Как произвести расчет ветрогенератора: формулы + практический пример расчета

Альтернативная энергия, получаемая от энергетических ветряных установок, вызывает в обществе высокий интерес. Подтверждений тому на уровне реальной бытовой практики множество.

Владельцы загородной недвижимости строят ветряки собственными руками и довольствуются полученным результатом, хотя эффект бывает и кратковременным. Причина — при сборке не был произведён расчёт ветрогенератора должным образом.

Согласитесь, не хотелось бы потратив время и средства на реализацию проекта, получить малоэффективную установку. Поэтому важно понять, как произвести расчет ветрогенератора, и по каким параметрам подобрать основные рабочие узлы ветряка.

Решению этих вопросов и посвящена статья. Теоретическая часть материала дополнена наглядными примерами и практичными рекомендациями по сборке ветрогенераторной установки.

Введение

Забота об окружающей среде и о собственном кошельке побудила светлые умы человечества к изобретению и внедрению новых методов производства энергии, источником, для которой, служили бы неисчерпаемые ресурсы: солнце, вода и ветер. Использование каждого такого источника имеет свои преимущества и недостатки, но наиболее доступной и эффективной считается энергия ветра.

Конечно, природа накладывает определённые ограничения на использование ветрогенераторов, и материальные затраты на выработку 1 кВт электричества от энергии солнца и ветра примерно сопоставимы. Но в северных широтах, особенно в прибрежных регионах, использование ветрогенераторов вне конкуренции.

Вопрос целесообразности установки упирается в среднюю скорость ветра по региону. Начиная с 4 м/с установка ветрогенератора считается целесообразной, а при 9-12 м/с он работает с максимальным КПД. Но мощность ветрогенератора зависит не только от скорости ветрового потока (схема 1), но и от диаметра ротора и площади лопастей (схема 2).

Расчёт катушек сколько поместится витков провода

Теперь когда нам известны размеры катушек тот можно подумать каким проводом мотать катушки и сколько витков поместится. Если магниты шириной 10мм, то статор должен быть по ширине 8 м, так-как расстояние между магнитами на противоположных дисках должно быть 10 мм. Но я хочу сделать статор толщиной 10 мм, а расстояние между магнитами получится тогда 12 мм. Статор толщиной 10 мм, и по 1мм это зазор между статором и магнитами.
Ширина борта катушки у меня получилась 14 мм, можно сделать и меньше, можно чуть больше уменьшив внутреннее отверстие катушки. Я выбрал оптимально 14 мм. Если мотать проводом диаметром 1 мм, то поместится ровно 14 витков по ширине борта катушки. Толщина статора 10 мм, значит и толщина катушки 10 мм, но так как провод начала катушки выходит сбоку, то он съедает 1мм, и остаётся 9 мм. Таким образом размеры под витки провода 14*9мм, это 126 витков.

Если провод будет например 1,5 мм в диаметре, то поместится (14:1.5=9.3), (9:1.5=6), (6*9=45) 45 витков. Думаю с этим понятно, есть площадь, а сколько витков поместится зависит от диаметра провода.

>

Выбор модели

Стоимость комплекта ветрогенератора, инвертора, мачты, ШАВРа — шкафа автоматического включения резерва, напрямую зависит от мощности и КПД.

Максимальная мощность кВтДиаметр ротора мВысота мачты
м
Номинальная скорость м/сНапряжение
Вт
0,552,56824
2,63,299120
6,56,41210240
11,281210240
22101812360

Как видим для полного или частичного обеспечения усадьбы электричеством необходимы генераторы большой мощности, установить которые самостоятельно довольно проблематично. В любом случае высокие капитальные вложения и необходимость производства работ по монтажу мачты с помощью спецтехники существенно снижают популярность ветровых энергетических систем для частного использования.

Существуют переносные ветрогенераторы малой мощности, которые можно взять с собой в путешествие. Эти модели компактны быстро монтируются на местности, не требуют особого ухода, и дают достаточно энергии, для комфортного времяпрепровождения на природе.

И хоть максимальная мощность такой модели всего 450 Вт, этого достаточно для освещения всего кемпинга и даёт возможность использовать бытовые электроприборы вдали от цивилизации.

Для средних и малых предприятий установка нескольких генерирующих ветровых станций могла бы дать существенную экономию в энергозатратах. Множество европейских фирм занимаются производством продукции такого типа.

Это сложные инженерные системы, требующие профилактики и обслуживания, но их номинальная мощность такова, что может перекрыть нужды всего производства. Для примера в Техасе на самой большой ветроэлектростанции в США всего 420 таких генераторов вырабатывают за год 735 мегаватт.

Расчёт и выбор контроллера заряда

Контроллер заряда АКБ необходим для ветряной энергетической установки любого типа, включая бытовую конструкцию.

Расчёт этого устройства сводится к подбору электрической схемы прибора, которая бы соответствовала расчётным параметрам ветровой системы.

Из тих параметров основными являются:

  • номинальное и максимальное напряжение генератора;
  • максимально возможная мощность генератора;
  • максимально возможный ток заряда АКБ;
  • напряжение на АКБ;
  • температура окружающего воздуха;
  • уровень влажности окружающей среды.

Исходя из представленных параметров, ведётся сборка контроллера заряда своими руками или подбор готового устройства.

Конечно, желательно подбирать (или собирать) устройство, схема которого обеспечивала бы функцию лёгкого старта в условиях течения слабых потоков воздуха. Контроллер, рассчитанный под эксплуатацию с батареями разного напряжения (12, 24, 48 вольт) тоже лишь приветствуется.

Наконец, при расчёте (подборе) схемы контроллера, рекомендуется не забывать о присутствии такой функции, как управление инвертором.

Виды ветрогенераторов

Принцип работы ветрогенераторов в большинстве случаев аналогичен. Но существует ряд разновидностей. Часто их различают по виду материалов, которые используются для изготовления роторных лопастей, их число, положение оси вращения, шаговый признак винта. Чтобы иметь понимание о работе, ветрогенератора, нужно вкратце рассмотреть эти виды.

Двухлопастной ветрогенератор

Трёхлопастной ветрогенератор

Многолопастной ветрогенератор

Помимо числа лопастей, ветрогенераторы отличаются материалами, их которых их делают. Лопасти могут быть жёсткими (металл или стеклопластик) или парусными. Последние менее практичны, но зато дёшево стоят. По шаговому признаку винта различают устройства с фиксированным и изменяемым шагом. Ветрогенераторы с фиксированным шагом являются более надёжными. Установки с изменяемым шагом вращения позволяют менять скорость, но их конструкция имеет большие габариты и требует дополнительных расходов монтаж и обслуживание.

Ветрогенератор с вертикальной осью вращения

  • Ветрогенератор Савониуса. Это несколько полуцилиндров полых внутри, которые закреплены на вертикальной оси. Здесь плюс заключается в том, что они могут вращаться вне зависимости от силы и направления ветра. Основной минус в том, что энергию ветра используется только на 1/3;
  • Геликоидный ротор. Этот вариант имеет закрученные лопасти, благодаря чему обеспечивается равномерное вращение. Это долговечный ветрогенератор, но сложный и дорогой;
  • Ротор Дарье. Система представляет собой конструкцию с двумя или более лопастями в форме плоских пластин. Ротор прост в изготовлении, но вырабатывает немного энергии. Для его запуска потребуется дополнительный механизм;
  • Многолопастные системы с вертикальной осью. Являются наиболее эффективными в плане выработки электроэнергии.

Можно подразделить ветрогенераторы на импортные и отечественные. Среди зарубежных достаточно много китайских производителей. Присутствует также продукция из США и ЕС. Без проблем можно найти и продукцию российских предприятий. Стоимость ветрогенераторов зависит от мощности, наличия дополнительных функциональных возможностей (например, солнечных модулей). Цены могут меняться от десятков до сотен тыс. р.

