О том, как самостоятельно выполнить расчет ветрогенератора, мы рассказывали в одном из прошлых материалов. Сегодня вашему вниманию будут представлены модели ВЭУ, построенные пользователями нашего портала. Также мы поделимся полезными советами, которые помогут собрать установку и не допустить при этом ошибок. Строительство ветрогенератора своими руками – задача сложная. Безошибочно справиться с ее решением может далеко не каждый (даже опытный) практик. Впрочем, любая вовремя обнаруженная ошибка может быть исправлена. На то мастеру – голова и руки.
В статье рассмотрены вопросы:
- Из каких материалов и по каким чертежам можно изготовить лопасти ветрогенератора.
- Порядок сборки аксиального генератора.
- Стоит ли переделывать автомобильный генератор под ВЭУ и как это правильно сделать.
- Как защитить ветрогенератор от бури.
- На какой высоте устанавливать ветрогенератор.
Изготовление лопастей
Если у вас еще нет опыта в самостоятельном изготовлении винтов для домашней ВЭУ, рекомендуем не искать сложных решений, а воспользоваться простым методом, доказавшим свою эффективность на практике. Заключается он в изготовлении лопастей из обыкновенной канализационной ПВХ трубы. Этот метод прост, доступен и дешев.
Михаил26 Пользователь FORUMHOUSE
Теперь о лопастях: сделал из 160-й рыжей канализационной трубы со вспененным внутренним слоем. Делал по расчету, представленному на фото.
«Рыжая» труба упомянута пользователем не случайно. Именно этот материал лучше держит форму, устойчив к температурным перепадам и дольше служит (в сравнении с серыми трубами ПВХ).
Чаще всего в домашней ветроэнергетике используются трубы диаметром от 160 до 200 мм. С них и следует начинать свои эксперименты.
Форма и конфигурация лопастей – это параметры, которые зависят от диаметра трубы, из которой они изготовлены, от диаметра ветроколеса, от быстроходности рабочего винта и других расчетных характеристик. Чтобы не забивать себе голову аэродинамическими расчетами, вы можете воспользоваться готовой таблицей, которую выложил в соответствующей теме нашего портала ее автор. Она позволит определить геометрию лопастей, подставляя в расчетную таблицу свои собственные значения (диаметр трубы, быстроходность винта и т. д.).
Михаил26
Приноровился пилить электролобзиком. Получается реально быстро и качественно. Примечание: обязательно ставьте большой свободный ход пилки на лобзик, чтобы пилку не закусывало и не ломало.
Законность установки ветрогенератора
Альтернативные источники энергии – мечта любого дачника или домовладельца, участок которого находится вдали от центральных сетей. Впрочем, получая счета за электроэнергию, израсходованную в городской квартире, и глядя на возросшие тарифы, мы осознаём, что ветрогенератор, созданный для бытовых нужд, нам бы не помешал.
Прочитав эту статью, возможно, вы воплотите свою мечту в реальность.
Ветрогенератор – отличное решение для обеспечения загородного объекта электроэнергией. Причем в ряде случаев его установка является единственным возможным выходом
Чтобы не потратить зря деньги, силы и время, давайте определимся: есть ли какие-либо внешние обстоятельства, которые создадут нам препятствия в процессе эксплуатации ветрогенератора?
Для обеспечения электроэнергией дачи или небольшого коттеджа достаточно малой ветроэнергетической установки, мощность которой не превысит 1 кВт. Такие устройства в России приравнены к бытовым изделиям. Их установка не требует сертификатов, разрешений или каких-либо дополнительных согласований.
Для того чтобы определиться с целесообразностью устройства ветрогенератора, необходимо выяснить ветроэнергетический потенциал конкретной местности (кликните для увеличения)
Никакого налогообложения производства электроэнергии, которая расходуется на обеспечение собственных бытовых нужд, не предусмотрено. Поэтому маломощный ветряк можно смело устанавливать, вырабатывать с его помощью бесплатную электроэнергию, не уплачивая при этом государству никаких налогов.
Впрочем, на всякий случай следует поинтересоваться, нет ли каких-либо местных нормативных актов, касающиеся индивидуального энергоснабжения, которые могли бы создать препятствия в установке и эксплуатации этого устройства.
Претензии могут возникнуть у ваших соседей, если они будут испытывать неудобства, связанные с эксплуатацией ветряка. Не забывайте, что наши права заканчиваются там, где начинаются права других людей.
Поэтому при покупке или самостоятельном изготовлении ветрогенератора для дома нужно обратить серьёзное внимание на следующие параметры:
- Высота мачты. При сборке ветрогенератора нужно учитывать ограничения на высоту индивидуальных построек, которые существуют в ряде стран мира, а также местонахождение собственного участка. Знайте, что поблизости от мостов, аэропортов и тоннелей строения, высота которых превышает 15 метров, запрещены.
