Что такое ток короткого замыкания и петля фаза-ноль


Для правильной работы бытовых приборов, подключенных к электрической сети, обеспечения их безопасной эксплуатации, все соединения необходимо выполнить в соответствии с ПУЭ. В электрике ошибки не допустимы, в случае неверного присоединения оборудования существует риск того, что они просто выйдут из строя раньше срока, что может вызвать сбой в работе всей системы целиком.

В данной статье рассмотрим последствия некорректного подключения и правильный порядок действий во избежание непредвиденных ситуаций.

Последствия ошибки электриков Источник encom74.ru

Что такое короткое замыкание?

Многие знают такое устойчивое выражение – “короткое замыкание”. Кроме названия известного блокбастера из 90-х, эти слова ассоциируются у обывателя с частой причиной пожаров. На эту тему гуляет множество мифов и штампов. Я решил разобраться, что тут к чему и зачем всё это нужно.

Короткое замыкание (КЗ) – это такой режим работы электросети, или явление, при котором в цепи в месте замыкания протекает максимально возможный ток. Это событие – трудно предсказуемое и аварийное, и чем быстрее оно прекратится, тем лучше. При возникновении КЗ вся энергия источника питания тратится только на нагрев проводов. Кроме того, возможны динамические (механические) последствия. Процесс этот обычно очень скоротечный и взрывообразный, поскольку тепловая энергия выделяется колоссальная. Если не прекратить это безобразие как можно быстрее (какими способами это делается – разберёмся ниже), то КЗ может привести к большим материальным и человеческим потерям.

Время отключения автоматических выключателей бытовых серий при КЗ на землю должно быть менее 0,4 с (ПУЭ 1.7.79, 7.1.72). Если скорость не обеспечивается из-за низкого тока КЗ, выключение должно происходить посредством устройств, реагирующих на дифференциальный ток (УЗО, АВДТ), время реакции будет (согласно ГОСТ) менее 0,04 с.

Замыкание может происходить между любыми точками электрической цепи, обладающими разным потенциалом. Вот как это выглядит в трехфазном варианте:

Короткие замыкания в системе питания с системой заземления TN-S. Кто увидит ошибку на схеме?

На рисунке условно показана вторичная обмотка понижающего трансформатора, установленного в трансформаторной подстанции (ТП), пятипроводная линия электропередачи и трехфазная электроустановка. Электроустановкой может быть частный или многоквартирный дом, а может и что-то промышленное.

Замыкания могут быть в разных вариантах:

  • двух- и трехфазные (межфазные),
  • одно- двух- или трехфазные на нейтральный N или защитный РЕ проводник.

Если рассматривать наиболее безопасную систему заземления TN-S с глухозаземленной нейтралью трансформатора, то наиболее часто (на практике – около 90%) встречается однофазное замыкание между фазным проводом и нейтралью N (либо защитным проводником РЕ). Поэтому далее будет рассматривать более простой, однофазный вариант:

Короткое замыкание на нейтральный и защитный проводники

Рекомендую мою статью: Чем трехфазное напряжение отличается от однофазного. А линейное от фазного.

Замыкание может произойти где угодно – хоть около трансформаторной подстанции (ТП) из-за невнимательности экскаваторщика, хоть в квартире из-за кота, уронившего ёлку. В любом случае, защита должна отработать чётко, сведя к минимуму последствия КЗ.

Кстати, у нас однажды кошка уронила ёлку. Выкинули её с 5-го этажа.

Видео описание

Если в розетке 2 фазы.
Важно определить фазу: по ПУЭ напряжения не должно возникать на патроне люстры, если светильник выключен. Иначе процесс замены обычной лампочки станет опасным явлением, способным убить человека. По нормативам, фазный провод находится слева розетки. Соответственно правый будет нулем. Оставшийся провод с желто-зеленой изоляцией должен оказаться «землей». В редких схемах сети это может быть резервным проводником с напряжением 220 вольт.

В двойном выключателе контакты – вход и выход раскиданы по разные стороны. Один располагается внизу, другой – наверху. Находящийся с боку, куда приходит только один контакт, и есть фаза. Два других – рабочий ноль плюс защитный. Все это будет правильно при одном условии: электрическая разводка в квартире проложена правильно. В домах старой постройки раскладки могут оказаться не такими, а выполненными наоборот.