Устройство и принцип работы

Ветрогенератор работает при помощи силы ветра. Конструкция данного устройства должна включать следующие элементы:

  • турбинные лопасти или пропеллер;
  • турбина;
  • электрический генератор;
  • ось электрического генератора;
  • инвертор, в функции которого входит преобразование переменного тока в постоянный;
  • механизм, вращающий лопасти;
  • механизм, вращающий турбину;
  • аккумулятор;
  • мачта;
  • контроллер вращательных движений;
  • демпфер;
  • датчик ветра;
  • хвостовик ветряного датчика;
  • гондола и иные элементы.

У промышленных агрегатов предусмотрен силовой шкаф, защита от молнии, поворотный механизм, надежный фундамент, приспособление для тушения пожара, телекоммуникации.

Ветрогенератором принято считать устройство, которое преобразует ветряную энергию в электричество. Предшественниками современных агрегатов являются мельницы, что производят муку из зерна. Однако схема подключения и принцип работы генератора практически не поменялись.

  1. Благодаря силе ветра начинают вращаться лопасти, крутящий момент которых передается к валу генератора.
  2. Вращение ротора создает трехфазный переменный ток.
  3. Через контроллер переменный ток отправляется к аккумуляторной батарее. Аккумулятор необходим для того, чтобы создать стабильную работу ветрогенератора. Если ветер присутствует, то агрегат заряжает батарею.
  4. Для защиты от урагана в ветряной системе генерации тока имеются элементы для увода ветроколеса от ветра. Происходит это складыванием хвоста или торможением колеса при помощи электрического тормоза.
  5. Чтобы подзарядить аккумулятор, потребуется установить контролер. В функции последнего входит отслеживание зарядки АКБ для предотвращения ее поломки. При надобности данное приспособление может сбросить лишнюю энергию на балласт.
  6. Аккумуляторы имеют постоянное невысокое напряжение, однако к потребителю оно должно доходить силой 220 Вольт. По этой причине в ветрогенераторы устанавливают инверторы. Последние способны преобразовывать переменный ток в постоянный, увеличивая показатель его силы до 220 Вольт. Если инвертор не будет установлен, то потребуется использовать только те приборы, которые рассчитаны на низкое напряжение.
  7. Ток в преобразованном виде отправляется к потребителю для питания отопительных батарей, освещения помещений, работы бытовой техники.

Какая всё-таки нужна мощность?

Прежде чем покупать ветряную электростанцию, следует полностью определиться с величиной пиковой суммарной мощности, потребляемой всей бытовой техникой, приборами и электроустановками в доме, всем, что может быть включено в сеть одновременно

И тут очень важно, будет ли ВЭС использоваться как дополнительный или резервный источник энергии, либо вы желаете перевести ваше хозяйство на полностью автономное электроснабжение

В первом случае надо всего лишь знать тот минимум потребления энергии, который необходим в случае отключения внешнего электроснабжения, и покупать установку соответствующей мощности. Для полной энергетической автономности приходится приобретать ветрогенераторы повышенной мощности, которые могут обеспечить общее потребление всей домашней техники. Конечно, это недёшево, но зато вам больше не понадобится покупать электроэнергию на стороне.

Подводя итоги вышесказанного: выгоден ли ветрогенератор

Приведенные результаты наглядно доказывают окупаемость расходов на приобретение и запуск ветрогенератора. Тем более что:

  • Стоимость киловатта постоянно растет вследствие инфляции.
  • При использовании ветряка объект становится энергонезависимым.
  • «Излишки» выработанной электроэнергии могут накапливаться и храниться на случай безветренной погоды благодаря системе бесперебойного питания.
  • Немало объектов, удаленных от сети централизованного энергоснабжения, вынуждены существовать в условиях отсутствия электричества, поскольку их подключение нерентабельно.

Итак, ветрогенератор выгоден. Его приобретение для энергоемких потребителей без электроснабжения экономически целесообразно. Гостиница за городом, сельскохозяйственная ферма или животноводческое предприятие, коттеджный поселок – в любом случае расходы на подключение альтернативного источника электроснабжения будут оправданы. Остается только подобрать подходящую модель ветряка и установить ее, руководствуясь рекомендациями компании-производителя. Мощность устройства должна соответствовать средней скорости ветра в вашем регионе. Уточнить ее можно по специальной карте ветров или по данным местной метеостанции.

Обратите внимание: для ветрогенераторов китайских производителей номинальная мощность устройства рассчитана с учетом скорости ветра на уровне 50-70% от уровня земли. Установить ветряк на такой высоте проблематично

Слишком высокая мачта стоит дорого, а к ее прочности предъявляются строгие требования. Кроме того, на указанной высоте порывы ветра образуют сильные вихревые потоки. Они не только замедляют работу ветрогенератора, но и могут стать причиной поломки лопастей. Решение – установка устройства на высоте 30-35м, что обеспечит доступ к сильному ветру, но исключит поломку ветряка.

Уход за ветряком

В качестве регулярного ухода за конструкцией проводятся следующие процедуры:

  • смазывание движущихся частей (не реже 2 раз в году)
  • подкручивание болтов и электрических соединений
  • проверка механизмов на ржавчину и ослабленные растяжки
  • контроль поломки лопастей

Наиболее частым повреждением ветряка является отрыв лопасти. Зимой на них появляется корка льда. Частая их очистка продлит срок службы конструкции. Покраска деталей производится по необходимости. Раз в год нужно полностью осматривать конструкцию на предмет повреждений.

Самодельный ветряк сильно отличается по значениям мощности от заводских изделий. Это объясняется неточными расчетами. Горизонтальный ветряк при теоретической мощности 101 Вт будет выдавать лишь 90, а вертикальный при 69 Вт – около 60.

Таким образом, сборка вертикального ветряка является довольно простым вариантом обеспечения жилого дома электроэнергией. Это объясняется простотой сборки конструкции, дешевизной проекта и высокой эффективностью работы устройства. К тому же, обслуживание он требует минимальное, а электричество вырабатывает постоянно. О том, как сделать ветряк самостоятельно, представлено на видео:

Выводы и полезное видео по теме

Как происходит анализ исходных данных и как применяются формулы, представлено на видео:

Пользоваться расчётными данными необходимо в любом случае. Будь то промышленная энергетическая установка или изготовленная под бытовые условия, расчёт каждого узла всегда несёт за собой максимум эффективности устройства и главное – безопасность эксплуатации.

Предварительно выполненные расчёты определяют целесообразность реализации проекта, помогают установить, насколько затратным или экономным получается проект.

Имеете опыт в решении подобных задач? Или остались вопросы по теме? Пожалуйста, поделитесь своими навыками расчета и проектирования ветрогенератора. Оставлять комментарии и задавать вопросы можно в форме, расположенной ниже.

Сколько энергии таится в ветре?

Для начала, приблизительно оценим ту мощь, которую хотим использовать в своих целях. Рассчитаем энергию, выделяемую потоком воздуха с плотностью ? и скоростью V, оказывающим давление на площадь S по простой формуле:

P = V3•?•S

Если принять плотность воздуха ?=1,25 кг/м3, скорость ветра V=5 м/с, а площадь сечения турбины радиусом 2 метра S=12,5 м2, в результате получится 1953 Вт, т. е. чуть меньше 2 кВт. Однако из этой внушительной мощности даже самые совершенные сегодня ветряные электростанции (ВЭС) способны преобразовывать в электрическую энергию лишь сравнительно небольшую долю.

Наибольшие потери связаны с завихрениями воздушного потока в турбине и огибанием лопастей ветряка. Они учитываются коэффициентом преобразования ветровой энергии ?, не превышающим в современных установках 0,4 – 0,5. Учитывая коэффициенты полезного действия редуктора и генератора, принимаем их равными соответственно 0,9 и 0,85. И вычисленное по уточнённой формуле значение выходной мощности той же энергоустановки:

P = ? • ?•R2 • V3 • ? • КПД ред • КПД ген = 0,45 • 12,5 • 125 • 1,25 • 0,9 • 0,85 = 672 Вт,

что составляет примерно треть от всей задействованной энергии ветра. В настоящее время суммарный КПД существующих ветрогенераторов не превышает 40%. Этот примерный расчет ветрогенератора показывает, что получается не так уж много энергии на выходе, особенно в сравнении с современными портативными дизельными электростанциями.