- Шум от редуктора и лопастей. Параметры создаваемого шума можно установить при помощи специального прибора, после чего зафиксировать результаты замеров документально. Важно, чтобы они не превышали установленные шумовые нормы.
- Эфирные помехи. В идеале при создании ветряка должна быть предусмотрена защита от создания телепомех там, где ваше устройство может такие неприятности обеспечить.
- Претензии экологических служб. Эта организация может препятствовать вам в эксплуатации установки только в том случае, если она мешает миграции перелетных птиц. Но это маловероятно.
При самостоятельном создании и монтаже устройства учите эти моменты, а при покупке готового изделия обратите внимание на параметры, которые стоят в его паспорте. Лучше заранее обезопасит себя, чем впоследствии расстраиваться.
- Целесообразность устройства ветряка обосновывается в первую очередь достаточно высоким и стабильным ветряным напором в местности;
- Необходимо располагать достаточно большим участком, полезная площадь которого не будет существенно сокращена из за установки системы;
- Из-за сопровождающего работу ветряка шума желательно, чтобы между жильем соседей и установкой было не менее 200 м;
- Убедительно аргументирует в пользу устройства ветрогенератора неуклонно повышающаяся стоимость электроэнергии;
- Устройство ветрогенератора возможно только в местностях, власти которых не препятствуют, а лучше еще и поощряют использование зеленых видов энергии;
- Если в регионе сооружения мини электростанции, перерабатывающей энергию ветра, случаются частые перебои, установка минимизирует неудобства;
- Владелец системы должен быть готов к тому, что вложенные в готовое изделие средства не окупятся сразу. Экономический эффект может стать ощутимым через 10 — 15 лет;
- Если окупаемость системы — не последний момент, стоит задуматься об сооружении мини электростанции собственными руками.
Конструкция аксиального генератора
Делая выбор между трехфазным или однофазным генератором, лучше остановить свой выбор на первом варианте. Трехфазный источник тока менее подвержен вибрациям, возникающим из-за неравномерности нагрузки, и позволяет получать постоянную мощность при одинаковых оборотах ротора.
BOB691774 Пользователь FORUMHOUSE
Однофазные генераторы мотать не стоит: испытано и давно проверено на практике. Только на трех фазах можно получить достойные генераторы.
Расчетные параметры генератора, о которых мы рассказывали в нашем предыдущем материале, определяются текущими потребностями в электроэнергии. И чтобы на практике они соответствовали объему вырабатываемой мощности, конструкция аксиального генератора должна отвечать определенным требованиям:
- Толщина всех дисков (ротора и статора) должна равняться толщине магнитов.
- Оптимальное соотношение катушек и магнитов – 3:4 (на каждые 3 катушки – 4 магнита). На 9 катушек – 12 магнитов (по 6 на каждый диск ротора), на 12 катушек – 16 магнитов и так далее.
- Оптимальное расстояние между двумя соседними магнитами, расположенными на одном диске, равно ширине этих магнитов.
Увеличение расстояния между двумя соседними магнитами приведет к неравномерной выработке электроэнергии. Уменьшить это расстояние можно, но лучше, все же, соблюдать оптимальные параметры.
Aleksei2011 Пользователь FORUMHOUSE
Ошибочно делать расстояние между магнитами равным половине ширины магнита. Один человек оказался прав, когда говорил, что расстояние должно быть не меньше ширины магнита.
Если не вникать в скучную теорию, то схема перекрытия катушек аксиального генератора постоянными магнитами на практике должна выглядеть следующим образом.
В каждый момент времени одинаковые полюса магнитов аналогичным образом перекрывают обмотки катушек отдельно взятой фазы.
Aleksei2011
Вот так в реале: всё совпадает с рисунком почти на 100%, только катушки совсем немного отличаются по форме.
Последовательность сборки аксиального генератора рассмотрим на примере устройства, собранного пользователем Aleksei2011.
Aleksei2011
На этот раз я делаю дисковый аксиальный генератор. Диаметр дисков – 220 мм, магниты – 50*30*10 мм. Всего – 16 магнитов (по 8 штук на дисках). Катушки мотал проводом Ø1.06 мм по 75 витков. Катушек – 12 штук.
Классификация ветряных генераторов энергии
Из всего парка самостоятельно сконструированных ВЭУ эксплуатируются 2 основных типа с разной осью вращения:
- горизонтальный (крыльчатый);
- вертикальный (карусельный).
У каждого есть свои особенности, среди которых встречаются отличия по:
- числу лопастей (двух-, трех-, многолопастные);
- характеристике материала лопастей (металлические, стеклопластиковые, парусные);
- винтовому шагу (фиксируемый, изменяемый).
В домашних условиях предпочтительнее сделать своими руками вертикально-осевой ветрогенератор. Его главным преимуществом считается нечувствительность к ветру. В дополнение конструктивная простота не требует создания механизма ориентации на ветер, поэтому нужда в поворотных устройствах отпадает.
