Если нужен приличный блоком питания с регулируемым током и напряжением – редакция сайта “Две Схемы” советует вспомнить старый добрый стабилизатор uA723. Проверен он уже тысячи раз радиолюбителями по всему Миру и показал прекрасные результаты – тогда зачем изобретать велосипед? Схема обеспечивает симметричное двухполярное выходное напряжения в диапазоне до 26 В и токе до 3 А. Превышение максимального значения тока вызывает отключение выходных транзисторов, что можно рассматривать как защиту по току. В каждой мастерской должен быть именно такой двухполярный БП – это полезно например в конструкциях с использованием операционных усилителей, а также для предварительного запуска усилителей мощности с двойным питанием. Преимуществом описываемой здесь конструкции является очень низкая стоимость сборки. В общем данный блок питания станет очень серьезным помощником домашней радиотехнической лаборатории.
Виды источников питания
Все источники питания можно разделить на два больших класса:
- импульсные;
- трансформаторные.
Эти термины не очень точные – трансформаторный источник питания может иметь как линейный, так и импульсный стабилизатор напряжения, а импульсный БП содержит трансформатор.
Каждый тип имеет свои преимущества и недостатки, базирующиеся на принципе действия. Трансформаторный источник питания с линейным регулятором напряжения распределяет энергию между нагрузкой и регулирующим элементом (как правило, мощным транзистором) и представляет собой делитель напряжения. Одним плечом служит регулирующий элемент, другим – нагрузка.
Рекомендуем: Виды блоков питания и их назначение
При уменьшении напряжения на нагрузке (например, из-за увеличения потребляемого тока) транзистор приоткрывается и поддерживает это напряжение постоянным. При увеличении напряжения на нагрузке процесс обратный – транзистор призакрывается. Так происходит процесс стабилизации.
Принцип действия линейного стабилизатора.
Минусы этой схемы:
- требуется, чтобы входное напряжение было заметно выше выходного;
- через регулирующий транзистор постоянно идет ток, равный току нагрузки — впустую рассеивается большая мощность;
- КПД даже теоретически не может превышать отношение Uвых/Uвх.
Плюсами являются:
- относительно простая и недорогая схема;
- выходное напряжение свободно от высокочастотных паразитных составляющих (помехи по питанию минимальны).
Импульсный источник питания действует по другому принципу. Здесь энергия распределяется во времени. У ключевых транзисторов всего два состояния – они либо полностью открыты, либо полностью закрыты. Длительность открытого положения определяет средний ток через первичную обмотку трансформатора и усредненное напряжение на выходных конденсаторах фильтра (соответственно, и на нагрузке). Этим процессом удобно управлять методом широтно-импульсной модуляции (ШИМ), когда частота преобразования остается постоянной, а меняется лишь длина импульса.
В идеальном импульсном источнике стабилизированного напряжения у ключей в открытом положении нулевое сопротивление, падение напряжения отсутствует, а в закрытом – полностью отсутствует ток. Поэтому энергия на транзисторах не рассеивается. На практике не все так радужно. Идеальных транзисторов не существует, поэтому в открытом состоянии на них падает определенное напряжение (сопротивление не равно нулю), а в закрытом существует ток утечки (сопротивление не равно бесконечности).
Но основные потери, снижающие КПД, происходят по другой причине. Транзисторные ключи переходят из одного состояния в противоположное не мгновенно. На это нужно время, зависящее от быстродействия элемента. Во время перехода через транзистор идет сквозной ток, на нем падает напряжение – следовательно, выделяется мощность. Эти потери называются коммутационными, их величина зависит от частоты преобразования.
Реальный и идеальный ключ в импульсном источнике питания.
Но все равно, КПД такого источника выше, чем линейного. И это основной плюс такой схемы. Другое достоинство – меньшие габариты и вес источника питания. Это достигается за счет того, что преобразование осуществляется на достаточно высокой частоте – до нескольких десятков килогерц. Поэтому самый тяжелый и громоздкий элемент (силовой трансформатор) получается легким и компактным. Главным минусом является сложность схемы.
Обычно на ток до 2 А применяются линейные источники напряжения. Ближе к токам 3 А и выше достоинства импульсников начинают перевешивать.
