Инструкция проведения испытаний силовых кабельных линий до 10 кВ

При эксплуатации кабельных линий электропередач большой проблемой является пробой изоляции там, где это невозможно определить ни визуальным осмотром, ни применением низковольтного мегаомметра. Наглядный пример — образование микротрещин в изоляции кабеля, которые заполняются влагой. Когда такие трещины не доходят от внешней поверхности кабеля до токопроводящей жилы, мегаомметр не может определить их наличие. В то же время, между трещиной, заполненной влагой, и токопроводящей жилой есть тонкий слой изоляции. При подаче рабочего напряжения этот тонкий слой изоляции не выдерживает и происходит пробой.

Поэтому кабели тестируют под напряжением выше номинального, что позволяет выявить скрытые дефекты. Правила испытаний описаны в действующем ПУЭ-7.

Для кабелей на напряжение, не превышающее 1 кВ, применяется только измерение сопротивления изоляции высоковольтным (на 2,5 кВ) мегаомметром. При этом оно не должно быть меньше 0,5 МОм. Исключение составляют лишь кабели на 1 кВ с пластмассовой изоляцией — они испытываются повышенным напряжением (см. табл. № 1).

Для кабелей на напряжение свыше 1 кВ используется испытание повышенным напряжением выпрямленного тока (использование в ПУЭ-7 термина «выпрямленного тока» связано с тем, что на практике применяются выпрямители без фильтров, то есть на выходе у них есть пульсации) согласно табл. № 1. Для кабелей в бумажной и пластмассовой изоляцией до 35 кВ длительность испытания составляет 10 мин., для кабелей с резиновой изоляцией на 3 – 10 кВ — 5 мин, для кабелей с любым типом изоляции на 110 – 500 кВ — 15 мин.

Таблица № 1. Испытательные напряжения выпрямленного тока для различных типов силовых кабелей

Кабели с бумажной изоляцией на напряжение, кВ
2 3 6 10 20 35 110 150 220 330 500
12 18 36 60 100 175 285 347 510 670 865
Кабели с пластмассовой изоляцией на напряжение, кВ Кабели с резиновой изоляцией на напряжение, кВ
1 3 6 10 110 3 6 10
5 15 36 60 285 6 12 20

Если речь идет о кабеле в пластмассовой изоляции, не имеющем брони и расположенном на открытом пространстве, то его испытывать выпрямленным напряжением не требуется.

Кабели на 110 – 500 кВ с изоляцией любого типа, можно испытывать не только выпрямленным, но и переменным напряжением частотой 50 Гц. В таком случае эффективное значение напряжения должно составлять 1,73 от указанного в документации для данного кабеля номинального значения напряжения. Сопротивления изоляции кабеля нужно измерять специальным мегаомметром, который дает разницу потенциалов на измерительных клеммах, равную 2,5 кВ. Измерения делаются до и после испытаний на пробой, по ним делаются выводы о состоянии изоляции. Но как трактовать результаты измерений, если для кабелей на напряжение свыше 1 кВ в ПУЭ-7 не нормируется значение сопротивления изоляции? Есть два варианта. Первый — следует или ориентироваться на характеристики, заявленные производителем кабеля. Если же таковых нет, то переходим ко второму варианту. Нужно воспользоваться эмпирическим правилом — данное сопротивление должно быть не менее 10 МОм.

Для кабелей на напряжение от 6 до 35 кВ нормируются ток утечки. Кроме этого, может нормироваться асимметрия токов утечки для нескольких жил в кабеле (отношение между минимальной и максимальной утечками тока). При испытаниях на наличие дефектов в изоляции важно не столько абсолютное значение тока утечки, сколько динамика его изменения за время испытаний. Если изоляция исправна, то ток должен быть стабильным, обнаруживая небольшую тенденцию к снижению. Возможно в самом начале возникновение всплеска тока утечки, который, на самом деле, связан с зарядом паразитной емкости кабеля. Если во время испытаний ток увеличивается, то это свидетельствует о возможном наличии дефектов изоляции. При колебаниях значения тока время испытаний увеличивают до момента, когда направление изменения тока стабилизируется и станет ясна ситуация с состоянием изоляции, но не более 15 минут. Нормы ПУЭ-7 по токам утечки и коэффициенту асимметрии приведены в табл. №2.

Таблица № 2. Токи утечки и коэффициенты асимметрии для силовых кабелей

Кабель напряжением, кВ Испытательное напряжение, кВ Допустимое значение тока утечки, не более, мА Допустимое значение коэффициента асимметрии (Imax/Imin), не более
6 36 0,2 8
10 60 0,5 8
20 100 1,5 10
35 175 2,5 10

Прошло или не прошло испытание

  • процесс проведен без возникновения пробоев, также, если не были перекрыты поверхностные разряды снаружи;
  • ток, утекающий при проведении испытания, не увеличивается в своих показателях;
  • величина, которую показало сопротивление на изоляции кабеля, не изменилась в меньшую сторону.