По расположению генератора: горизонтальный или вертикальный
У многих с ветросиловой установкой (ВСУ) ассоциируется схема классического вида—горизонтальная. У такого типа ось вращения идет параллельно земле, а лопасти устроены перпендикулярно. В такой конструкции обязательно требуется флюгер, работающий по принципу хвостового оперения. Это способствует выгодному положению плоскости вращения перпендикулярно потоку ветра.
Горизонтальная позиция оси соответствует ветровому направлению. Здесь есть сложность с электрическим подключением. Без электронного регулятора слежения за направлением, корпус оборачивается вокруг оси, что вызывает обрыв проводов. Для предотвращения ситуации устанавливается ограничитель полного оборота.
Сделать вертикальный ветрогенератор своими руками намного проще. Расположенная ось вращения не зависит от стороны потока воздуха. Дополнительным преимуществом роторного винта считается то, что узлы для техобслуживания находятся внизу и подниматься наверх не нужно.
По номиналу генерируемого напряжения
Чтобы получить максимальную экономию, мастера устанавливают самодельные ветрогенераторы для дома с наибольшей мощностью. Конструкция, изготовленная на 12—14 вольт, более популярна. Для этого лучше всего подходит старый автомобильный генератор. После его изменения, преобразователь напряжения даст на выходе 12—14 вольт.
Ветрогенератор своими руками на 220 вольт считается установкой прямого применения. Для нее не нужен преобразователь величины напряжения. Но так как работа ветряка подчиняется силе воздушного потока, на выходе требуется стабилизатор. В зависимости от оборотов он выполняет функции регулятора.
Изготовление статора
Как видно на фото, катушки имеют форму, похожую на вытянутую каплю воды. Это делается для того, чтобы направление движения магнитов было перпендикулярным длинным боковым участкам катушки (именно здесь индуцируется максимальная ЭДС).
Если используются круглые магниты, внутренний диаметр катушки должен примерно соответствовать диаметру магнита. Если же используются квадратные магниты, конфигурация витков катушки должна быть построена таким образом, чтобы магниты перекрывали прямые отрезки витков. Установка более длинных магнитов особого смысла не имеет, ведь максимальные значения ЭДС возникают лишь на тех участках проводника, которые расположены перпендикулярно направлению движения магнитного поля.
Изготовление статора начинается с намотки катушек. Катушки проще всего мотать по заранее заготовленному шаблону. Шаблоны бывают самыми разными: от небольших ручных приспособлений до миниатюрных самодельных станков.
Катушки каждой отдельно взятой фазы соединяются между собой последовательно: конец первой катушки соединяется с началом четвертой, конец четвертой – с началом седьмой и т. д.
Напомним, что при соединении фаз по схеме «звезда» концы обмоток (фаз) устройства соединяются в один общий узел, который будет являться нейтралью генератора. При этом три свободных провода (начало каждой фазы) подключаются к трехфазному диодному мосту.
Когда все катушки будут собраны в единую схему, можно готовить форму под заливку статора. После этого погружаем в форму всю электрическую часть и заливаем эпоксидной смолой.
Aleksei2011
Далее выкладываю фото готового статора. Заливал обычной эпоксидной смолой. Снизу и сверху стеклоткань положил. Внешний диаметр статора – 280 мм, внутреннее отверстие – 70 мм.
Как работает ветрогенератор?
Конструкция ветрогенератора включает в себя несколько лопастей, вращающихся под воздействием ветряных потоков. В результате такого воздействия создается энергия вращения. Образовавшаяся энергия посредством ротора поступает на мультипликатор, который в свою очередь передает энергию на электрогенератор.
Как работает ветрогенератор
Также существуют конструкции ветрогенераторов без мультипликаторов. Отсутствие мультипликатора позволяет существенно повысить производительность установки.
Принцип работы ветрогенератора
Ветрогенераторы можно устанавливать как по отдельности, так и группами, объединенными в ветропарк. Также ветродвигатели можно комбинировать с дизельными генераторами, что позволит экономить топливо и обеспечить максимально эффективную работу системы электрообеспечения дома.
Такие системы называются инверторными (или аккумуляторными) системами бесперебойного питания
Изготовление ротора для аксиальника
Чаще всего самодельные аксиальные генераторы делают на основе автомобильной ступицы и совместимых с ней тормозных дисков (можно использовать самодельные металлические диски, как это сделал Aleksei2011). Схема будет следующей.
В этом случае диаметр статора больше, чем диаметр ротора. Это позволяет прикрепить статор к раме ветрогенератора с помощью металлических шпилек.
Aleksei2011
Шпильки для крепления статора М6 стоят (в количестве 3-х штук). Это исключительно для теста генератора. Впоследствии их будет 6 штук (М8). Я думаю, что для генератора такой мощности этого будет вполне достаточно.
В некоторых случаях диск статора крепится к неподвижной оси генератора. Подобный подход позволяет сделать конструкцию генератора менее габаритной, но принципы работы устройства от этого не меняются.