Запуск и испытания
При сборке я обнаружил, что на плате почему-то нет выходных емкостей C5 и C7. При испытании ПиДБП пришлось их установить навесом, чтобы быть уверенным, что данные емкости никак не замедляют и не выводят из стабильной работы систему автоматического регулирования. Меня интересовал момент скорости изменения напряжения на выходе ЛБП при регулировке и скорость работы защиты от КЗ, успеет ли она отработать короткое замыкание. При испытаниях защита работала отлично, а также отлично изменялось при регулировке значение Uвых.
Первый запуск блока питания я выполнял от китайского ЛБП (30В), ограничив его выходной ток в районе 50мА, чтобы в случае неправильной работы испытуемого устройства не сжечь его.
После запуска ПиДБП я убедился, что регулировка Uвых производится во всем диапазоне от 0 до 23В. Далее с помощью R22 я поднял Umax с 23В до 28В. Позже под нагрузкой 1А я еще раз выполнил корректировку максимального значения Uвых.
После чего, я приступил к проверке нагрузочной способности. Сначала нагрузил ПиДБП резистором 51Ом, опустив его в ванночку с водой. С помощью вращения потенциометра R26 я убедился в правильном функционировании узла стабилизации тока, значение Iнагр изменяется плавно от 0 до 0,5А.
Далее я выставил на выходе испытуемого устройства 2В и нагрузил резистором 4Ома, который я установил на радиатор. Ручку R26 выкрутил на максимум. Плавно вращая ручку R20 я увеличивал Uвых и наблюдал за нагревом элементов и смотрел по амперметру показания. При достижении значения 1,4А рост тока остановился. То есть максимальный ток нагрузки составил 1,4А.
Можно сделать наоборот, R20 выкрутить на максимум, а R26 в минимум, нагрузить низкоомным резистором (например 4Ома). Плавно вращая R26 проверить ограничение на отметке 1,4А.
Далее при подключенной нагрузке я замкнул выход, ничего плохого не произошло, стабилизация тока работала отлично. После этого я отключил нагрузку и замыкал выход на разных значениях Uвых, стабилизация тока включалась при 1,4А отлично, защищая от пробоя регулирующий транзистор. Последним этапом проверки ПиДБП на КЗ с условием короткого замыкания на выходе, устроенное перед запуском. В этом случае защита функционировала также без нареканий. При замкнутом ключе S1, при достижении установленного порога Iнагр, срабатывал триггер и на выходе блока питания ток не протекал до тех пор, пока ключ S1 не был разомкнут.
Чуть позже я устроил еще немаловажную проверку, подключив на выход аккумулятор 12В 5А при малом Uвых, то есть, организовав для испытуемого устройства встречное напряжение. Диод VD2 со своей задачей справился отлично. Кратковременно подключив аккумулятор обратной полярностью, невзирая на искры, диод VD5 выдержал, хоть и кратковременно. Подразумевается, что между аккумулятором и блоком питания должен устанавливаться предохранитель.
Защита от перегрева настраивается на нужную температуру. Можно нагреть воду в стакане до необходимой температуры, опустить туда корпус термистора и вращением движка R34 добиться начала свечения HL3.
При запитывании ПиДБП от китайского лабораторного блока питания, на выходе при нагрузке 1А с помощью осциллографа С1-94 я пытался посмотреть пульсации, но они настолько малы и с учетом старенького аналогового осциллографа С1-94 я увидел только наводки на щупе.
При проверке от трансформатора 24В 1,5А с емкостью 2×4700мкФ пульсации были также незначительны (вертикальная развертка 10мВ на деление).
Основные узлы регулируемого блока питания
Трансформаторный источник питания в большинстве случаев выполняется по следующей структурной схеме.
Узлы трансформаторного БП.
Понижающий трансформатор снижает напряжение сети до необходимого уровня. Полученное переменное напряжение преобразуется в импульсное с помощью выпрямителя. Выбор его схемы зависит от схемы вторичных обмоток трансформатора. Чаще всего применяется мостовая двухполупериодная схема. Реже – однополупериодная, так как она не позволяет полностью использовать мощность трансформатора, да и уровень пульсаций выше. Если вторичная обмотка имеет выведенную среднюю точку, то двухполупериодная схема может быть построена на двух диодах вместо четырех.