У одноклавишного выключателя определить фазу невозможно, поскольку контакты расположены на одном боку. Можно с помощью тестера прозвонить патрон, однако делая такой замер, вы нарушаете технику безопасности (ТБ). Измеритель может сломаться, поэтому такой способ не рекомендуется применять в быту. Лучше попробовать измерить напряжение: если прибор покажет 230 вольт между 2-мя точками, значит фаза идет к выключателю, ноль – к патрону.

Причины короткого замыкания

КЗ может возникнуть по разным причинам, основная из которых – нарушение изоляции или взаимного расположения токоведущих частей. Очень часто в возникновении КЗ виноват человеческий или природный фактор.
Пример, который оценят женщины (чудо, если они будут читать эту статью) – из-за постоянных перегибов ухудшается изоляция, и в один “прекрасный” момент фен или утюг “бахают” на вводе или около вилки.

Другой пример – из-за механической поломки или внешнего воздействия токоведущие части по какой-то причине оказываются слишком близко друг к другу, вплоть до полного соприкосновения. Это может случиться из-за природных явлений (упало дерево на провода), ударов, падений электроприборов.

Ну и классический пример – КЗ из-за вмешательства в электропроводку домашних “мастеров на все руки”. По законам жанра, у мастера после этого инцидента обязательно должны стоять дыбом волосы, а лицо быть черным. Мне от таких картинок не смешно – всё происходит по другому.

Назначение УЗО

Всем известно, что с течением времени, происходит старение изоляции проводов. Могут возникнуть ее повреждения, а контакты, соединяющие токоведущие части, постепенно ослабевают. Эти факторы, в конечном итоге, приводят к утечкам тока, из-за которых происходит искрение и дальнейшее возгорание. Нередко, таких аварийных фазных проводов, находящихся под напряжением, могут нечаянно коснуться люди. В этой ситуации, удар током представляет серьезную опасность.

Устройства защитного отключения должны реагировать даже на незначительные кратковременные утечки тока. В этом и заключается их основное отличие от автоматических выключателей, срабатывающих только при перегрузках и коротких замыканиях. У автоматов очень высокая время-токовая характеристика срабатывания, тогда как УЗО срабатывает практически мгновенно, при наличии даже самого минимального тока утечки.

Основным предназначением УЗО является защита людей от возможных поражений электротоком, а также предотвращение опасных утечек тока.

Как избежать КЗ?

Понятно, что полностью избежать этого неприятного явления невозможно – тут велик элемент случайности. Однако, в наших силах существенно снизить риск возникновения КЗ. И тут колоссальное значение приобретает регулярный осмотр и техническое обслуживание электросетей.

Примеры превентивных мер:

  • чистка токоведущих частей, контактов и изоляторов от пыли и грязи,
  • проверка защиты от влажности,
  • проверка целостности укладки и монтажа,
  • ограждение и дополнительная защита опасных участков,
  • вывешивание и наклеивание предупреждающих табличек и надписей,
  • проверка и протяжка контактов,
  • обрезка деревьев и устранение других опасных факторов.

Как думаете, какие нужны превентивные меры защиты от КЗ на фото ниже?

Водосточная труба, электрощиты и гофра, уходящая под плитку. Инсталляция в старой части Батуми

В серьезных организациях регулярно проводят проверку кабелей и контактов тепловизором, а также измерение сопротивления изоляции и испытания изоляции высоковольтным напряжением.

Замыкание и перегрузка

Чем отличаются эти два явления – короткое замыкание и перегрузка?

В электрической цепи можно выделить 4 принципиально разных режима, которые отличаются по току потребления:

  1. Режим холостого хода. Ток равен нулю, напряжение номинальное, потерь на проводах никаких нет. Розетка, к которой ничего не подключено, работает как источник напряжения в режиме холостого хода.
  2. Номинальный режим. Иначе – нормальный режим, когда мощность нагрузки не превышает расчетную. В этом режиме всё хорошо, мы спокойно наслаждаемся благом электрификации страны. “Просадка” напряжения если и будет, то незначительная – единицы процента.
  3. Режим перегрузки. В этом режиме ток может незначительно (на десятки процентов) либо в несколько раз (на сотни процентов) превышать номинальный. Перегрузка может произойти из-за частичного ухудшения изоляции, превышения суммарной мощности подключенных потребителей, либо из-за неисправности внутри отдельного электроприбора (например, межвитковое замыкание либо заклинивание электродвигателя, или замыкание внутри ТЭНа).
  4. Режим короткого замыкания. Это самый тяжелый, разрушительный режим с большим выделением тепла. Ток в месте замыкания – максимально возможный для данных условий. Другие побочные эффекты КЗ – понижение напряжения у других потребителей (как из-за пониженного напряжения сгорели новые немецкие холодильники на областном складе “Магнита”) и асимметрия фаз (к чему приводит асимметрия (перекос) фаз и как от этого защититься).