Противоположные магниты должны быть направлены друг к другу разноименными полюсами: если на первом диске магнит обращен к статору генератора своим южным полюсом «S», то противоположный ему магнит, расположенный на втором диске, должен быть обращен к статору полюсом «N». При этом магниты, расположенные рядом на одном диске, также должны быть сориентированы разнонаправлено.
Сила магнитного поля, которое создают неодимовые магниты, довольно велика. Поэтому регулировать расстояние между дисками статора и ротором генератора следует, используя шпилечно-резьбовое соединение.
Это вариант конструкции, в которой диаметр ротора больше диаметра статора. Статор в этом случае крепится к неподвижной оси устройства.
Также для регулировки расстояния между дисками можно использовать распорные втулки (или шайбы), которые устанавливаются на неподвижную ось генератора.
Расстояние между магнитами и статором должно быть минимальным (1…2 мм). Клеить магниты на диски генератора можно обыкновенным суперклеем. Правильнее всего осуществлять наклейку магнитов, используя заранее заготовленный шаблон (например, из фанеры).
Вот, что показали предварительные испытания генератора, выполненные пользователем Aleksei2011 с помощью шуруповерта: при 310 об/м с устройства было снято 42 вольта (соединение – звездой). С одной фазы получается 22 вольта. Расчетное сопротивление одной фазы – 0.95 Ом. После подключения АКБ шуруповёрт смог раскрутить генератор до 170 об/м, ток зарядки при этом составил 3.1А.
После длительных экспериментов, которые были связаны с модернизацией рабочего винта и другими менее масштабными усовершенствованиями, генератор продемонстрировал свои максимальные характеристики.
Aleksei2011
Наконец, к нам пришёл ветер, и я зафиксировал максимальную мощность ветряка: ветер усилился, а порывы временами достигали 12 – 14м/с. Максимальная зафиксированная мощность – 476 Ватт. При ветре 10м/с ветряк выдаёт примерно 300 Ватт.
Ветрогенератор с вертикальной осью вращения
В ветряных генераторах данного вида вращающаяся ось генератора расположена вертикально по отношению к поверхности земли.
За годы использования устройств данного вида появились разнообразные конструкции которые объединены в группы, это:
С ротором Дарье — агрегаты оснащаются двумя или тремя лопастями, изогнутыми в форме овала.
К положительным особенностям данной конструкции можно отнести:
- Самостоятельную ориентацию по отношению к воздушным потокам;
- Удобное обслуживание установки.
- Простота схемы агрегата.
К отрицательным относятся:
- Нет возможности в самостоятельной раскрутке лопастей;
- Значительная нагрузка на элементы конструкции;
- Лопасти должны быть идентичны и соответствовать заданному профилю;
- Повышенный уровень шума в процессе работы.
- С ротором Савониуса – агрегаты оснащены лопастями в виде цилиндрических поверхностей.
Достоинствами данной группы являются:
- Для запуска в работу требуются незначительные потоки ветра;
- Способность быстрого набора крутящего момента;
- Надёжность конструкции;
- Низкая стоимость.
К недостаткам можно отнести:
- Низкий КПД устройств этой группы.
Устройства с ротором Савониуса применяют при монтаже комбинированных ветровых генераторов, их используют для разгона агрегатов с ротором Дарье.
С вертикально-осевой конструкций ротора — у агрегатов этой группы лопасти напоминают форму крыла самолета и расположены вертикально, ось ротора расположена параллельна валу.
По внешнему виду агрегаты данной группы похожи на устройства с ротором Дарье.
К положительным качествам устройств относятся:
- Простота в изготовлении;
- Способность быстрого набора скорости вращения;
- Низкий уровень шума.
- Надежность в работе.
- С геликоидным ротором – агрегаты этой группы являются более развитым вариантом устройств с вертикально-осевым ротором. Лопасти имеют форму геликоидной кривой.
Положительные качества:
- Более низкие нагрузки на элементы конструкции;
- Быстрый набор скорости вращения.
Недостатки:
- Повышенный уровень шума;
- Высокая стоимость.
- Многолопастный ротор – в основу агрегатов этого типа положена вертикально-осевая конструкция с устройством дополнительного внешнего кольца неподвижных лопастей.
Достоинства агрегатов данной группы:
- Более высокий КПД установок;
- Чувствительность к потокам ветра.
Недостатки:
- Высокая стоимость;
- Повышенный уровень шума.
ВС
На первой позиции – самый простейший, чаще всего называемый ротором Савониуса. На самом деле его изобрели в 1924 г. в СССР Я. А. и А. А. Воронины, а финский промышленник Сигурд Савониус бессовестно присвоил себе изобретение, проигнорировав советское авторское свидетельство, и начал серийный выпуск. Но внедрение в судьбе изобретения значит очень много, поэтому мы, чтобы не ворошить прошлое и не тревожить прах усопших, назовем этот ветряк ротором Ворониных-Савониуса, или для краткости, ВС.