Двухполупериодный выпрямитель для трансформатора со средней точкой.
Если трансформатор трехфазный (и имеется трехфазная цепь для питания первичной обмотки), то выпрямитель можно собрать по трехфазной схеме. В этом случае уровень пульсаций наиболее низок, а мощность трансформатора используется наиболее полно.
После выпрямителя устанавливается фильтр, который сглаживает импульсное напряжение до постоянного. Обычно фильтр состоит из оксидного конденсатора, параллельно которому ставится керамический конденсатор малой емкости. Его назначение – компенсировать конструктивную индуктивность оксидного конденсатора, который изготовлен в виде свернутой в рулон полоски фольги. В результате получившаяся паразитная индуктивность такой катушки ухудшает фильтрующие свойства на высоких частотах.
Далее стоит стабилизатор. Он может быть как линейным, так и импульсным. Импульсный сложнее и сводит на нет все преимущества трансформаторного БП в нише выходного тока до 2..3 ампер. Если нужен выходной ток выше этого значения, проще весь источник питания выполнить по импульсной схеме, поэтому обычно здесь используется линейный регулятор.
Выходной фильтр выполняется на базе оксидного конденсатора относительно небольшой емкости.
Обобщенная блок-схема импульсного БП.
Импульсные источники питания строятся по другому принципу. Так как потребляемый ток имеет резко несинусоидальный характер, на входе устанавливается фильтр. На работоспособность блока он не влияет никак, поэтому многие промышленные производители БП класса Эконом его не ставят. Можно не устанавливать его и в простом самодельном источнике, но это приведет к тому, что устройства на микроконтроллерах, питающиеся от той же сети 220 вольт, начнут сбоить или работать непредсказуемо.
Дальше сетевое напряжение выпрямляется и сглаживается. Инвертор на транзисторных ключах в цепи первичной обмотки трансформатора создает импульсы амплитудой 220 вольт и высокой частотой – до нескольких десятков килогерц, в отличие от 50 герц в сети. За счет этого силовой трансформатор получается компактным и легким. Напряжение вторичной обмотки выпрямляется и фильтруется. За счет высокой частоты преобразования здесь могут быть использованы конденсаторы меньшей емкости, что положительно сказывается на габаритах устройства. Также в фильтрах высокочастотного напряжения становится целесообразным применение дросселей – малогабаритные индуктивности эффективно сглаживают ВЧ пульсации.
Регулирование напряжения и ограничение тока выполняется за счет цепей обратной связи, на которые подается напряжение с выхода источника. Если из-за повышения нагрузки напряжение начало снижаться, то схема управления увеличивает интервал открытого состояния ключей, не снижая частоты (метод широтно-импульсного регулирования). Если напряжение надо уменьшить (в том числе, для ограничения выходного тока), время открытого состояния ключей уменьшается.
↑ Выводы
1. Необходим трансформатор с сильноточной вторичной обмоткой или с запасом по напряжению, в этом случае ток нагрузки может превышать ток обмотки трансформатора.
2. При токах порядка 2 А и более желателен небольшой теплоотвод на диодный мост и микросхему 2596.
3. Конденсатор питания желателен большой ёмкости, это благоприятно сказывается на работе стабилизатора. Даже крупная и качественная ёмкость немного нагревается, следовательно желательно малое ESR.
4. Для подавления пульсаций с частотой преобразования, LC фильтр на выходе необходим.
5. Данный стабилизатор имеет явное преимущество перед обычным компенсационным в том, что может работать в широком диапазоне выходных напряжений, при малых напряжениях можно получить на выходе ток больше, чем может обеспечить трансформатор.
6. Модули позволяют сделать блок питания с неплохими параметрами просто и быстро, обойдя подводные камни изготовления плат для импульсных устройств, то есть хороши для начинающих радиолюбителей.
Как подобрать компоненты
Для трансформаторного источника подбирается, в первую очередь, трансформатор. В большинстве случаев он берется готовый из того, что есть. Этот узел должен выдавать требуемый ток при максимальном напряжении. Сочетание этих параметров обеспечивается габаритной мощностью трансформатора. Для промышленных устройств параметры можно узнать из справочника. Для случайных трансформаторов мощность можно определить по размерам сердечника (в сантиметрах).