Альтернативная энергетика

Ветровая нагрузка может принести и пользу, например, преобразуя силу ветра в ветрогенераторах. Так, на скорости ветра V = 10 м/сек, при диаметре круга в 1 метр, ветряк обладает лопастями d = 1,13 м и выдаёт порядка 200–250 Вт полезной мощности. Электроплуг, потребляя такое количество энергии, сможет вспахать за один час порядка полсотки (50м²) земли на приусадебном участке.

Если применить большие размеры ветрогенератора, – до 3 метров, и средней скорости воздушного потока 5 м/сек, можно получить 1–1,5 кВт мощности, что полностью обеспечит небольшой загородный дом бесплатным электричеством. При внедрении так называемого «зелёного» тарифа, срок окупаемости оборудования сократится до 3–7 лет и, в дальнейшем, может приносить чистую прибыль.

Все ветряные генераторы могут быть классифицированы по нескольким принципам:

  1. Оси вращения.
  2. Количеству лопастей.
  3. Материалу, из которого выполнены лопасти.
  4. Шагу винта.

Классификация по оси вращения:

  1. Горизонтальные.
  2. Вертикальные.

Схема работы

Наибольшую популярность получили горизонтальные ветрогенераторы, ось вращения турбины которых расположена параллельно земле. Этот тип получил название «ветряной мельницы», лопасти которой вращаются против ветра. Конструкция горизонтальных ветрогенераторов предусматривает автоматический поворот головной части (в поисках ветра), а также поворот лопастей, для использования ветра небольшой силы.

Вертикальные ветрогенераторы гораздо менее эффективны. Лопасти такой турбины вращаются параллельно поверхности земли при любом направлении и силе ветра. Так как при любом направлении ветра половина лопастей ветроколеса всегда вращается против него, ветряк теряет половину своей мощности, что значительно снижает энергоэффективность установки. Однако ВЭУ такого типа проще в установке и обслуживании, поскольку ее редуктор и генератор размещаются на земле. Недостатками вертикального генератора являются: дорогостоящий монтаж, значительные эксплуатационные затраты, а также то, что для установки такой ВЭУ требуется немало места.

Ветрогенераторы горизонтального типа больше подходят для производства электроэнергии в промышленных масштабах, их используют в случае создания системы ветряных электростанций. Вертикальные часто применяют для потребностей небольших частных хозяйств.

Классификация по количеству лопастей:

  1. Двухлопастные.
  2. Трехлопастные.
  3. Многолопастные (50 и более лопастей).

По количеству лопастей все установки делятся на двух— и трех- и многолопастные (50 и более лопастей). Для выработки необходимого количества электроэнергии требуется не факт вращения, а выход на необходимое количество оборотов.

Каждая лопасть (дополнительная) увеличивает общее сопротивление ветрового колеса, что делает выход на рабочие обороты генератора более сложным. Таким образом, многолопастные установки действительно начинают вращаться при меньших скоростях ветра, однако они применяются в том случае, когда имеет значение сам факт вращения, как, например, при перекачке воды. Для выработки электроэнергии ветрогенераторы с большим количеством лопастей практически не применяются. К тому же на них не рекомендуется установка редуктора, потому что это усложняет конструкцию, а также делает ее менее надежной.

Классификация по материалам лопастей:

  1. Ветрогенераторы с жесткими лопастями.
  2. Парусные ветрогенераторы.

Следует отметить, что парусные лопасти значительно проще в изготовлении, а потому менее затратны, нежели жесткие металлические или стеклопластиковые. Однако подобная экономия может обернуться непредвиденными расходами. Если диаметр ветроколеса составляет 3 м, то при оборотах генератора 400-600 об/мин кончик лопасти достигает скорости 500 км/ч. С учетом того обстоятельства, что в воздухе содержится песок и пыль, этот факт является серьезным испытанием даже для жестких лопастей, которые в условиях стабильной эксплуатации требуют ежегодной замены антикоррозийной пленки, нанесенной на концы лопастей. Если не обновлять антикоррозионную пленку, то жесткая лопасть постепенно начнет терять свои рабочие характеристики.

Лопасти парусного типа требуют замены не раз в год, а непосредственно после возникновения первого серьезного ветра. Поэтому автономное электроснабжение, требующее значительной надежности компонентов системы, не рассматривает применение лопастей парусного типа.

Классификация по шагу винта:

  1. Фиксированный шаг винта.
  2. Изменяемый шаг винта.

Безусловно, изменяемый шаг винта увеличивает диапазон эффективных рабочих скоростей ветрогенератора. Однако внедрение данного механизма ведет к усложнению лопастной конструкции, к увеличению веса ветрового колеса, а также снижает общую надежность ВЭУ. Следствием этого является необходимость усиления конструкции, что приводит к значительному удорожанию системы не только при приобретении, но и при эксплуатации.

Расчёт лопастей

На КПД ветрового генератора оказывает значительное влияние аэродинамические характеристики устанавливаемых на него лопастей, поэтому перед их изготовлением, производятся специальные расчеты. В результате проведения таких расчетов, изделия проверяются на соответствие полученных результатов требуемым параметрам и прочим требованиям, предъявляемым к ним.

Ветер оказывает воздействие на лопасти генератора и эта сила, или иными словами – напор, действует по направлению воздушного потока. В свою очередь, перпендикулярно к силе напора действует подъемная сила, именно которая и работает в ветровых генераторах с горизонтальной осью вращения (показано на ниже приведенной схеме).

При расчете геометрических размеров лопасти определяется ширина ее хорды и угол ее установки, на схеме β, на всей протяженности элемента устройства.

При проведении расчетов используется метод конечных элементов, суть которого заключается в том, что лопасть рассматривается как совокупность отдельных элементов, входящих в ее состав.

Сила напора ветровых потоков направлена против движения лопасти (на схеме названа «истинным ветром») и на диаграмме разложена на вектора — «скорость ветра» и «окружная скорость». Окружная скорость обеспечивает движение лопастей в плоскости вращения, при этом подъемная сила оказывает воздействие именно в этом направлении.

Сила напора и подъемная сила, определяют производительность ветрового генератора (формула приведена в разделе «Основные характеристики») и зависят от коэффициента подъемной силы, а также коэффициента лобового сопротивления. Кроме этого, данные коэффициенты, находятся в прямой зависимости от геометрического профиля лопасти и угла между линией ее хорды и направлением воздушного потока.

Линия хорды– самая длинная линия при рассмотрении ее сечения, от носка лопасти до ее задней кромки.

Угол между линией хорды и направлением воздушного потока (набегающий поток) называется углом атаки (угол α).

Коэффициенты подъемной силы и лобового сопротивления определены экспериментальным путем и занесены в специальные журналы (атласы). График зависимости подъемной силы от угла атаки (формы лопасти), выглядит следующим образом:

Наилучшие аэродинамические показатели имеют подобные элементы, обладающие углом α (углом атаки) равным значению – 5.

Ширина лопасти (размер «b») — это также важный параметр, требующий соответствующего расчета. Наиболее важной частью является наружная, что обусловлено кольцом ветра и площадью охвата, с которым эта часть устройства работает.

Расчет выполняется по формуле:

где:

R – наружный радиус вращения;

r – внутренний радиус вращения, без учета комля и и прикомлевой части;

Z – быстроходность кончика.

i – количество лопастей.

Из данной формулы видно, что:

  • Ширина обратно пропорциональна внутреннему радиусу ее вращения, и что, в свою очередь говорит о том, что наиболее оптимальной формой, является форма треугольника;
  • Ветровой генератор с малым количеством лопастей должен иметь более широкие лопасти;
  • Увеличение быстроходности снижает их ширину.