ВС для самодельщика всем хорош, кроме «паровозного» КИЭВ в 10-18%. Однако в СССР над ним работали много, и наработки есть. Ниже мы рассмотрим усовершенствованную конструкцию, не намного более сложную, но по КИЭВ дающую фору лопастникам.
Примечание: двухлопастный ВС не крутится, а дергается рывками; 4-лопастный лишь немного плавнее, но много теряет в КИЭВ. Для улучшения 4-«корытные» чаще всего разносят на два этажа – пара лопастей внизу, а другая пара, повернутая на 90 градусов по горизонтали, над ними. КИЭВ сохраняется, и боковые нагрузки на механику слабеют, но изгибные несколько возрастают, и при ветре более 25 м/с у такой ВСУ на древке, т.е. без растянутого вантами подшипника над ротором, «срывает башню».
Дарье
Следующий – ротор Дарье; КИЭВ – до 20%. Он еще проще: лопасти – из простой упругой ленты безо всякого профиля. Теория ротора Дарье еще недостаточно разработана. Ясно только, что начинает он раскручиваться за счет разности аэродинамического сопротивления горба и кармана ленты, а затем становится вроде как быстроходным, образуя собственную циркуляцию.
Вращательный момент мал, а в стартовых положениях ротора параллельно и перпендикулярно ветру вообще отсутствует, поэтому самораскрутка возможна только при нечетном количестве лопастей (крыльев?) В любом случае на время раскрутки нагрузку от генератора нужно отключать.
Есть у ротора Дарье еще два нехороших качества. Во-первых, при вращении вектор тяги лопасти описывает полный оборот относительно ее аэродинамического фокуса, и не плавно, а рывками. Поэтому ротор Дарье быстро разбивает свою механику даже при ровном ветре.
Во-вторых, Дарье не то что шумит, а вопит и визжит, вплоть до того, что лента рвется. Происходит это вследствие ее вибрации. И чем больше лопастей, тем сильнее рев. Так что Дарье если и делают, то двухлопастными, из дорогих высокопрочных звукопоглощающих материалов (карбона, майлара), а для раскрутки посередине мачты-древка приспосабливают небольшой ВС.
Ортогонал
На поз. 3 – ортогональный вертикальный ротор с профилированными лопастями. Ортогональный потому, что крылья торчат вертикально. Переход от ВС к ортогоналу иллюстрирует рис. слева.
Карусельный и ортогональный роторы
Угол установки лопастей относительно касательной к окружности, касающейся аэродинамических фокусов крыльев, может быть как положительным (на рис.), так и отрицательным, сообразно силе ветра. Иногда лопасти делают поворотными и ставят на них флюгерки, автоматически держащие «альфу», но такие конструкции часто ломаются.
Центральное тело (голубое на рис.) позволяет довести КИЭВ почти до 50%. В трехлопастном ортогонале оно должно в разрезе иметь форму треугольника со слегка выпуклыми сторонами и скругленными углами, а при большем количестве лопастей достаточно простого цилиндра. Но теория для ортогонала оптимальное количество лопастей дает однозначно: их должно быть ровно 3.
Ортогонал относится к быстроходным ветрякам с ОСС, т.е. обязательно требует раскрутки при вводе в эксплуатацию и после штиля. По ортогональной схеме выпускаются серийные необслуживаемые ВСУ мощностью до 20 кВт.
Геликоид
Геликоидный ротор, или ротор Горлова (поз. 4) – разновидность ортогонала, обеспечивающая равномерное вращение; ортогонал с прямыми крыльями «рвет» лишь немного слабее двухлопастного ВС. Изгиб лопастей по геликоиде позволяет избежать потерь КИЭВ из-за их кривизны. Хотя часть потока кривая лопасть и отбрасывает, не используя, но зато и загребает часть в зону наибольшей линейной скорости, компенсируя потери. Геликоиды используют реже прочих ветряков, т.к. они вследствие сложности изготовления оказываются дороже равных по качеству собратьев.
Бочка-загребушка
На 5 поз. – ротор типа ВС, окруженный направляющим аппаратом; его схема представлена на рис. справа. В промышленном исполнении встречается редко, т.к. дорогостоящий отвод земли не компенсирует прироста мощности, а материалоемкость и сложность производства велики. Но самодельщик, боящийся работы – уже не мастер, а потребитель, и, если нужно не более 0,5-1,5 кВт, то для него «бочка-загребушка» лакомый кусок:
Вертикальный ротор с направляющим аппаратом
- Ротор такого типа абсолютно безопасен, бесшумен, не создает вибраций и может быть установлен где угодно, хоть на детской площадке.
- Согнуть «корыта» из оцинковки и сварить каркас из труб – работа ерундовая.
- Вращение – абсолютно равномерное, детали механики можно взять самые дешевые или из хлама.
- Не боится ураганов – слишком сильный ветер не может протолкнуться в «бочку»; вокруг нее возникает обтекаемый вихревой кокон (мы с этим эффектом еще столкнемся).