То есть, перегрузка от короткого замыкания отличается величиной сверхтока. При КЗ ток становится максимально возможным в данной точке цепи, а при перегрузке значение тока больше номинального, но меньше тока КЗ.

Любые токи выше номинального называются сверхтоком.

Из-за перегрузки может легко возникнуть КЗ – провода греются, изоляция плавится, и так далее, со всеми вытекающими, стреляющимися и взрывающимися последствиями.

Не стоит путать перегрузку, короткое замыкание и искрение (дуговой пробой). Если первые два понятия отличаются значением сверхтока, то при последовательном дуговом пробое (например, ослабла затяжка клеммы в розетке) действующее значение тока может быть совсем незначительным (единицы ампер), что не вызовет срабатывания ни автоматического выключателя, ни УЗО. Спасти ситуацию от пожара сможет лишь Устройство защиты от искрения (от дугового пробоя), которое ещё встречается сравнительно редко.

По таким устройствам у меня на блоге несколько статей, вот последняя на сегодняшний день.

Методы определения

Рассмотрим способы определения нулевого и заземляющего проводников, от очень простого к более сложным.

Цепь имеет защиту по дифф-току. Если весь объект или исследуемая ветка снабжены защитой по дифференциальному току — дифф-автоматом или УЗО, задача значительно упрощается. Нужно контрольный прибор, например лампа с проводниками, подключить к фазе и к одному из исследуемых проводников. Если дифф-защита не сработала, значит лампа подключена к рабочему нолю. Если происходит срабатывание УЗО при подключении лампы — вы ее подключаете к фазе и земле. Все достаточно просто и заодно проверите устройство защитного отключения на практике.

Перед выполнением такого теста нужно убедиться в работоспособности дифф-защиты, нажав кнопку «тест» на защитном аппарате. Следует отметить, что способ будет работать при условии, что ток через лампу будет превышать номинальный дифференциальный ток аппарата. То есть, при использовании лампы накаливания (энергосберегайка не подходит) сработает УЗО с током утечки 10-30 мА. Вводное УЗО на утечку 300 мА может не сработать, для надежной проверки нужно брать прибор помощнее.

Сравнение с заземляющими контактами розеток. Данный метод будет работать если на вводе стоит двухполюсный автомат, размыкающий рабочий ноль и в помещении имеются розетки с заземлением. Вводной автомат следует отключить, тем самым мы разомкнем любую связь ноля с землей. По возможности следует отключить все приборы из розеток.

Далее следует «прозвонить» мультиметром в режиме измерения сопротивления заземляющий контакт одной из розеток с исследуемыми контактами. При соединении с нулевым проводом, мультиметр должен показывать большое сопротивление, с заземляющим контактом на неизвестной точке с землей розетки сопротивление практически нулевое.

Таким способом можно заодно проверить правильность подключенных розеток: при отключенном вводном двухполюсном автомате, нулевые и заземляющие контакты прозваниваться не должны. Ну это при условии, что проводка изначально исправна и верно смонтирована.

Лезть в щит. Если предыдущие способы реализовать нет возможности, придется лезть в «начинку» электрощита. Думаю напоминать здесь о технике безопасности не стоит: ее никто не отменял. На самом деле способ достаточно прост: нужно найти нулевой проводник, уходящий в помещение и отсоединить его от клемм щита. Затем прозвонить с исследуемыми контактами: с которым будет звониться — тот и есть нулевой проводник.

В случае с щитом вполне может возникнуть сложность, когда даже в щите сложно отличить ноль от заземления. В этом случае понадобятся токовые клещи. Нужно включить напряжение и нагрузку в помещении, и исследовать клещами неизвестные проводники в щите — где будет ток, так и рабочий ноль. Обратите внимание: метод работает только в том случае, когда вы точно знаете, что один из проводников — ноль, а другой — земля.