Быстроходность с показателем «5», является наиболее оптимальной, что позволяет снизить потери установки при максимальном количестве лопастей. На приведенном ниже рисунке, указано, как количество однотипных элементов, установленных на ветровом генераторе, влияет на его быстроходность:

Высокая быстроходность позволяет увеличить КПД ветровых генераторов, при этом негативными факторами, при эксплуатации подобных устройств, будут:

  • Повышенный уровень производимого шума;
  • Вибрация, при использовании одной или двух лопастей;
  • Повышенная эрозия кромок;
  • Трудности старта при малых потоках ветра.

Для снижения уровня шума кончики лопастей делают заостренной формы, а для облегчения старта, основания изготавливаются несколько шире, чем размер «b».

Расчёт винтов ветряных установок

При конструировании ветряка обычно применяются два вида винтов:

  1. Вращение в горизонтальной плоскости (крыльчатые).
  2. Вращение в вертикальной плоскости (ротор Савониуса, ротор Дарье).

Конструкции винтов с вращением в любой из плоскостей можно рассчитать при помощи формулы:

Z= L*W/60/V

Для этой формулы: Z – степень быстроходности (тихоходности) винта; L – размер длины описываемой лопастями окружности; W – скорость (частота) вращения винта; V – скорость потока воздуха.

Такой выглядит конструкция винта под названием «Ротор Дарье». Этот вариант пропеллера считается эффективным при изготовлении ветрогенераторов небольшой мощности и размеров. Расчёт винта имеет некоторые особенности

Отталкиваясь от этой формулы, можно легко рассчитать число оборотов W – скорость вращения. А рабочее соотношение оборотов и скорости ветра можно найти в таблицах, которые доступны в сети. Например, для винта с двумя лопастями и Z=5, справедливо следующее соотношение:

Число лопастейСтепень быстроходностиСкорость ветра м/с
25330

Также одним из важных показателей винта ветряка является шаг. Этот параметр можно определить, если воспользоваться формулой:

H=2πR* tg α

Здесь: 2π – константа (2*3.14); R – радиус, описываемый лопастью; tg α – угол сечения.

Подбор генераторов для ветряков

Имея расчётное значение числа оборотов винта (W), полученное по вышеописанной методике, можно уже подбирать (изготавливать) соответствующий генератор. Например, при степени быстроходности Z=5, количестве лопастей равном 2 и частоте оборотов 330 об/мин. при скорости ветра 8 м/с., мощность генератора приблизительно должна составлять 300 Вт.

При таких параметрах подходящим выбором в качестве генератора для бытовой ветряной электростанции может стать мотор, который используется в конструкциях современных электровелосипедов. Традиционное наименование детали – веломотор (производство КНР).

Так выглядит электрический веломотор, на базе которого предлагается делать генератор для домашнего ветряка. Конструкция веломотора идеально подходит для внедрения практически без расчётов и доработок. Однако мощность их невелика

Характеристики электрического веломотора примерно следующие:

ПараметрЗначения
Напряжение, В24
Мощность, Вт250-300
Частота вращения, об/мин.200-250
Крутящий момент, Нм25

Положительная особенность веломоторов в том, что их практически не нужно переделывать. Они конструктивно разрабатывались как электродвигатели с низкими оборотами и успешно могут применяться под ветрогенераторы.

Расчет мощности ветрогенератора

Самостоятельное изготовление ветряка также нуждается в предварительном расчете. Никому не хочется потратить время и материалы на изготовление неведомо чего, хочется иметь представление о возможностях и предполагаемой мощности установки заранее. Практика показывает, что ожидания и реальность между собой соотносятся слабо, установки, созданные на основе приблизительных прикидок или предположений, не подкрепленных точным расчетами, выдают слабые результаты.

Поэтому обычно используются упрощенные способы расчетов, дающие достаточно близкие к истине результаты и не требующие использования большого количества данных.

Как произвести?

Для расчета ветрогенератора надо произвести следующие действия:

  • определить потребность дома в электроэнергии. Для этого необходимо подсчитать суммарную мощность всех приборов, аппаратуры, освещения и прочих потребителей. Полученная сумма покажет величину энергии, необходимой для питания дома
  • полученное значение необходимо увеличить на 15-20 %, чтобы иметь некоторый запас мощности на всякий случай. В том, что этот запас нужен, сомневаться не следует. Наоборот, он может оказаться недостаточным, хотя, чаще всего, энергия будет использоваться не полностью
  • зная необходимую мощность, можно прикинуть, какой генератор может быть использован или изготовлен для решения поставленных задач. От возможностей генератора зависит конечный результат использования ветряка, если они не удовлетворяют потребностям дома, то придется либо менять устройство, либо строить дополнительный комплект
  • расчет ветроколеса. Собственно, этот момент и является самым сложным и спорным во всей процедуре. Используются формулы определения мощности потока

Для примера рассмотрим расчет простого варианта. Формула выглядит следующим образом:

Где P — мощность потока.

K — коэффициент использования энергии ветра (величина, по своей сути близкая к КПД) принимается в пределах 0,2-0,5.

R — плотность воздуха. Имеет разные значения, для простоты примем равную 1,2 кг/м 3 .

V — скорость ветра.

S — площадь покрытия ветроколеса (покрываемая вращающимися лопастями).

Считаем: при радиусе ветроколеса 1 м и скорости ветра 4 м/с

P = 0,3 × 1,2 × 64 × 1,57= 36,2 Вт

Результат показывает, что мощность потока равняется 36 Вт. Этого очень мало, но и метровая крыльчатка слишком мала. На практике используются ветроколеса с размахом лопастей от 3-4 метров, иначе производительность будет слишком низкой.

Что нужно учитывать?

При расчете ветряка следует учитывать особенности конструкции ротора. Существуют крыльчатки с вертикальным и горизонтальным типом вращения, имеющие разную эффективность и производительность. Наиболее эффективными считаются горизонтальные конструкции, но они имеют потребности в высоких точках установки.

Не менее важным будет обеспечение достаточной мощности крыльчатки для вращения ротора генератора. Устройства с тугими роторами, позволяющие получать хороший выход энергии, требуют немалой мощности на валу, что может обеспечить только крыльчатка с большой площадью и диаметром лопастей.

Не менее важным моментом являются параметры источника вращения — ветра. Перед производством расчетов следует как можно подробнее узнать о силе и преобладающих направлениях ветра в данной местности. Учесть возможность ураганов или шквалистых порывов, узнать, с какой частотой они могут возникать. Неожиданное возрастание скорости потока опасно разрушением ветряка и выводом из строя преобразующей электроники.

Расчёт инвертора под домашний ветряк

Сразу следует оговориться: если конструкция домашней энергетической ветроустановки содержит один аккумулятор на 12 вольт, смысл ставить инвертор на такую систему полностью исключается.

В среднем потребляемая мощность бытового хозяйства составляет не менее 4 кВт на пиковых нагрузках. Отсюда вывод: количество аккумуляторных батарей для такой мощности должно составлять не менее 10 штук и желательно под напряжение 24 вольта. На такое количество АКБ уже есть смысл устанавливать инвертор.

Однако чтобы обеспечить полностью энергией 10 аккумуляторов с напряжением по 24 Вт на каждый и стабильно поддерживать их заряд, потребуется ветряк мощностью не менее 2-3 кВт. Очевидно, для бытовых простеньких конструкций такую мощность не потянуть.

Тем не менее, рассчитать мощность инвертора можно следующим образом:

  1. Суммировать мощность всех потребителей.
  2. Определить время потребления.
  3. Определить пиковую нагрузку.

На конкретном примере это будет выглядеть так.

Пусть в качестве нагрузки есть бытовые электроприборы: лампы освещения – 3 шт. по 40 Вт, телевизионный приёмник – 120 Вт, компактный холодильник 200 Вт. Суммируем мощность: 3*40+120+200 и получаем на выходе 440 Вт.