- А самое главное – поскольку поверхность «загребушки» в несколько раз больше таковой ротора внутри, КИЭВ может быть и сверхединичным, а вращательным момент уже при 3 м/с у «бочки» трехметрового диаметра такой, что генератору на 1 кВт с предельной нагрузкой, как говорится, лучше и не дергаться.
Видео: ветрогенератор Ленца
Ветроэнергетическая установка из автомобильного генератора
Популярным решением среди людей, практикующих изготовление ВЭУ своими руками, является переделка автомобильного генератора под альтернативные нужды. Несмотря на всю привлекательность подобной затеи, следует отметить, что автомобильный генератор в том виде, в котором он устанавливается на двигатель транспортного средства, довольно проблематично использовать в составе ветроэнергетической установки. Разберемся – почему:
- Во-первых, обмотка катушек стандартного автомобильного генератора состоит всего из 5…7 витков. Следовательно, чтобы такой генератор начал давать зарядку АКБ, его ротор необходимо раскрутить примерно до 1200 об/мин.
- Во-вторых, магнитная индукция в стандартном автомобильном генераторе возникает благодаря катушке возбуждения, которая встроена в ротор устройства. Чтобы такой генератор смог работать без подключения к дополнительному источнику питания, его необходимо оснастить постоянными магнитами (желательно – неодимовыми) и внести определенные коррективы в обмотку статора.
Михаил26
Переделанный автогенератор (на магниты) имеет право на жизнь. У меня сейчас два таких. На ветре 8 м/с с двухметровыми винтами дают честные 300 Ватт каждый.
Переделка автомобильного генератора под ВЭУ требует определенной сноровки. Поэтому приступать к ней желательно, имея за плечами опыт перемотки асинхронных двигателей или генераторов со стандартным цилиндрическим статором (и те, и другие при желании можно превратить в альтернативную энергетическую установку). Переделка автомобильного генератора имеет свои нюансы. Понять их будет намного проще, если обратиться к опыту пользователей, которые успели достичь в этой сфере определенных успехов.
Оценка целесообразности установки
Прежде чем приступать к изготовлению ветряного генератора вертикального типа, изучают метеоситуацию в своем регионе и стараются определить, сможет ли агрегат обеспечить необходимое количество ресурса.
Специалисты рекомендуют оценить следующие параметры:
- количество ветреных дней — берут среднее значение за год, когда порыв превышает 3 м/с;
- объем электроэнергии, потребляемый за сутки домовладением;
- подходящее место на собственном участке для ветряного оборудования.
Первый показатель узнают из данных, полученных на ближайшей метеостанции или найденных в интернете на соответствующих порталах. Дополнительно сверяются с печатными географическими изданиями и составляют полную картину о ситуации с ветром в своем регионе.
Статистику берут не за один год, а за 15-20 лет, только тогда средние цифры будут максимально корректными и покажут, сможет ли генератор полностью удовлетворить потребность домовладения в электроэнергии или его сил хватит только на питание отдельных бытовых нужд.
Если в распоряжении владельца большой участок земли, расположенный на склоне, у берега реки или на открытом пространстве, с установкой не будет проблем.
Когда же дом находится в глубине населенного пункта, а двор отличается компактными габаритами и вплотную прилегает к соседским постройкам, установить вертикальную модель ветряка своими руками будет непросто. Конструкцию придется поднимать на 3-5 м над землей и дополнительно укреплять, чтобы при сильном порыве она не упала.
Учесть всю эту информацию нужно на этапе планирования, чтобы стало понятно, сможет ли ветряной генератор взять на себя полное энергообеспечение или его роль останется в рамках вспомогательного источника энергии. Предварительно желательно провести расчет ветряка.
Защита кабеля от перекручивания
Как известно, ветер не имеет постоянного направления. И если ваш ветрогенератор будет вращаться вокруг своей оси подобно флюгеру, то без дополнительных мер защиты кабель, идущий от ветрогенератора к другим элементам системы, быстро перекрутится и в течение нескольких дней придет в негодность. Предлагаем вашему вниманию несколько способов защиты от подобных неприятностей.
Способ первый: разъемное соединение
Наиболее простой, но совершенно непрактичный способ защиты заключается в установке разъемного кабельного соединения. Разъем позволяет распутать скрутившийся кабель вручную, отключив ветрогенератор от системы.
w00w00 Пользователь FORUMHOUSE
Я знаю, что некоторые внизу ставят что-то типа штепселя с розеткой. Закрутило кабель – отключил от розетки. Затем – раскрутил и воткнул вилку обратно. И мачту опускать не надо, и токосъёмники не нужны. Я это на форуме по самодельным ветрякам прочитал. Судя по словам автора, все работает и не перекручивает кабель слишком уж часто.