Площадь сердечника для разных типов трансформаторов.
Мощность вычисляется по формуле:
P=S2/1.44 где:
- P-мощность в Ваттах;
- S- сечение в квадратных сантиметрах.
Для практических целей мощность надо еще умножить на КПД. Для примера, трансформатор с площадью сердечника 6 кв.см. при напряжении 35 вольт и выходном напряжении стабилизатора 30 вольт (общий КПД можно взять 0.75) способен отдать мощность P=(36/1.44)*0.75=18.75 ватт. Наибольший ток при этом составит I=P/U=18.75/35=0,5 А.
Если трансформатор проходит по мощности, но вторичная обмотка рассчитана на другое напряжение, ее можно удалить и намотать новую (если уместится). Количество витков рассчитывается так:
- определяется количество витков на вольт по формуле 50/S, где S – площадь сердечника в кв.см.;
- эта величина умножается на необходимый уровень напряжения.
Так, для площади 6 см на 1 вольт приходится 50/6=8,3 витка на вольт. Для напряжения 35 вольт обмотка должна иметь 35*8,3=291 виток. Диаметр провода рассчитывается по формуле D=0,02, где I – ток в миллиамперах. Для тока в 5 ампер надо взять провод диаметром 0,02*=70*0,02=1,4 мм.
Если для линейного регулятора подбирается мощный транзистор, основной критерий для применения – ток коллектора. Он должен с запасом перекрывать ток нагрузки. Этот параметр для распространенных отечественных и зарубежных транзисторов приведен в таблице.
Транзистор | Наибольший ток коллектора (постоянный), А |
КТ818 (819) | 10 |
КТ825 (827) | 20 |
КТ805 | 5 |
TIP36 | 25 |
2N3055 | 15 |
MJE13009 | 12 |
При работе в режимах, близких к максимальному току, транзисторы обязательно должны быть установлены на радиаторах.
Также надо обратить внимание на такой параметр, как максимальное напряжение между коллектором и эмиттером. При входном напряжении 35 вольт и выходном 1,5 разница составит 33,5 вольт, для некоторых полупроводниковых приборов это недопустимо.
Емкость оксидного конденсатора, стоящего после выпрямителя, выбирается исходя из нагрузки. Существуют формулы для расчета параметров фильтра, но на практике подход простой: чем больше, тем лучше. Сверху на емкость наложено два ограничения:
- габариты конденсатора;
- бросок тока на заряд, который может быть значительным при большой емкости.
Выходной конденсатор БП может иметь емкость около 1000 мкФ.
↑ Итоговая схема включения модулей LM2596
Схема проста и очевидна.
При длительной нагрузке током 1 А детали заметно нагреваются: диодный мост, микросхема, дроссель модуля, больше всего дроссель (дополнительные дроссели холодные). Нагрев на ощупь 50 градусов.
При работе от лабораторного блока питания, нагрев при токах 1,5 и 2 А терпимый в течение нескольких минут. Для длительной работы с большими токами желателен теплоотвод на микросхему и дроссель большего размера.
Схемы лабораторных блоков питания
В интернете можно найти множество схем лабораторных блоков питания. Выбор определяется исходя из задач, квалификации мастера и наличия комплектующих.
Импульсный БП на tl494
Микросхема TL494 является культовой в сфере построения импульсных источников питания. Большинство БП стационарных компьютеров сделано на ее основе.
Распиновка и назначение выводов TL494.
На базе TL494 можно сделать и лабораторный источник в соответствии с рассмотренной выше структурой.
Схема импульсного БП на TL494.
На входе блока установлен сетевой фильтр. После него расположен высоковольтный выпрямитель на VDS1 (можно применять любые сборки и диоды на соответствующее напряжение и то), формирующий постоянное напряжение 220 вольт. Параллельно выпрямителю включен вспомогательный трансформатор TR3 с выпрямителем VDS2. Эти элементы формируют напряжение +12 вольт для питания микросхем. TL494 генерирует последовательность импульсов, частота которых определяется цепочкой С3R3. Сигнал усиливается ключами на транзисторах T1, T2 и через трансформатор TR1 подается на базы T3, T4. Эти мощные транзисторы формируют высоковольтные импульсы в первичной обмотке трансформатора TR2. Импульсы с частотой следования несколько десятков килогерц трансформируются во вторичную обмотку трансформатора, выпрямляются сборкой D5, фильтруются и подаются к потребителю.