Определим мощность потребителей для среднего периода времени в 4 часа: 440*4=1760 Вт. Исходя из полученного значения мощности по времени потребления, логичным видится подбор инвертора из числа таких приборов с выходной мощностью от 2 кВт.

Опираясь на это значение, рассчитывается вольт-амперная характеристика требуемого прибора: 2000*0,6=1200 В/А.

Классическая схема воспроизводства и распределения энергии, полученной от ветряного генератора бытового типа. Однако чтобы обеспечить долговременной энергией такое количество приборов, нужна достаточно мощная установка (+)

Реально нагрузка от домашнего хозяйства на семью в три человека, где имеется полноценное оснащение бытовой техникой, будет выше рассчитанной в примере. Обычно и по времени подключения нагрузки параметр превышает взятые 4 часа. Соответственно, инвертор ветряной энергосистемы потребуется более мощный.

Предварительный расчет ветряка пригодится не только для его самостоятельной сборки. Определиться с оптимальными параметрами необходимо и при выборе готового ветрогенератора.

Ветрогенератор вертикальный

Рассмотрим вертикальный ветрогенератор внимательнее. Существует масса вариантов конструкции, из которых большинство является лишь проектом, не производится и в продаже не имеется. Недолгий поиск в сети выдает следующую картину: при наличии эффективных и производительных опытных образцов, производятся только разные варианты ортогональных роторов. Стоимость значительно различается — китайские модели заметно дешевле, хотя заявленные показатели вполне соответствуют европейским или американским установкам.

Учитывая реальную выработку 10 % от номинала, рассмотрим установки мощностью 20 кВт. Ветрогенератор Falcon Euro мощностью 20 кВт стоит 1050000 руб. В день он сможет произвести около 48 кВт. Простейший расчет показывает, что за 20 лет службы он произведет 350400 кВт энергии. Разделив цену комплекта на количество энергии получаем цену 1 кВт около 3 рублей. Эта цена расчетная, на практике затраты возрастут, а выработка снизится.

Если использовать более доступные китайские модели, то возникает вопрос о качестве. Насколько оборудование сможет выполнять свои функции в условиях сильных морозов, каков срок службы? Ответы на эти вопросы может дать только практика, поэтому использование таких устройств ограничено. Оптимальным вариантом остается самостоятельное изготовление вертикальных конструкций, позволяющее использовать наиболее производительные проекты, существенно снизить затраты на материалы и монтаж.

Коэффициент использования энергии ветра

Следует отметить, что для ветрогенераторов существует свой, специфический показатель эффективности — КИЭВ (Коэффициент Использования Энергии Ветра). Он обозначает, какой процент воздушного потока, проходящего в рабочем сечении, непосредственно воздействует на лопасти ветряка. Или, если говорить более наукообразно, он демонстрирует отношение мощности, полученной на валу устройства, к мощности потока, воздействующего на ветровую поверхность рабочего колеса. Таким образом, КИЭВ является специфическим, применительным только для ветрогенераторов, аналогом КПД.

На сегодняшний день значения КИЭВ от изначального 10-15 % (показатели старинных ветряных мельниц) возросли до 356-40 %. Это связано с усовершенствованием конструкции ветряков и появлением новых, более эффективных материалов и технических деталей, узлов, способствующих уменьшению потерь на трение или прочие тонкие эффекты.

Теоретические исследования определили максимальный коэффициент использования энергии ветра равным 0,593.

Где расположить ветрогенераторную станцию?

Конечно, лучше всего предоставить выбор места расположения ВЭС специалистам. Но существуют 3 основных правила, которых стоит придерживаться:

  • Исключить завихрения воздушного потока вблизи турбины. Высота расположения ветряной турбины на мачте должна превосходить на 10 м все высотные объекты в пределах 100 м вокруг. Это касается, например, и столбов, и проводов ЛЭП.
  • Использовать природные преимущества рельефа местности. Дело в том, что ущелья и каньоны являются естественными аэродинамическими трубами и в местах их сужения скорость ветра существенно возрастает.
  • Располагать ВЭС на максимально открытых участках, таких как поле, побережье водоёма или вершина холма.

Ветряки для дома своими руками: обзор конструкций

Как вы уже поняли, самая первая часть, которая воспринимает энергию ветра — это ветряное колесо. Без него не обходится ни одна схема ветряка для дома.

Его можно выполнить:

  • с вертикальной осью вращения;
  • или горизонтальной.

Вертикальный ветрогенератор

Покажу фотографией одну из легких для изготовления конструкций, сделанную из обычной стальной бочки.

Вот такой вертикальный ветрогенератор, изготовленный своими руками, да еще расположенный над самой землей в окружении застроек и растений, не сможет развить нормальных оборотов для выработки достаточного количества электроэнергии, чтобы питать частный дом.

Он сможет выполнять только какие-то единичные задачи для маломощного оборудования. Причем небольшая скорость вращения его ротора потребует обязательного использования повышающего редуктора, а это дополнительные потери энергии.

Такие конструкции были популярны в начале прошлого века на пароходах. Водяное колесо, расположенное своими лопастями вдоль направления движения судна, обеспечивало его движение.

Сейчас это раритет, утративший свою актуальность. В авиации такая конструкция не то что не прижилась, а даже не рассматривалась.

Ротор Онипко

Из тихоходных конструкций ветряных колес сейчас через интернет массово распространяют ротор Онипко. Рекламщики показывают его вращение даже при очень слабом ветре.

Однако к этой разработке у меня почему-то тоже критическое отношение, хотя повторить ее своими руками не так уж и сложно. Восторженных отзывов среди покупателей не нашел, как и научных расчетов экономической целесообразности ее использования.

Если кто-то из читателей сможет меня разубедить в этом мнении, то буду признателен.

Горизонтальный ветрогенератор

С самого начала двигатели самолетов стали применять винт, прогоняющий поток воздуха вдоль корпуса самолета. Его форму и конструкцию выбирают так, чтобы использовать дополнительно к активной силе давления реактивную составляющую.

По этому принципу работает любой горизонтальный ветрогенератор, который делают промышленным способом или своими руками. Пример самодельной конструкции показываю фотографией.

По принципу использования энергии ветра это более эффективная конструкция, а по исполнению для обеспечения бытовых вопросов снабжения электроэнергией — маломощная.

Небольшой электродвигатель, ротор которого раскручивает ветряк, может даже при оптимальном давлении и силе ветра, выработать в качестве генератора только малую мощность. На нее можно подключить слабенькую светодиодную лампочку.

Подумайте сами, нужно ли собирать такой флюгер с подсветкой или не стоит. С другими задачи подобная конструкция не справится. Хотя ее еще можно использовать для отпугивания кротов на участке. Они очень не любят шумы, сопровождаемые вращением металлических частей.

Для того, чтобы полноценно пользоваться электроэнергией, получаемой от ветра, рабочее колесо ветрогенератора должно иметь соответствующие потребляемой мощности размеры. Рассчитывайте примерно на пятиметровый диаметр.

При его создании вы столкнетесь с технической трудностью: вам придется точно выдержать балансировку больших деталей. Центр масс должен постоянно находиться в средней точке оси вращения.

Это сведет к минимуму биения подшипников и раскачивание конструкции, расположенной на большой высоте. Однако выполнить подобную балансировку не так уж просто.

Как установить ветрогенератор: надежная схема мачты для крепления на высоте

Вес рабочего колеса для нормального получения электрической энергии получается довольно приличным. На простой стойке его не установить.

Потребуется создавать прочный бетонный фундамент под металлическую мачту и анкерные болты оттяжек. Иначе вся собранная с большим трудом конструкция может рухнуть в любой неподходящий момент времени.

Стойка для ветрогенератора, поднятого на высоту, может быть выполнена:

  1. в виде сборной мачты, собранной из секций с раскосами;
  2. или конусной трубчатой опорой.

Обе схемы потребуют усиления от опрокидывания за счет создания нескольких ярусов оттяжек из тросов, которые необходимы для удержания мачты при шквальных порывах ветра. Их придется надежно крепить к стопорам и анкерам.