Способ второй: использование жесткого кабеля
Некоторые пользователи советуют подключать к генератору толстые, упругие и жесткие кабели (например, сварочные). Метод, на первый взгляд, ненадежный, но имеет право на жизнь.
user343 Пользователь FORUMHOUSE
Нашел на одном сайте: наш способ защиты заключается в использовании сварочного кабеля с жестким резиновым покрытием. Проблема скрученных проводов в конструкции малых ветровых турбин сильно переоценена, а сварочный кабель #4…#6 имеет особые качества: жесткая резина не дает кабелю скручиваться и препятствует повороту ветряка в одном и том же направлении.
Способ третий: установка токосъемных колец
На наш взгляд, полностью защитить кабель от перекручивания поможет только установка специальных токосъемных колец. Именно такой способ защиты реализовал в конструкции своего ветрогенератора пользователь Михаил 26.
Место установки ветрогенератора
Ветрогенератор, описываемый здесь, установлен на 4-х метровой опоре на краю горы. Трубный фланец, который установлен снизу генератора обеспечивает легкую и быструю установку ветрогенератора — достаточно прикрутить 4 болта. Хотя для надежности, лучше приварить.
Обычно, горизонтальные ветрогенераторы «любят» когда ветер дует с одного направления, в отличии от вертикальных ветряков, где за счет флюгера, они могут поворачиваться и им не важно направление ветра. Т.к. данный ветряк установлен на берегу скалы, то ветер там создает турбулентные потоки с разных направлений, что не очень эффективно для данной конструкции.
Другим фактором, который необходимо учитывать при подборе места размещения, является сила ветра. Архив данных по силе ветра для вашей местности можно найти в интернете, правда это будет очень приблизительно, т.к. все зависит от конкретного места. Также, в выборе месторасположения установки ветрогенератора поможет анемометр (прибор для измерения силы ветра).
Защита ветрогенератора от бури
Речь идет о защите устройства от ураганов и сильных порывов ветра. На практике она реализуется двумя способами:
- Ограничением оборотов ветроколеса с помощью электромагнитного тормоза.
- Уводом плоскости вращения винта от прямого воздействия ветрового потока.
Первый способ основан на подключении балластной электрической нагрузки к ветрогенератору. О нем мы уже рассказывали в одной из предыдущих статей.
Второй способ предполагает установку складывающегося хвоста, позволяющего при номинальной силе ветра направлять винт навстречу ветровому потоку, а во время бури, наоборот – уводить винт из-под ветра.
Защита складыванием хвоста происходит по следующей схеме.
- В безветренную погоду хвост расположен немного под наклоном (вниз и в сторону).
- При номинальной скорости ветра хвост выпрямляется, а винт становится параллельно воздушному потоку.
- Когда скорость ветра превышает номинальные значения (например, 10 м/с), давление ветра на винт становится больше, чем сила, создаваемая весом хвоста. В этот момент хвост начинает складываться, а винт уходит из-под ветра.
- Когда скорость ветра достигает критических значений, плоскость вращения винта становится перпендикулярно потоку ветра.
Когда ветер ослабевает, хвост под собственной тяжестью возвращается в исходное положение и поворачивает винт навстречу ветру. Для того чтобы хвост смог вернуться в исходное положение без дополнительных пружин, используется поворотный механизм с наклонным шкворнем (шарниром), который устанавливается на оси поворота хвоста.
Ось поворота хвоста установлена под наклоном: на 20° относительно вертикальной оси и на 45° относительно оси горизонтальной.
Для того чтобы механизм мог выполнять свою основную функцию, ось мачты должна находиться на определенном расстоянии от оси вращения турбины (оптимально – 10 см).
Чтобы при резких порывах ветра хвост не сложился и не попал под винт, с обеих сторон механизма необходимо приварить ограничители.
Рассчитать размеры хвоста и их зависимость от других параметров ВЭУ вам поможет таблица Excel с уже готовыми формулами. В ней желтым цветом обозначена область переменных значений.
Оптимальная площадь хвостового оперения составляет 15%…20% от площади ветроколеса.
Вашему вниманию представлен наиболее распространенный вариант механической защиты ветрогенератора. В том или ином виде он успешно используется на практике пользователями нашего портала.
WatchCat Пользователь FORUMHOUSE
При шторме тормозить винт надо его уводом из-под ветра. У меня, к примеру, при слишком сильном ветре ветряк опрокидывается винтом вверх. Не самый лучший вариант, ведь возврат в рабочее положение сопровождается заметным ударом. Но за десять лет ветряк не сломался.
Преимущества и принцип работы ветряков
Современный вертикальный генератор — один из вариантов альтернативной энергии для дома. Агрегат способен преобразовать порывы ветра в энергетический ресурс. Для корректной работы он не нуждается в дополнительных устройствах, определяющих направление ветра.
Ветряной генератор роторного типа очень легко изготовить своими руками. Конечно, полностью взять на себя обеспечение частного крупногабаритного коттеджа энергией он не сможет, но с освещением хозяйственных построек, садовых дорожек и придомовой территории справится на отлично
Прибор вертикального типа функционирует на низкой высоте. Для его обслуживания не нужны различные приспособления, обеспечивающие безопасное проведение высотных ремонтных и обслуживающих работ.