Все вышеописанные методы работают как с заземлением, так и с «занулением»

Определить контакты при подключении электроплиты. Иногда возникает необходимость заменить розетку электроплиты, а проводка советских времен или начала 90-х, одноцветная. Для верного определения зануления электроплиты необходимо условие — двухполюсный автомат во вводном щите, отключающий и фазу, и ноль от всей квартиры.

Итак, при включенной электроэнергии определяем фазу на ичсследуемых выводах для будущей розетки — этот контакт помечаем и откидываем в сторону, далее он нам не нужен. Потом нужно определить ноль в любой розетке в квартире — так как проводка советская, земли там нет, поэтому нолем окажется тот вывод, на котором не светится отвертка-индикатор.

Теперь обесточиваем всю квартиру и мультиметром прозваниваем ноль обычной розетки с двумя оставшимися контактами на электроплиту. Тот контакт, который звонится с нолем розетки — рабочий, а тот что не звонится — зануление (земля). Если же звонятся оба контакта — нужно искать ошибки в электропроводке. При организации зануления в советское время, его присоединяли к клемме «PEN» без каких-либо коммутационных аппаратов.

Чем определяется напряжение и ток при коротком замыкании?

Выше я сказал, что КЗ может произойти в любой точке линии. Давайте разбираться, как будет зависеть ток и напряжение в зависимости от места КЗ.

Короткое замыкание – это физическое явление. Ток короткого замыкания – это параметр питающей электросети, измеряемый в амперах или килоамперах (кА).

Немецкий физик Ом со школьных лет учит нас, что напряжение и ток определяются через сопротивление цепи:

Ток короткого замыкания, как и любой ток, тоже рассчитывается по закону Ома и зависит от напряжения и сопротивления на данном участке цепи. Поскольку сопротивление проводов в реальной жизни – это не только то, что показывает мультиметр, но и индуктивная составляющая, закон Ома для тока КЗ запишем в более общем виде:

В числителе U – номинальное напряжение в сети (напряжение холостого хода на выходе трансформатора на ТП). Число, которое получается при расчетах в знаменателе – полное сопротивление цепи Z, от которого и зависит ток КЗ. Рассмотрим схему однофазного питания квартиры и реальный случай КЗ с замкнувшим феном:

Замыкание в конце питающей линии (ток КЗ минимальный)

В схеме обозначены полные сопротивления различных участков питающей сети:

  • Z1 – внутреннее сопротивление трансформатора на подстанции с учетом пересчитанного сопротивления высоковольтной части,
  • Z2 – кабельная линия от ТП к распределительному пункту (РП) многоквартирного дома,
  • Z3 – кабельная линия от РП до квартирного щитка,
  • Z4 – кабель от щитка до розетки в одной из комнат,
  • Z5 – переноска от розетки до замкнувшего фена.

Фен сгорел и устроил короткое замыкание

Вот как может выглядеть график уровня напряжения на разных участках – от клемм трансформатора на подстанции до замкнувшей вилки фена:

Понижение напряжения до нуля в результате КЗ в конце линии

Падение напряжения сопровождается выделением тепла на всех участках питающей линии. На мощных участках с большим сечением проводов доля “квартирного” тока КЗ ничтожна, поэтому там падение небольшое (участки с сопротивлением Z1, Z2).

Статья про падение напряжения. Расчет в низковольтных цепях и в цепях постоянного тока, без учета реактивной составляющей.

В связи с понижением напряжения в результате КЗ можно отметить, что это будет заметно на параллельных нагрузках, подключенных например к тому же РП. При КЗ или сильной перегрузке у одного из потребителей лампочки в соседних домах и подъездах станут гореть тусклее. Бывало?

А вот как может выглядеть изменение тока КЗ от источника до места замыкания:

Уменьшение тока при удалении от источника электроэнергии

Типичное значение тока КЗ на клеммах трансформатора мощностью до 1000 кВА, которые применяются для питания городских потребителей – порядка 10 кА. А вот в розетках наших квартир ток КЗ может составлять значение порядка 1000 А. В частном секторе и сельских районах значение тока КЗ может быть гораздо меньше – до 100 А.

Трансформатор на подстанции 10000/0,4 кВ мощностью 1000 кВА с глухозаземленной нейтралью вторичной обмотки. Примерно от таких питаются наши “районы, кварталы, жилые массивы”.

Немного теории.

