. Это проще всего сделать с помощью мегаомметра.

Мегаомметр поможет выявить короткое замыкание

Замените алюминиевую проводку на медную

При меньшем сечении провода медь лучше проводит электричество и выдерживает большую нагрузку. Кроме того, она выдерживает больше механических изгибов и не так быстро окисляется, как алюминий.

Новые ПУЭ вообще запрещают в бытовых сетях прокладывать алюминиевую проводку, так как она потенциально опасная и менее эффективная в эксплуатации, чем медная.

В советские времена в жилых домах часто делали алюминиевую проводку. Если Ваша квартира до сих пор пользуется таким «советским наследством», задумайтесь, срок эксплуатации ее, наверняка, уже давно вышел.

Не игнорируйте пылевлагозащиту

Размещая розетки, выключатели или электроприборы в местах повышенной влажности позаботьтесь о высоком уровне пылевлагозащиты. Например, на улице, где возможны осадки, роса и туман, он должен быть не ниже IP67. Минимальный уровень для ванной IP44, если существует вероятность прямого попадания водяных брызгов, тогда лучше IP56.

Если внутрь проникнет вода, розетка начнет искриться, оплавится пластиковый корпус и в конце концов случится короткое замыкание. Потому всегда выбирайте оптимальный уровень пылевлагозащиты.

Не эксплуатируйте электросети без заземления или зануления

Заземление и зануление само по себе не предупреждает короткое замыкание. Но благодаря этой защите при коротком замыкании сила тока мгновенно уменьшается до безопасного для человека и оборудования уровня.

В многоквартирных и частных домах заземление реализовано так, чтобы при коротком замыкании срабатывали автоматы защиты. Поэтому бытовым потребителям достаточно использовать надежные предохранители, как описано выше.

Выбирайте кабель достаточного сечения

Перед покупкой, обязательно рассчитайте вероятную максимальную нагрузку на линию. Сечение должно быть достаточным для безопасного пропускания тока в пиковые часы нагрузки, например, зимой когда включено отопление или в выходные, когда дома работает максимальное количество электропотребителей.

Оптимальное сечение на розеточные группы 2,5мм² и выше, а на освещение 1,5мм² или 0,5мм² на LED. Но лучше, сделайте точные расчеты максимальной мощности и уже по ним выбирайте сечение.

Учитывайте схему электропроводки в здании и на участке во время ремонта

Во время ремонта или земляных работ на участке важно не повредить проводку. Поэтому при сверлении или штроблении стен важно проверить участок с помощью тестера скрытой проводки. А перед выполнением земляных работ важно изучить схему проводки на участке.

Отрицательное воздействие КЗ для человека и его имущества

КЗ, в зависимости от места возникновения, приводит к пагубным последствиям для имущества и безопасности жизни человека. К таковым относят:

  • обгорание и выход из строя электрических приборов;
  • воспламенение электрической проводки;
  • снижение напряжения электросети (в промышленных условиях приводит к остановке работы предприятий);
  • падение эффективности работы систем электроснабжения;
  • возникновение электромагнитного воздействия приводит к нарушению функционирования коммуникаций, расположенных под землей.

Особенности расчёта

Расчёт токов трёхфазного оборудования производится с применением специальных формул.

Если расчёт тока трёхфазного короткого замыкания, необходимо сделать для электрических сетей напряжением до 1000 В, то необходимо учитывать следующие нюансы при проведении расчётов:

  1. Трёхфазная система должна считаться симметричной.
  2. Питание трансформатора принимается за неизменяемую величину, равную его номинальному значению.
  3. Момент возникновения КЗ принято считать при максимальном значении силы тока.
  4. ЭДС источников питания, удалённых на значительное расстояния от участка электрической сети, где происходит КЗ.

Также при вычислении параметров КЗ необходимо правильно посчитать результирующее сопротивление проводника, но делать это необходимо через приведение единого значения мощности.

Если производить расчёт сопротивления стандартными формулами известными из курса физики, то можно допустить ошибки, по причине неодинакового номинального напряжения в момент возникновения короткого замыкания для различных участков электрической цепи. Выбор такой базисной мощности позволяет значительно упростить расчёты, и значительно повысить их точность.

Напряжение, при вычислении тока короткого замыкания также принято выбирать не исходя из номинального значения, а с превышением данного показателя на 5%. Например для электрической сети 380 В, базисное напряжение для расчёта токов короткого замыкания составит 0,4 кВ.

Для сети переменного тока наприряжением 220 В, базисное напряжение будет равно 231 В.

Кто занимается вычислением КЗ

Расчёт КЗ, производится квалифицированными специалистами, которые не только производят необходимые вычисления, но и несут ответственность за дальнейшую эксплуатацию электрического оборудования.

Домашние электрики также могут осуществить данные вычисления, но только при наличии начальных знаний о природе электричества, свойствах проводников и о роли диэлектриков, в их надёжной изоляции друг от друга.

При этом, полученный результат значения короткого замыкания, перед проведением электротехнических работ, необходимо перепроверить самостоятельно, либо воспользоваться услугами специализированных фирм, которые осуществляют данные вычисления на платной основе.

Как рассчитать ток короткого замыкания используя специальные формулы, будет подробно описано далее.

Защита от КЗ

Для защиты от КЗ существуют различные устройства:

  • автоматические выключатели;
  • автоматические выключатели с автоматическим возвратом во включенное состояние;
  • УЗО;
  • плавкие предохранители;
  • «пробки»;
  • самовосстанавливающиеся предохранители.

В представленной схеме участвуют стабилитрон и диоды, защищающие светодиоды от воздействия обратных токов. За ограничение тока в системе защиты отвечают 2 резистора. Предохранитель должен быть самовосстанавливающегося типа, номиналы элементов должны подбираться индивидуально в зависимости от условий.

Эффективный способ защиты от представленного явления — применение реактора, ограничивающего ток. Он применяется в системе защиты электрических цепей, где величина КЗ может быть такой силы, с которой обычное оборудование не справится.

Ректор имеет вид катушки с сопротивлением индуктивного типа, подключенной к сети по последовательной схеме. Приемлемое функционирование цепи позволяет соблюдать уровень падения напряжения реактора около 4%. При образовании КЗ основная часть напряжения поступает на это устройство. Такое оборудование бывает масляного и бетонного типов. Каждый из них применяется в зависимости от типа электропроводки и питаемого ею оборудования.

Определение сопротивлений автоматических выключателей

Определяем активное сопротивление контактов по приложению 4 таблица 19 ГОСТ 28249-93:

  • для рубильника на ток 1000 А – rав1 = 0,12 мОм;
  • для автоматического выключателя на ток 200 А — rав2 = 0,60 мОм.

Рейтинг
( 2 оценки, среднее 5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]