Из личного неудачного опыта: во время пользования аналоговым телевидением у меня работала антенна «Паутинка» с диаметром обруча 2м. Она располагалась на высоте 8 метров, была закреплена на деревянном шесте с двумя уровнями оттяжек. Шквальные порывы ветра ее раскачали так, что стойка развалилась.

Современное цифровое телевидение, к счастью, требует использования антенн значительно меньших размеров. Их не только просто делать своими руками, но и крепить не так уж сложно.

Как сделать мачту для ветряка

Сразу обратите внимание на создание прочной, безаварийной конструкции. Иначе просто повторите печальный опыт работников «ЯнтарьЭнерго», у которых во время шторма произошла авария: многотонная мачта рухнула, а осколки от лопастей разлетелись по всей округе.

Устройство мачты потребует расчета количества материалов, необходимых для создания сооружения из стального уголка различного сечения. Форма и габариты выбираются по местным условиям.

Ее делают из трех или четырех вертикальных стоек. Каждая из них снизу монтируется на упор. Вверху мачты создается площадка для установки ветряка.

Поскольку длина уголков ограничена, то мачту собирают из нескольких секций. Жесткость общему креплению придают боковые ребра, крепящиеся через раскосы.

Обязательным элементом фундамента являются закладные металлические элементы. Они будут использоваться для крепежа деталей. Придется позаботиться о сварке и соединительных болтах.

Не стоит пренебрегать дополнительными оттяжками.

Как сделать опору из труб

Телескопическую конструкцию из стальных труб соответствующего профиля собрать проще, но ее следует более тщательно рассчитать на прочность. Изгибающий момент, создаваемый тяжелой верхушкой при штормовом ветре не должен превысить критического значения.

При этом возникнут сложности с профилактическим обслуживанием, осмотром и ремонтом собранной воздушной электростанции. Если по мачте можно подняться на высоту как по лестнице, то по трубе это сделать проблематично. Да и работать наверху очень опасно.

Поэтому сразу необходимо продумать вариант безопасного опускания оборудования на землю и доступного способа его подъема. Это позволяет выполнить одна из двух схем с:

  1. Поворотной осью на основной опоре.
  2. Упорным рычагом на нижней части опорной стойки.

В первом случае создается прочный фундамент для установки основной опоры. На ее оси вращения крепится сваренная трубная конструкция с ветряком и полиспастной системой на стальных тросах.

Снизу трубы расположен противовес, облегчающий работу по подъему и опусканию с помощью ручной лебедки.

На картинке не показаны страховочные тросы поясов оттяжек. Они просто свисают со своих креплений вниз на землю при подъеме и опускании мачты, а к стационарным забетонированным кольям крепятся для постоянной работы.

Схема установки и опускания ветряка по второму варианту приведена ниже.

Мачту и расположенный под прямым углом к ней упорный рычаг с противовесом, усиленный ребром жесткости, поворачивают в вертикальном направлении лебедкой с полиспастной системой.

Ось вращения созданной конструкции находится в вершине прямого угла и закреплена в направляющих, вмонтированных в фундамент. Троса оттяжек при подъеме или опускании мачты снимают со стационарных креплений на земле. Они могут использоваться в качестве страховочных фал.

Ветрогенератор: устройство и принцип работы электрической схемы простыми словами

Промышленные ветряные электростанции спроектированы так, что способны сразу выдавать электрическую энергию в сеть потребителям. Своими руками так сделать не получится.

При выборе генератора, который будет раскручивать ветряное колесо, используют принцип обратимости электрических машин. К электродвигателю прикладывают крутящий момент и обеспечивают возбуждение обмоток статора.

Однако, идея раскручивать ротор трехфазного асинхронного электродвигателя в качестве генератора для получения электрического тока напряжением 220/380 вольт реализуется от двигателей внутреннего сгорания, напора воды, но не ветра.

Общая конструкция генератора с ротором станет иметь большой вес, а иначе обеспечить высокие обороты вала не получится.

Для небольших мощностей можно:

  • использовать автомобильный генератор, который выдает 12/24 вольта;
  • применить мотор колесо от электробайка;
  • собрать конструкцию из неодимовых магнитов с катушками из медной проволоки.

Также за основу можно взять ветряк, продаваемый в Китае. Но ему необходимо сразу провести ревизию: обратить внимание на качество монтажа обмоток, состояние подшипников, прочность лопастей, общую балансировку ротора.

Придется настроиться на то, что величина выходного напряжения генератора будет сильно меняться в зависимости от скорости ветра. Поэтому в качестве промежуточного звена используют аккумуляторы.

Их зарядку необходимо возложить на контроллер.

Бытовые приборы сети 220 вольт должны питаться переменным током от специального преобразователя — инвертора. Простейшая схема домашней ветряной электростанции имеет следующий вид.

Ее можно значительно упростить потому, что бытовая цифровая электроника: компьютеры, телевизоры, телефоны работают от постоянного тока блоков питания 12 вольт.

Если их исключить из работы и запитать цифровое оборудование непосредственно от аккумуляторов, то потери электрической энергии сократятся за счет отмены двойного преобразования в инверторе и блоках.

Поэтому рекомендую сделать отдельные розетки на 12 вольт, запитать их сразу от аккумуляторов.

Внутри электрической схемы придется соблюдать такой же баланс мощностей, как и в механической конструкции. Каждая подключенная нагрузка должна соответствовать энергетическим характеристикам вышестоящего источника.

Бытовые приборы 220 вольт не должны перегружать инвертор. Иначе он будет отключаться от встроенной защиты, а при ее неисправности просто сгорит. По этому же принципу работают аккумуляторные батареи, силовые контакты контроллера, да и сам генератор.

Защита автоматическим выключателем домашней ветряной установки должна быть выполнена в обязательном порядке.

Для этого его необходимо правильно выбрать строго по научным рекомендациям, проверить и наладить.

Случайную перегрузку, а тем более появление тока короткого замыкания предусмотреть невозможно. Поэтому этот модуль обязательно устанавливают в качестве основной защиты.

Схема подключения аккумуляторов, инвертора и контроллера для ветрогенератора практически ничем не отличается от той, что используется на гелиостанциях со световыми панелями.

Поэтому сразу напрашивается разумный вывод: собирать комбинированную домашнюю электростанцию, работающую от энергии ветра и солнца одновременно. Эти два источника вместе хорошо дополняют друг друга, а затраты на сборку одиночных станций значительно снижаются.

На Ютубе очень много каналов посвящено ветрогенераторам для дома. Мне понравилась работа владельца «Солнечные батареи». Считаю, что он довольно объективен при изложении этой темы. Поэтому рекомендую внимательно посмотреть.

Аккумуляторы для ветрогенератора: еще одна проблема для владельца дома

Одна из затратных задач ветряной или солнечной электростанции — вопрос хранения электрической энергии, которую решают только аккумуляторы. Их придется покупать и обновлять, а стоимость — довольно высокая.

Для их выбора необходимо знать рабочие характеристики: напряжение и емкость. Обычно применяются составные батареи из АКБ на 12 V, а количество ампер-часов в каждом конкретном случае стоит определить опытным путем, исходя из мощности потребителей, времени их работы.

Выбирать аккумуляторы для ветрогенератора придется из довольно широкого ассортимента. Ограничусь не полным обзором, а только четырьмя популярными типами кислотных АКБ:

  1. обычные стартерный автомобильные;
  2. AGM типа;
  3. гелевые;
  4. панцирные.

Продавцы не рекомендуют приобретать для ветростанций стартерные аккумуляторы потому, что они созданы для работы в критических условиях эксплуатации автомобиля:

  • при хранении на морозе должны выдерживать огромные токи стартера, которые создаются при раскрутке холодного двигателя;
  • во время езды подвергаются вибрациям и тряске;
  • подзарядка происходит в буферном режиме от генератора при движении авто с различными оборотами двигателя.