Не вдаваясь в технические подробности можно сказать так, что однофазная электрическая сеть это такой способ передачи электрического тока, когда к потребителю (нагрузке) переменный ток течет по одному проводу, а от потребителя возвращается по другому проводу.

Возьмем, к примеру, замкнутую

электрическую цепь, состоящую из источника переменного напряжения, двух проводов и лампы накаливания. От источника напряжения к лампе ток течет по одному проводу и, пройдя через нить накала лампы, раскалив ее, ток возвращается к источнику напряжения по другому проводу. Так вот, провод, по которому ток течет к лампе, называют
фазным
или просто
фазой
(
L
), а провод, по которому ток возвращается от лампы, называют
нулевым
или просто
нулем
(
N
).

При разрыве, например, фазного провода, цепь размыкается, движение тока прекращается и лампа гаснет. При этом участок фазного провода от источника напряжения и до места разрыва будет находиться под током или фазным напряжением

(фазой). Остальная же часть фазного и нулевого проводов будут обесточены.

Расчетное значение тока КЗ

Как же узнать ток КЗ? Казалось бы – что трудного? Подставляем значения в формулу и считаем!

Однако, полный расчет тока КЗ весьма сложен, и ему можно посвятить курсовой, а то и дипломный проект. При этом нужно знать много исходных данных (например, мощность трансформатора на ТП и индуктивное сопротивление всех участков кабельных линий), и всё равно результат будет теоретическим, не учитывающим реальность – например, переходные сопротивления контактов. Важно учитывать и то, что при КЗ действуют две составляющие тока: апериодическая (ударная часть, наиболее мощная и непредсказуемая), действующая только в начальный момент во время переходного процесса, и периодическая, которая практически не меняет своего значения от начала до конца инцидента.

Поэтому расчеты обычно оставляют дипломникам и проектировщикам, а на практике измеряют фактический ток КЗ при помощи специальных приборов. Для более точного расчета можно воспользоваться книгами, выложенными в конце статьи, либо программами для расчета.

Обрыв нуля на входе или внутри распределительной коробки.

При обрыве нулевой жилы перед распределительной коробкой или в самой коробке проблема с нулем и работой электрооборудования будет именно в том помещении дома или квартиры, в которое распределяет напряжение данная коробка. При этом в соседних помещениях все будет работать в штатном режиме.

На рисунке выше видно, что перед левой распределительной коробкой произошел разрыв нулевой жилы провода, и фаза через нить накала лампы (нагрузку) попадает на розеточный ноль.

При поиске такой неисправности вскрывается проблемная коробка и находится скрутка общего нуля (она самая толстая в коробке). Жилы скрутки отрезаются, заново разделываются и опять скручиваются вместе.

Совет

. Если провод медный, то скрутку желательно пропаять.

Когда ноль обрывается перед распределительной коробкой, как показано на верхнем рисунке, для поиска обрыва часто приходится вскрывать в стене штробу с этим проводом, чтобы найти место повреждения.

При поиске такой неисправности сначала в коробке находят скрутку с общим нулем и раскручивают на отдельные жилы. Затем каждая нулевая жила вызванивается до розеток и до потолка. Жила, которая не прозвонится, и будет являться входящим проводом в коробку.

Далее этот провод продергивается и вскрывается штукатурка в стене для поиска места повреждения провода. Однако такая неисправность относится к разряду трудновыполнимых, потому как ковырять стену мало кто берется – проще проложить новую трассу.

Что делать, если измеренный ток КЗ слишком низкий?

Допустим, мы измерили прибором и получили значение тока КЗ в розетке (как правило, измерение проводят в самой удалённой точке). Как понять, что этот ток – слишком низкий? Это оценивается по критерию гарантированного срабатывания электромагнитного расцепителя автоматического выключателя в измеренной цепи. Логично, что для этого ток КЗ должен быть больше, чем верхний предел диапазона расцепления. Напоминаю, для характеристики “В” разброс 3…5 In, для “С” – 5…10 In, для “D” – 10…20 In. Чтобы сказать точнее, обратимся в ПУЭ (п.7.3.139):

7.3.139. В электроустановках до 1 кВ с глухозаземленной нейтралью в целях обеспечения автоматического отключения аварийного участка проводимость нулевых защитных проводников должна быть выбрана такой, чтобы при замыкании на корпус или нулевой защитный проводник возникал ток КЗ, превышающий не менее чем в 4 раза номинальный ток плавкой вставки ближайшего предохранителя и не менее чем в 6 раз ток расцепителя автоматического выключателя, имеющего обратнозависимую от тока характеристику.