Цепь обратной связи по напряжению формируется на элементах OP3, OP4 операционного усилителя. Резистором R15 устанавливается необходимый выходной уровень. Фактический ток измеряется как падение напряжения на шунте из резисторов R25, R26. Элементы OP1, OP2 создают цепь ограничения наибольшего тока (необходимое значение устанавливается потенциометром). Микросхема TL494 в зависимости от заданного тока и напряжения увеличивает или уменьшает длительность открытого состояния ключей. Транзисторы T3, T4, а также диод D5 должны быть установлены на радиаторы. Крайне желательно организовать принудительный обдув элементов схемы. Вентилятор может быть подключен к источнику постоянного напряжения +12 вольт.
Номиналы и типы элементов приведены на схеме. Многие комплектующие, включая намоточные элементы, можно взять от неисправного или ненужного компьютерного БП. Дроссель L5 намотан на желтом тороидальном сердечнике и содержит 50 витков провода диаметром 1,5 мм.
Источник питания с импульсным стабилизатором.
Другой вариант применения микросхемы TL494 – в импульсном стабилизаторе для БП, выполненного по «трансформаторной» схеме. Этот источник выдает напряжение от 0 до 30 вольт при токе до 5 ампер.
Здесь микросхема управляет открытием и закрытием ключа на транзисторе VT1. В открытом состоянии энергия накапливается в дросселе L1, в закрытом – отдается из дросселя потребителю. Диод VD1 «съедает» импульс отрицательного напряжения, возникающий при коммутации цепи с большой индуктивностью.
Чем больше нагрузка, тем быстрее расходуется энергия в индуктивности, тем быстрее падает напряжение на конденсаторе C4, тем на большее время надо открывать транзистор. Напряжение обратной связи поступает на микросхему с движка потенциометра R9. Им устанавливается необходимый выходной уровень. Ток измеряется как падение напряжения на шунте R12. Необходимое значение уровня ограничения по току устанавливается с помощью R3.
Участок схемы, содержащий операционный усилитель LM358 и логическую микросхему К155ЛА3 (лучше применить К555ЛА3) служит для индикации режима БП – стабилизация тока или стабилизация напряжения.
Резисторы R4 и R10, предназначенные для точной подстройки напряжения и тока, можно не ставить – на практике от них пользы нет. При сборке надо обеспечить эффективное охлаждение элементов:
- транзистора VT1;
- диода VD1;
- дросселя L1;
- шунта R12.
Использование кулера крайне рекомендуется. Также следует установить приборы для индикации текущих значений тока и напряжения.
Рекомендуем попробовать: Переделка компьютерного блока питания в лабораторный с регулировкой напряжения
На п210 транзисторе
В запасниках многих радиолюбителей сохранились транзисторы П210. Применение для них найти не так просто – появились более современные компоненты, их частотные характеристики и коэффициент усиления оставляют устаревший прибор далеко позади. Но один параметр — максимальный ток коллектора П210, составляющий 12 А при установке на радиаторе — позволяет и сегодня использовать их в регулируемых источниках питания.
Схема несложная, но надо обратить внимание, что транзистор включается в отрицательное плечо (П210 имеет структуру p-n-p). Конденсатор после выпрямителя должен иметь емкость не менее 5000 мкФ, а на выходе – не меньше 1000 мкФ. П210 может иметь малый коэффициент усиления, поэтому к нему добавлен транзистор VT2 – любой маломощный структуры p-n-p.
Схема источника питания на транзисторе П210 или аналогичном.
В источнике можно применить трансформатор ТН-36-127/220-50, имеющий 4 вторичные обмотки по 6,3 вольта. Соединив две из них последовательно, можно построить самодельный блок питания с выходным напряжением до 12 В, а если соединить по той же схеме 4 обмотки – до 24 В. Также можно использовать другие понижающие трансформаторы, подходящие по току и напряжению.
Схема соединения обмоток ТН-36-127/220-50.