Минимум движущихся деталей делает ветряную установку более надежной и эксплуатационно устойчивой. Оптимальный профиль лопастей и оригинальной формы ротор обеспечивают агрегату высокий уровень КПД независимо от того, в каком направлении дует ветер в каждый отдельный момент.
Малые бытовые модели состоят из трех и более легких лопастей, моментально улавливают самый слабый порыв и начинают вращаться, как только сила ветра превышает 1,5 м/с. Благодаря этой способности их эффективность часто превышает КПД крупных установок, нуждающихся в более сильном ветре
Генератор работает абсолютно бесшумно, не мешает хозяевам и соседям, не создает вредных выбросов в атмосферу и надежно служит в течение многих лет, аккуратно поставляя энергию в жилые помещения.
Вертикальный генератор ветрового типа работает по принципу магнитной левитации. В процессе вращения турбин образуются импульсная и подъемная силы, а также сила фактического торможения. Первые две заставляют крутиться лопасти агрегата. Это действие активирует ротор и он создает магнитное поле, вырабатывающее электричество.
Ветряк, имеющий вертикальную ось вращения, по эффективности не уступает своим горизонтальным аналогам. К тому же не предъявляет претензий к территориальному расположению и полноценно работает практически в любом удобном для домовладельцев месте
Прибор функционирует полностью самостоятельно и не требует вмешательства хозяев в процесс.
Схемы и чертежи
Генератор как устройство вырабатывает переменный ток, который необходимо преобразовать в постоянный, довести до требуемой величины напряжения. Если мотор-генератор выдаёт, скажем, 40 В, то вряд ли это будет подходящим значением для большинства бытовой электроники, потребляющей 5 или 12 вольт постоянного тока либо 127/220 вольт переменного.
Проверенная временем и миллионами пользователей схема всей установки включает в себя выпрямитель, контроллер, аккумулятор и инвертор. В качестве буферного накопителя запасаемой энергии применяют автомобильный аккумулятор ёмкостью 55-300 ампер-часов. Его рабочее напряжение — 10,9-14,4 В при циклическом заряде (полный цикл заряда-разряда) и 12,6-13,65 при буферном (порционном, дозированном, когда нужно дозарядить частично разряженную батарею).
Контроллер преобразует, к примеру, те же 40 вольт в 15. Его КПД по вольт-амперажу колеблется в пределах 80-95% — без учёта потерь на выпрямителе.
Наибольшую эффективность имеет трёхфазный генератор — его отдача на 50% больше, чем у однофазного, он не вибрирует при работе (вибрация расшатывает конструкцию, делая её недолговечной).
Катушки в обмотке каждой из фаз чередуются друг с другом и соединены последовательно — как и полюса магнитов, обращённые одной из сторон к катушкам.
Современная бытовая техника и электроника способны работать, начиная со 110 вольт (американский стандарт бытовых сетей) вплоть до 250 – больше давать сетевым приборам и устройствам не рекомендуется. Все преобразователи — импульсные, по сравнению с линейными их потери на тепло значительно меньше.
Правовые аспекты установки ветряного электрогенератора
Ветрогенератор является необычной собственностью, обладание этим устройством связано с соблюдением определённых правил и законов. Если устройство устанавливается недалеко от мостов, аэропортов и тоннелей, то высота мачты не должна превышать 15 м. Уровень создаваемого шума не должен превышать 70 дБ днём и 60 дБ ночью. Необходима защита от создания телепомех. Экологические службы не должны предъявлять претензии по поводу создания препятствий для миграции перелётных птиц. Желательно перед началом строительства по каждому параметру провести юридическую консультацию и иметь официальные документы. Никакого налогообложения за производство электроэнергии для собственных бытовых нужд законами не предусмотрено.
ФОТО: YouTube.comВетряк
Инструкция изготовления ветрогенератора своими руками
- Магниты вмонтируйте в специально сделанные углубления на роторе. Используйте суперклей для надёжности.
- Обмотайте магнитики бумагой, а оставшееся свободное пространство залейте эпоксидной смолой.
- Ось выточите на токарном оборудовании. Прикрепите к ней держатель из стального прута.
- Из трубы смастерите лопасти.
- Прикрепите генератор, лопасти, ротор и хвост к несущей рейке.
- Установите силовую установку, используя шарнирное крепление.
- Вмонтируйте мачту в бетонное основание и зафиксируйте при помощи 4-х болтов.
- Подсоедините провод к щитку.
- Подключите всё и проведите тест на предмет работоспособности.
Вы чувствуете неуверенность в собственных силах – приобретите бытовой агрегат. Это тоже будет выгодно. В общем, подбирайте модель, ориентируясь на свои финансовые возможности, и возводите её на своём дачном участке.
Займитесь этим прямо сейчас и уже завтра вы перестанете вздрагивать, получая счета за электроэнергию.