При защите сетей автоматическими выключателями, имеющими только электромагнитный расцепитель (без выдержки времени), следует руководствоваться требованиями, касающимися кратности тока КЗ и приведенными в 1.7.79.

Как я понял, в первой части 7.3.139 говорится только о тепловом расцепителе – его номинальный ток должен быть по крайней мере в 6 раз меньше тока КЗ. Во второй части этого пункта, а также в п.1.7.79 говорится о максимальном времени отключения при КЗ (0,4 с), которое должно быть обеспечено только электромагнитным расцепителем. При этом четко не указано о выборе АВ с учетом его характеристики отключения.

Из-за этой расплывчатости формулировки пользуются правилом, изложенным в ПТЭЭП (проверка срабатывания защиты при системе питания с заземленной нейтралью, п.28.4), где говорится о том, что при замыкании на нулевой защитный проводник ток КЗ должен быть не менее “1,1 верхнего значения тока срабатывания мгновенно действующего расцепителя”.

То есть, для автомата В10 ток КЗ в конце линии, которую он защищает, должен быть не менее 10х5х1,1 = 55 А. Если же установлен автомат С25, ток КЗ должен быть не менее 25х10х1,1 = 275 А.

Если же ток КЗ меньше, допустимое время срабатывания отнюдь не гарантируется. Что же делать? Тут два выхода:

  1. увеличивать ток КЗ, для этого нужны затраты на прокладку новой питающей линии (по крайней мере, её самого слабого звена),
  2. уменьшать номинал автомата (например, 25 А на 16) и букву характеристики отключения (с “С” на “В”) в ущерб максимальной мощности нагрузки.

Читайте подробнее, почему для групповых автоматов всегда предпочтительнее ставить не “С”, а “В”.

Обрыв нуля во входном щитке дома или квартиры.

Во входном щитке дома или квартиры нулевой провод может оборваться на вводном автоматическом выключателе или на нулевой шине. Как правило, ослабляется винтовое соединение, из-за чего теряется контакт между проводом и зажимом, или, в редких случаях, нулевой провод обламывается на зажиме и повисает в воздухе.

Также из-за плохого контакта между зажимом и проводом происходит нагрев и обгорание провода и, как следствие, между ними образуется большое переходное сопротивление в виде нагара

, которое постепенно переходит в обрыв.

При отсутствии нуля все электрические приборы в доме работать не будут. Но если останется включенный в розетку хоть один бытовой прибор или останется включенный выключатель света, фаза через радиокомпоненты блока питания

бытовой техники или
нить накала
лампы беспрепятственно пройдет на нулевую шину, а с шины на все нулевые провода электрической проводки. И как следствие, на обоих гнездах розеток и контактах выключателей будет присутствовать фаза. Это объясняется тем, что все нулевые провода электрической проводки соединяются вместе на нулевой шине.

Для определения такой неисправности достаточно отключить из розеток все бытовые приборы и отключить все выключатели света или выкрутить лампочки. После этих действий вторая фаза из розеток и контактов выключателей пропадет. Лечится неисправность восстановлением контактов на зажимах вводного автомата или на нулевой шине.

Зачем нужно знать значения тока КЗ и сопротивления петли “Фаза-ноль”?

Я уже много чего рассказал в статье. Но какой нам толк от знания этих параметров электросети?

Знание тока КЗ (или сопротивления петли “Фаза-ноль”) и мощности нагрузки позволяет нам правильно и оптимально (по соотношениям безопасность/функциональность/надежность/цена) выбрать основные элементы энергосистемы – аппараты защиты и сечение кабелей. Далее немного подробнее.

Безопасность

Об этом я уже говорил, но повторю. Электрические сети должны быть безопасными на всех участках и во всех режимах. Для этого, кроме изоляции, применяют автоматические выключатели и устройства, управляемые дифференциальным током (УЗО). Вкупе с защитным заземлением, эти устройства защищают оборудование от КЗ и перегрузок, а человека – от опасности прямого или косвенного прикосновения.

Функциональность

Зная ток КЗ, можно выдать заключение о необходимости установки стабилизатора, или замены кабельной линии на новую. Кроме того, можно сделать вывод о селективности – можно ли её обеспечить хотя бы частично?