При этом:

  • обслуживаемые АКБ, требующие периодического уровня электролита и доливки дистиллированной воды, созданы для выдерживания 100 циклов разряд/заряд;
  • не обслуживаемые — имеют более сложную конструкцию и количество циклов 200.

Однако АКБ ветрогенератора при эксплуатации внутри дома:

  • обычно помещаются в подвальном помещении, где температура, круглогодично поддерживаемая на уровне +5÷+10 градусов, является оптимальной;
  • не подвергаются тряскам и вибрациям, стационарно установлены в неподвижном состоянии;
  • не получают экстремальные нагрузки при стартерном запуске, а при включении бытовых приборов через инвертор работают в щадящем режиме;
  • заряжаются от генератора небольшими токами, которые благоприятно действуют на режим десульфатации пластин.

Все это является самыми выгодными условиями для их эксплуатации. Поэтому этот вариант предлагаю взять на заметку тем, кому не лень периодически контролировать напряжение на банках и следить за уровнем электролита в них.

AGM аккумуляторы более сложные по устройству. У них такие же пластины, но кислотой пропитаны стеклянные маты, работающие одновременно диэлектрическим слоем. Их цикл разряда/заряда — 250÷400. Перезаряд опасен.

Голевые АКБ тоже создаются необслуживаемой конструкцией с герметичным корпусом и загущенным до состояния геля электролитом. Они очень не любят перезаряд, но более стойки к глубокому разряду. Число расчетных циклов —350.

Панцирные аккумуляторы относятся к самым современным разработкам. Их электродные пластины защищены полимерами от воздействия кислоты. Диапазон циклов эксплуатации: 900÷1500.

Все эти четыре типа АКБ значительно отличаются по цене и условиям эксплуатации. Если взять во внимание рекомендации продавцов, то придется выложить довольно приличную сумму денег.

Однако я вам рекомендую предварительно послушать полезные советы, которые дает в своем видеоролике «Как выбрать аккумуляторы для ВЭС и солнечной станции» все тот же владелец «Солнечные батареи».

У него на этот счет свое, противоположное мнение. Как вы отнесетесь к нему — ваше личное дело. Однако, знать информацию из противоположных источников и выбрать из нее наиболее подходящий вариант: оптимальное решение для думающего человека.

Реальная мощность самодельного ветрогенератора

Особенностью самодельных устройств является использование подручных материалов и устройств. В таких условиях обеспечить полноценное соответствие проектным данным не всегда удается. При этом, разница в расчетных и реальных показателях может оказаться как отрицательной, так и положительной.

Величины, определяющие возможности комплекта, это мощность ветроколеса и генератора. Насколько они будут соответствовать друг другу, такая и общая мощность ветрогенератора будет получена в результате.

Например, если генератору для номинальной производительности требуется скорость вращения в 2000 об/мин, то никакое ветроколесо не сможет обеспечить нужные значения.

Поэтому прежде всего следует подбирать тихоходные образцы генераторов, способные на выработку больших количеств энергии при низких скоростях вращения. Для этого модернизируются готовые устройства (например, устанавливаются неодимовые магниты на ротор автомобильных генераторов), изготавливаются собственные конструкции на базе тех же неодимовых магнитов с заранее подсчитанной мощностью и производительностью.

Расчет параметров ветроколеса

Расчет ветроколеса имеет важное значение при создании ветрогенератора. Именно крыльчатка принимает на себя поток ветра, передает его энергию в виде вращательного движения на ротор генератора. Для расчета потребуется, прежде всего, знание параметров генератора — мощность, номинальная скорость вращения ротора и т.д.

Следует учитывать, что увеличение количества лопастей снижает скорость вращения, но увеличивает мощность вращательного движения. Соответственно, малое число лопастей надо применять на быстроходных генераторах, а большое количество —торах, нуждающихся в большом усилии вращения.

Z = L × W / 60 / V,

Где Z — искомая величина (быстроходность),

L — длина окружности, описываемой лопастями.

W — частота (скорость) вращения крыльчатки.

V — скорость ветра.

Специалисты рекомендуют для самостоятельного изготовления выбирать многолопастные образцы с количеством лопастей от 5 штук. Они не требовательны к балансировке, имеют более стабильную аэродинамику и более активно принимают на себя энергию воздушного потока.

Величина экономии, полученной от использования ветрогенератора, рассчитывается по собственным данным. Она складывается, с одной стороны из расходов на приобретение и сборку ветряка или его деталей, расходов на обслуживание комплекта. С другой стороны, учитывается стоимость сетевой электроэнергии в данном регионе, либо цена подключения и прочие расходы, связанные с этим.

Разница полученных величин и будет являться величиной экономии. Необходимо учесть также отсутствие возможности для подключения в некоторых районах, когда ветрогенератор становится единственным доступным вариантом. В таких случаях разговор об экономии становится неуместным.

Количество вырабатываемой энергии зависит от параметров крыльчатки и собственно генератора. Максимально возможным количеством следует считать номинальные данные генератора, уменьшенные на величину КИЭВ крыльчатки. На практике показатели намного ниже, так как в получении результата большое значение имеет скорость ветра, которую невозможно заранее предсказать.

Кроме того, имеются различные тонкие эффекты, в сумме оказывающие заметное влияние на конечную производительность ветряка. Принципиально важными значениями являются диаметр крыльчатки и скорость ветра, от них напрямую зависит количество полученной энергии.

Минимальная скорость ветра — в данном случае это величина, при которой лопасти ветряка начинают вращаться. Это значение показывает степень чувствительности крыльчатки, но на конечный результат влияет слабо. Генератор имеет собственные потребности, для него само по себе вращение еще не решает все вопросы.

Требуется определенная скорость и стабильность движения, отсутствие резких рывков. Рассматривать минимальную скорость вращения следует только с позиций общей эффективности рабочего колеса, позволяющей оценивать его способность обеспечить выработку энергии на слабых потоках.

Расчет окупаемости ветрогенератора

Вложив в приобретение устройства сотни тысяч рублей, новый владелец вправе рассчитывать на его очевидную выгоду и окупаемость ветряка. Попробуем рассчитать цену киловатта электроэнергии на стандартной модели генератора мощностью 4-5 кВт.

При скорости ветра 4-5 м/с устройство даст около 350 кВт за месяц, или 4200 кВт за год. Срок службы генератора – около 25 лет, стоимость большинства моделей устройств – в пределах 280 000 рублей.

Делим стоимость на произведение годовой выработки и срока эксплуатации:

280 000 / 4200*25 = 2,666 рубля

Таким образом, стоимость киловатта энергии окупаемого ветрогенератора будет составлять чуть более 2,5 рубля. По сравнению с актуальным уровнем цен выгода есть, но она не так велика, как хотелось бы при использовании альтернативных источников энергии.

Приведенные выше расчеты дают другой результат, если скорость ветра составит около 7-8 м/с. В месяц ветрогенератор мощностью 6-7 кВт даст около 780 кВт или в год 9000 кВт.

При стоимости таких ветряков около 310 000 получим следующий результат:

310 000 / 9000*25 = 1,3722 рубляТакая стоимость – очевидная выгода, особенно для энергоемких объектов.

За и против установки ветрогенератора

Данное оборудование, как и солнечные батареи, относится к разряду альтернативных источников энергии. Но, в отличии от фотоэлементов, которым нужен солнечный свет, ветрогенератор может эффективно работать 24 часа в сутки, 365 дней в году.

ПреимуществаНедостатки
Бесплатная энергия в любом месте Цена оборудования
Экологическая энергия Стоимость монтажа
Энергонезависимость от государства и его тарифов Стоимость обслуживания.
Независимость от солнечного света Зависимость от скорости ветра

Чтобы уравновесить все эти плюсы и минусы часто делают связку: ветрогенератор с солнечной панелью. Эти установки дополняют друг друга, тем самым снижая зависимость выработки электричества от солнца и ветра.