Подобные источники регулируемого напряжения можно строить и на других транзисторах, включая n-p-n. В этом случае силовой элемент включается в положительное плечо БП.
Источник питания на транзисторе КТ829.
Эти простые БП не имеют защиты от КЗ и перегрузки. На выходе крайне желательно установить вольтметр и амперметр для контроля режима. Транзистор обязательно устанавливать на радиаторе.
На lm317
На микросхеме LM317 можно собрать блок питания с линейным стабилизатором напряжения и регулируемым ограничением по току. Основное достоинство этой микросхемы – простая схема включения с минимумом обвязки. Стандартная схема включения выглядит так:
Стандартная схема включения LM317.
Выходное напряжение задается делителем R1R2. Микросхема изменением выходного напряжения пытается удержать ток через делитель так, чтобы падение напряжения на R1 составляло 1,25 вольт. Поэтому, чем больше R2, тем больше выходное напряжение. Если вместо R2 поставить потенциометр, то выходное напряжение можно регулировать. Выходной уровень вычисляется по формуле Uвых=1,25*(1+R2/R1).
Если R2=0, то на выходе будет 1,25 вольта – это минимально возможное напряжение для данного включения.
В интернете существует много схем на LM317 с регулировкой напряжения от нуля вольт (в том числе с подачей на вывод Adjust отрицательного смещения). Большинство этих технических решений работоспособны только на бумаге.
В даташите на микросхему есть такая схема включения.
Этого достаточно, чтобы построить простой регулируемый лабораторник, но есть проблема. Микросхема в таком включении выдает не более 1,5 А, если ее даже установить на радиатор. Второй минус – чтобы получить выходное напряжение 30 В, на вход надо подать около 35 VDC. Если надо получить на выходе уровень, близкий к минимальному, вступают в действие ограничения по наибольшей рассеиваемой мощности – при перепаде 35/1,25 наибольший ток может быть 0,3..0,5 А (в зависимости от корпуса микросхемы). Это совсем мало. Поэтому микросхему надо умощнить внешним транзистором.
Производитель предлагает такую схему.
В качестве внешнего можно использовать отечественный транзистор структуры p-n-p КТ818 с буквенным индексом Б-Г (КТ818А может не пройти по напряжению коллектор-эмиттер). Если его установить на радиатор, наибольший ток в теории составит 10 А, но это в случае, если нет ограничений по току диодов выпрямителя и мощности трансформатора.
Мощные транзисторы структуры n-p-n более распространены. Если надо умощнить стабилизатор таким элементом, можно воспользоваться схемой из даташита.
Использование мощного n-p-n элемента, рекомендуемое разработчиком микросхемы.
Здесь применяется маломощный транзистор p-n-p (можно использовать отечественный КТ814), который управляет мощным элементом n-p-n (например, КТ819).
Часто применяемое на практике использование мощного n-p-n элемента.
Но чаще применяется включение, не предусмотренное разработчиком – транзистор включается базой к выходу микросхемы.
Каждая из предложенных схем может применяться в качестве лабораторного блока питания на LM317, но на практике популярностью пользуется схема ЛБП, дополненная регулировкой максимального тока.
Схема блока питания на LM317.
Питается устройство от сетевого трансформатора с двумя обмотками. Дополнительная обмотка служит для создания отрицательного плеча питания ОУ LM301, на котором собрана схема ограничения тока. Операционный усилитель включен по схеме компаратора – на одном выводе присутствует образцовое напряжение, регулируемое с помощью Р1, на другом – напряжение, создаваемое фактическим током на шунтовом резисторе R5.
Если реальный ток превышает установленный, состояние на выходе компаратора изменяется на противоположное. Загорается светодиод, напряжение ограничивается на уровне, поддерживающем установленное значение тока.
На базе этой схемы собран стационарный блок питания, обеспечивающий два канала напряжения с регулировкой 1,25..30 вольт и ограничением тока в пределах 5А на каждый канал.
Внешний вид БП.
При необходимости каналы могут быть соединены последовательно с общей точкой – получится двухполярный источник. 90+ процентов комплектующих и материалов, включая корпус, обычно можно найти в запасниках любого радиолюбителя.
Внутренняя компоновка источника питания.