Надежность

В случае высокого тока КЗ необходимо применить выключатели с высокой отключающей способностью для надежного функционирования в момент КЗ. Кроме того, должны быть предъявлены высокие требования к качеству монтажа и комплектующих.

Цена

Тут понятно – выполнение предыдущих пунктов значительно влияет на цену всей электросети.

Дополнительные сведения о нахождении земли, фазы, нулевого провода

Напоминаем, рассматривались случаи, когда под рукой нет отвертки-индикатора, зато присутствуют токовые клещи, мультиметр. Затем до входа в квартиру обнаруживают землю, фазу, нулевой провод, домашняя сеть прозванивается. Жилы три, методика лежит на поверхности: меж фазой и другим проводом разность потенциалов составит 230 вольт. Обратите внимание, методика непригодна в других случаях. К примеру, разница напряжений меж двумя одинаковыми фазными жилами составляет круглый нуль. Тестером измерить и определить сложно.

Добавим другой способ — промышленностью запрещен. Лампочка в патроне с двумя оголенными проводами. При помощи инструмента находят фазу, возможно жилу замыкать на заземление. Нельзя использовать водопроводные, газовые, канализационные трубы, прочие инженерные конструкции. По правилам, оплетка кабельной антенны снабжена занулением (заземлением). Относительно нее допустимо тестером (запрещенной стандартами лампочкой в патроне) находить фазу.

Для решительных людей порекомендуем пожарные лестницы, стальные шины громоотводов. Нужно зачистить металл до блеска, звонить на участок фазу. Обратите внимание, далеко не все пожарные лестницы заземлены (хотя обязаны быть), шины громоотводов 100%. Если обнаружите столь вопиющий произвол, обратитесь в управляющие организации, при отсутствии реакции – сообщите государственным инстанциям. Указывайте нарушение правил защитного зануления зданий.

Высокий ток КЗ – это хорошо или плохо?

Как я показал на графике ранее, чем дальше место замыкания от источника питания, тем меньше будет ток короткого замыкания, поскольку сопротивление линии будет больше. Высокий ток КЗ обычно бывает в тех местах электросети, которые расположены наиболее близко к подстанции, а кабельные линии имеют большое сечение проводов. В питающих сетях с напряжением 0,4 кВ относительно высокими считаются токи КЗ более 6кА, а токи КЗ выше 15 кА практически не встречаются. Итак, что мы имеем:

Минусы низкого тока КЗ

  • большое падение напряжения при достаточно мощной нагрузке;
  • как правило, низкое напряжение на электроприборах. При этом стабилизатор поможет не всегда;
  • нестабильность напряжения на электроприборах в зависимости от времени суток или времени года. По нормам на напряжение и его допуски я провёл расследование;
  • высокое (вплоть до бесконечности) время срабатывания автоматических выключателей при КЗ на землю (работает только тепловой расцепитель);
  • необходимость установки автоматических выключателей с характеристикой отключения “В” с целью более вероятного срабатывания электромагнитного расцепителя при КЗ. Этот спорный вопрос обсуждается в моей статье на Дзене Зачем ставить автоматы с характеристикой “В”;
  • обязательная установка УЗО – при этом, кроме своих “основных” обязанностей (отключение питания при высоком токе утечки, а также для защиты человека при прямом и косвенном прикосновении), УЗО выполняет функцию защиты от КЗ на землю (ПУЭ 1.7.59, 7.1.72).

Плюсы низкого тока КЗ

  • можно устанавливать дешевые автоматические выключатели с низкой номинальной наибольшей отключающей способностью (Icn = 4500 А);
  • сравнительно легко можно обеспечить селективность между вводным и нижестоящим автоматами. Но нужен расчет и измерение точного значения тока КЗ,
  • низкий пусковой ток электродвигателей и другой инерционной нагрузки. Статья Что такое пусковой ток, как его измерить и посчитать.

Минусы высокого тока КЗ

  • невозможность обеспечить селективность между вышестоящими и нижестоящими автоматами. Выход – установка рубильника либо селективного по времени автоматического выключателя;
  • необходимость установки АВ с высокой номинальной наибольшей отключающей способностью (Icn = 6000, 10000 А и т.д.). Отключающая способность должна быть выше, чем ток КЗ в начале защищаемого участка (ПУЭ п. 3.1.3);
  • большие негативные последствия при возникновении КЗ.