Пример расчета лопастей из 160-й трубы для данного генератора

быстроходность

Самый лучший результат я получил из 160-й трубы при диаметре 2,2м и быстроходности Z3,4 — лопастей 6шт, но такой диаметр винта из трубы 160мм лучше не делать, слишком тонкие и хлипкие лопасти получатся. При 3м/с номинальные обороты винта составили 84об/м и мощность винта 25ватт, то-есть примерно подходит. Надо конечно с запасом на КПД генератора, но 160-я труба и так тонкая и скорее всего уже при 7м/с будет наблюдаться флаттер. Но для примера пойдет

Теперь если изменять скорость ветра в таблице, то видно что мощность винта и его обороты будут примерно совпадать с параметрами винта, что нам и требуется, так-как важно чтобы винт был не перегружен и не недогружен — иначе пойдет вразнос на большом ветре. >. Так при разном ветре я получил такие данные винта

Ниже на скриншоте данные винта при 3м/с, максимальная мощность винта (КИЭВ) при быстроходности Z3,4 Обороты и мощность при этом примерно совпадают с мощностью генератора при этих оборотах

Так при разном ветре я получил такие данные винта. Ниже на скриншоте данные винта при 3м/с, максимальная мощность винта (КИЭВ) при быстроходности Z3,4 Обороты и мощность при этом примерно совпадают с мощностью генератора при этих оборотах

Обороты генератора 100об/м- 2 Ампер 30 ватт >

Далее вводим скорость 5м/с, это как видно на скриншоте 141об/м винта и мощность на валу винта 124 ватта, тоже примерно совпадает с генератором. Обороты генератора 150об/м — 8 Ампер 120 ватт

При 7м/с винт начинает по мощности обходить генератор и естественно недогруженный набирает большие обороты, по этому быстроходность я поднял до Z4 , получилось тоже примерное совпадение по мощности и оборотам с генератором. Обороты генератора 200об/м -14 Ампер 270 ватт

При 10м/с винт стал гораздо мощнее генератора при номинальной быстроходности так-как мало-оборотистый

и не может раскрутить генератор быстрее. Так при Z4 мощность винта 991ватт, а обороты всего 332об/м. Обороты генератора 300об/м — 26 Ампер 450 ватт. Но недогруженный генератор позволяет раскрутится винту до быстроходности Z5 и выше, при этом
КИЭВ винта падает
, а следовательно и мощность, но при этом возрастают обороты, по этому получилось так что винт раскрутит генератор немного больше, но сам при этом потеряет в мощности и где то наступит баланс. Данные при этом примерно совпадут с генератором, но винт явно по мощности обгоняет генератор, по-этому при этом ветре пора делать защиту уводом винта из под ветра.

Так мы подогнали винт из ПВХ трубы диаметром 160мм под генератор. Сразу скажу что именно шести-лопастной винт такой быстроходности оказался самым подходящим. А так можно считать винт любого диаметра и количества лопастей. Просто трех-лопастной винт диаметром 2,3м для этого генератора оказался слишком скоростным и он не набрал бы обороты для своего максимального КИЭВ, так-как генератор сразу бы его начал тормозить.

По этому увеличением количества лопастей я понизил обороты винта и сохранил его мощность. Так винт получился подходящим под генератор, но 160-я труба внесла свои ограничения, в частности и так диаметр слишком большой и на ветру от 7м/с винт с хлипкими и тонкими лопастями скорее всего получит флаттер, и будет рокотать как взлетающий вертолет. Да и этим винтом мы снимаем с генератора грубо говоря при ветре 10м/с всего ватт 600-700, а можно в два раза больше, если поднять быстроходность винта и немного увеличить его диаметр.

Ниже скриншот с вкладки «Геометрия лопасти». Это размеры для вырезания лопасти из трубы

Расчёт диаметра дисков генератора

Оптимальное расположение магнитов по кругу должно быть с расстоянием между магнитами равным половине ширины магнитов. У меня магниты 50×30×10 мм. Ширина магнитов 30 мм, прибавляем половину ширины (30+15=45 мм), и умножаем на 8 магнитов, и делим на π(3.14). Внутренний диаметр по магнитам (30+15*8:π= 114.5 мм) равен 114мм. Чтобы узнать внешний диаметр нужно прибавить высоту магнитов, у меня высота магнитов 50 мм. Значит (114+50+50=214 мм). Теперь я знаю диаметр дисков, я сделаю диски диаметром не 214 мм, а 220 мм, добавлю 6мм в диаметре.
Для примера:

если вы хотите например поставить по 12 магнитов на дисках, а магниты размером 40×40×10 мм, то тогда получится (40+20*12:π+40+40) диаметр 309мм. Или если магниты 45*25*8 мм, то (45+22,5*12:π+45+45) диаметр дисков получится 347 мм. В общем не важно какие по размерам магниты, и их число по кругу, диаметр дисков строится от ширины магнитов, и расстояния между магнитами должно быть равным половине ширины магнитов.

У меня получилось вот так, я рисовал не на бумаге, а в планшете. Потом снова придётся рисовать уже на реальных дисках. Я думаю проблем с разметкой на дисках быть не должно, размечается диск на секторы, в моём случае на 8 секторов, и наклеиваем магниты.

>

Как сделать правильный выбор?

Так на что же обратить внимание при выборе ВЭУ? Не стоит считать, что самый дорогой и импортный ветрогенератор будет самым лучшим. Исходить, в первую очередь, нужно не из цены, а из ваших потребностей

Перед тем, как сделать покупку, посчитайте, сколько электроэнергии вы планируете расходовать.

Понятно, что выбирать нужно ту модель, которая способна вырабатывать нужное вам количество энергии. Однако будьте внимательны. Каждый ветрогенератор рассчитан на определенную скорость ветра. Это означает, что заявленную производителем мощность он способен выдавать именной при той скорости, которая указана в инструкции к нему.

Если максимальную мощность ВЭУ развивает при скорости ветра 10 -12 м/с, а в вашей местности средний показатель не превышает 4−5 м/с, то не стоит ожидать, что устройство будет вырабатывать заявленное количество электроэнергии. В итоге вы заплатите лишние деньги за то, чего не получите.

Мощность ветрогенератора находится в прямой зависимости от диаметра колеса, образованного лопастями. С погрешностью 20% ее можно рассчитать по формуле: квадрат диаметра помножить на куб средней скорости ветра и разделить полученное значение на 7000. То есть при диаметре колеса, равном двум метрам и средней скорости ветра в вашей местности 3 м/с вы получите около 0,015 кВт электроэнергии. Если же диаметр увеличить в два раза, то ветрогенератор при той же скорости ветра будет выдавать в 4 раза больше электроэнергии — 0,6 кВт. Таким образом, при прочих одинаковых характеристиках, более производителен ветряк с большим размером лопастей.

Не менее важно при выборе ветрогенератора обращать внимание на ёмкость аккумулятора. Если вы живете не в прибрежной зоне, то штиль в вашей местности — явление нередкое. В этом случае система будет работать именно от аккумулятора

А он имеет свойство разряжаться. Поэтому желательно, чтобы помимо него имелся резервный источник энергии

В этом случае система будет работать именно от аккумулятора. А он имеет свойство разряжаться. Поэтому желательно, чтобы помимо него имелся резервный источник энергии.

С этой целью можно приобрести установку сразу с солнечными батареями, или же подключить ветряк к сети. В этом случае он будет лишь компенсировать недостаток электроэнергии в случае необходимости.

Что нужно рассчитать при выборе генератора

Когда вы решили приобрести такой полезный прибор, как ветрогенератор, нужно учитывать следующие параметры:

  • мощность ветрогенератора на неодимовых магнитах. Если в вашей местности нет сильных ветров, вам нужен генератор с маленькой мощностью
  • направление ветра. Если ветра часто меняют направление, вам подойдет только вертикальный ветрогенератор с подвижными лопастями
  • марка. От производителя напрямую зависит цена прибора. Следует помнить, что импортный товар всегда дороже российских аналогов

Конечно, в первую очередь нужно высчитать мощность.

Рейтинг
( 1 оценка, среднее 5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]