Блок собран в корпусе от неисправного измерителя АЧХ «Тест». Применены силовые трансформаторы неизвестного происхождения, подходящие по мощности и напряжению (у одного пришлось перемотать вторичную обмотку для получения напряжения 35 вольт). На нем не хватило места для дополнительной обмотки, поэтому отрицательное плечо одного из каналов запитывается от отдельного маленького трансформатора.
Печатная плата стабилизатора.
Большинство элементов размещены на платах, рисунок и расположение деталей можно найти в интернете. Можно разработать и изготовить свою плату.
Рекомендуемый рисунок печатной платы и расположение элементов на ней.
Изменена схема измерения – применены блоки вольтметр-амперметр, которые можно купить на торговых площадках в интернете. Элементы R8, R9, P4 и аналоговый вольтметр в этом варианте устанавливать не надо. Выходные транзисторы установлены на радиаторах, имеющихся на задней стенке корпуса. Диоды выпрямителя установлены на самодельные радиаторы.
Отечественным аналогом LM317 является микросхема 142ЕН12А.
При наладке БП был нагружен автомобильными лампочками до тока в 5 А, подстроечным резистором P1 (при максимальном сопротивлении Р2) выставлено срабатывание защиты.
Схема показала себя работоспособной, хотя ограничение тока работает не по лучшему алгоритму. При выходе тока за пределы напряжение просто снижается до минимума. Лучше найти схему, которая в этом случае переводит БП в режим стабилизации тока. Если нужен более высоковольтный ЛБП (с выходным уровнем до 60 вольт), его можно сделать на микросхеме LM317HV и применить трансформаторы с соответствующим напряжением.
На lt1083
Вместо микросхемы LM317 можно применить LT1083. Ее специфические отличия:
- низкое падение напряжения (при максимальном токе не более 1,5 В);
- повышенный выходной ток.
Первое преимущество ведет к тому, что на микросхеме будет рассеиваться меньшая мощность, поэтому при малых значениях напряжения с нее можно снять повышенный ток. К тому же выходное напряжение трансформатора можно сделать более низким (ненамного, на 1..2 вольта, но иногда и это критично).
Второй плюс ведет к тому, что во многих случаях можно обойтись без внешнего мощного транзистора. Наибольший ток, отдаваемый стабилизаторами серии LT108X, приведен в таблице.
Микросхема | Максимальный ток, А |
LT1083 | 3 |
LT1084 | 5 |
LT1085 | 7,5 |
Ток в 7,5 ампер закрывает 90+ процентов нужд домашней лаборатории. В остальном по теме обзора схема не отличается от схемы на LM317.
Распиновка и типовая схема включения линейных стабилизаторов серии LT108X.
Статья в тему: Схемы компьютерных блоков питания — полное описание с примерами
↑ Борьба с пульсациями
Вот напряжение при нагрузке 1,5 А на входе модуля без дополнительного конденсатора.
↑ Увеличенная ёмкость на входе
С дополнительным конденсатором 4700 мкФ на входе, пульсации на выходе резко уменьшились, но при 1,5 А были ещё заметны. При уменьшении выходного напряжения до 16 В, идеальная прямая линия (2 В /клетка).
Падение напряжения на модуле DC-DC должно быть минимум 2…2,5 В.
Теперь можно смотреть пульсации на выходе импульсного преобразователя.
Видны небольшие пульсации с частотой 100 Гц промодулированные частотой несколько десятков кГц.
↑ LC-фильтр на выходе
Datasheet на LM2596 рекомендует дополнительный LC фильтр на выходе. Так мы и сделаем. В качестве сердечника я использовал цилиндрический сердечник от неисправного БП компьютера и намотал обмотку в два слоя проводом 0,8 мм.
На плате красным цветом показано место для установки перемычки – общего провода двух каналов, стрелкой – место для припаивания общего провода, если не использовать клеммы.
Посмотрим, что стало с ВЧ-пульсациями.
Их больше нет. Остались небольшие пульсации с частотой 100 Гц. Неидеально, но неплохо.
Замечу, что при увеличении выходного напряжения, дроссель в модуле начинает дребезжать и на выходе резко растёт ВЧ-помеха, стоит напряжение чуть уменьшить (всё это при нагрузке 12 Ом), помехи и шум полностью пропадают.