Плюсы высокого тока КЗ

  • легко гарантировать стабильное напряжение на нагрузке и вообще качество электроэнергии;
  • имеется перспектива подключения новых потребителей и увеличения нагрузки;
  • гарантированное отключение линии при КЗ.

Селективность автоматических выключателей и УЗО – отдельная большая тема, в планах есть.

Резюмируя плюсы и минусы, можно сказать, что значение тока КЗ – палка о двух концах. В бытовом секторе ток КЗ часто бывает низким, и его стараются увеличить, прокладывая новые линии с высоким сечением проводов и устанавливая новые трансформаторные подстанции. В серьезной энергетике наоборот, применяют методы по уменьшению тока КЗ.

Объединение фаз от двух вводов

Чисто технически реализовать такую схему возможно. В этом случае для отключения 2-х вводов используются контакторы. Однако на каждый ввод нужен отдельный счетчик, ВРУ, автоматы, свое заземление.

Обычно так никто не делает, это просто нецелесообразно. Возникают при этом следующие вопросы:

  • Защиты.

Автоматические выключатели, подключенные параллельно, не будут действовать в качестве защиты как положено. Поэтому электрическая сеть останется незащищенной.

  • Безопасности.

Если отключится один из 2-х вводов, например, вырубит местный электрик или пожарник при тушении пожара, напряжение на ВРУ (вводно-распределительное устройство) все равно останется. Самое опасное здесь в том, что потенциал может прийти с той стороны, откуда не ждут. Все это чревато негативными последствиями для человека.

  • Согласования.

Скачать

Эта же статья, красиво свёрстанная и опубликованная в бумажном журнале “Электротехнический рынок”:
• Ток КЗ: размер имеет значение / Статья про ток КЗ, опубликованная в журнале Элек.ру, pdf, 4.45 MB, скачан: 626 раз./

Респект и уважение, если дочитали досюда и намереваетесь скачать книги по этой теме! Вы серьёзный человек!
• Шабад_М.А._Расчеты_релейной_защиты_и_автоматики / Шабад М.А. Расчеты релейной защиты и автоматики. Хорошая книга 1985 г, в которой рассказывается про устройство электросетей — от оборудования подстанций до селективности защитных автоматов, pdf, 38.87 MB, скачан: 1071 раз./ • Беляев А.В. Выбор аппаратуры, защит и кабелей 0,4 кВ / Беляев А.В. Выбор аппаратуры, защит и кабелей 0,4 кВ — книга для теоретического расчета тока короткого замыкания. СПб 2008, pdf, 17.39 MB, скачан: 839 раз./ • РД 153-34.0-20.527-98 / Руководящие указания по расчету токов короткого замыкания и выбору электрооборудования РД 153-34.0-20.527-98. Руководящие указания предназначены для использования инженерами-энергетиками при выполнении ими расчетов токов короткого замыкания (КЗ) и проверке электрооборудования (проводников и электрических аппаратов) по режиму КЗ. МЭИ, 1998, pdf, 3.61 MB, скачан: 790 раз./ • Электрическая часть электростанций и ТП / Электрическая часть электростанций и подстанций. Подробное описание схем и расчетов с примерами. Учебное пособие. Н.В.Коломиец, Томский политех, 2007, pdf, 1.37 MB, скачан: 735 раз./ • Выбор электрооборудования и расчеты трансформаторных подстанций / Выбор электрооборудования и расчеты трансформаторных подстанций среднего и низкого напряжения. АВВ, учебно-методическое пособие, pdf, 9.16 MB, скачан: 681 раз./ • Харечко В.Н., Харечко Ю.В. Автоматические выключатели модульного исполнения / Харечко В.Н., Харечко Ю.В. Автоматические выключатели модульного исполнения: Справочное пособие. В справочном пособии изложены требования ГОСТ Р 50345-99 (МЭК 60898-95) к автоматическим выключателям бытового назначения, предназначенным для защиты от сверхтока, рассмотрена конструкция автоматических выключателей, даны характеристики и приведена их классификация. Разбираются ошибки, которые частично исправлены в новой версии ГОСТ Р 50345-2010, pdf, 7.17 MB, скачан: 1102 раз./
Жду вопросов и замечаний в комментариях!

Рейтинг
( 2 оценки, среднее 4.5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]