Нередко приходится сталкиваться и с тем, что токи, вытекающие при испытании, могут иметь значение, которое на порядок превосходит те, что указаны в таблицах как стандартные. Если такое случилось, кабель можно использовать, но срок его службы значительно снизится.

Условия испытаний

4.1. Испытания кабельных силовых линий до 10 кВ разрешается проводить только при положительных температурах. В холодный период (на морозе) возможно появление внутри изоляции (в кабельной структуре) наледи или льда. Такая ситуация не позволяет получать достоверные параметры, так как замерзшие частицы воды являются диэлектриком.

4.2. Перед началом испытаний проверьте влажность и наличие конденсата на жилах силовых кабелей. Присутствие частиц воды может спровоцировать пробой изоляции, что чревато выходом из строя не только испытуемых электроустановок или другой аппаратуры, но и испытательного оборудования.

4.3. Перед испытаниями кабельные воронки тщательно очистите от пыли, влаги и других загрязнений.

4.4. Атмосферное давление не влияет на текущие параметры СКЛ. При этом его величина должна фиксироваться в протоколе испытаний.

Определение электрической рабочей емкости жил.

Производиться для линий 35 кВ и выше. Измеренная емкость, приведенная к удельным величинам, не должна отличаться от результатов заводских испытаний более чем на 5%.

Измерение емкости кабельных линий производится методом амперметравольтметра или по мостовой схеме.

Метод амперметра-вольтметра. позволяет с большой точностью определять емкости со значениями C≥0,1 мкФ, что соответствует параметрам кабелей. Схема измерения по данному методу представлена на рис. 2.

По результатам измерения напряжения и тока емкость, мкФ, вычисляется по формуле

где: I — емкостной ток, А; U — напряжение на кабеле, В; f — частота напряжения в сети, Гц.

По данным измерения определяется удельная емкость кабеля, мкФ/км

В том случае, когда измерение методом амперметра-вольтметра требует специального оборудования и приборов, желательно применение мостового метода.

При измерении мостовым методом используются мосты переменного тока типа МД-16, P5026, P595 и др. Измерения производятся по перевернутой схеме (о порядке измерения следует руководствоваться указаниями). При выборе средств измерения следует учитывать, что удельные погонные емкости кабелей 35 кВ и выше составляют десятые доли мкФ/км, а пределы измерения емкости мостами переменного тока находятся в диапазонах:

мост Р5026 на напряжении 3-10 кВ — 10 ÷1 мкФ, на напряжении менее 100 В — 6,5·10-4÷5·102 мкФ;

мост МД-16 на напряжении 6-10 кВ – 0,3·10-4 ÷0,4 мкФ, на напряжении 100 В — 0,3 · 10-3 ÷100 мкФ;

мост P595 на напряжении 3-10 кВ –3·10-5 ÷1 мкФ, на напряжении менее 100 В – 3 · 10-4 ÷102 мкФ.

Функция прожига

После того, как высоковольтные испытания показали наличие дефектов, определяют места повреждения изоляции. Приборы, обнаруживающие такие повреждения, способны точно указать место, если сопротивление между жилами кабеля составляет менее 1 кОм. Чтобы обеспечить такое сопротивление, применяется прожиг — изменение напряжения и тока, подаваемого на жилы кабеля по определенному алгоритму с целью полного разрушения изоляции жил в месте, где наличествует дефект. В идеале, после прожига, две жилы соединяются между собой металлическим «мостиком». Помимо специального оборудования, функция прожига присутствует в некоторых моделях приборов для испытания изоляции кабелей.

Типичные повреждения кабелей

Проверка повышенным напряжением позволяет выявить в высоковольтных линиях следующие распространенные типы дефектов:

  • обрывы (в том числе отдельных жил) без заземления;
  • обрывы одной либо нескольких жил с их заземлением;
  • обрывы одной либо нескольких жил, с заземлением целых жил;
  • короткое замыкание между жилами либо на землю, происходящее в результате старения изоляционного покрытия либо коррозии металлических оболочек;
  • механические повреждения (наиболее частые для кабелей, пролегающих в грунте);
  • утечка масла из маслонаполненных кабелей;
  • другие виды повреждений, в том числе множественные нарушения целостности изоляции либо обрывы жил на всем протяжении кабеля.

Среди всех этих дефектов наибольшее распространение имеют однофазные повреждения — при них одна их токопроводных жил замыкается на экранирующую оболочку кабеля. В свою очередь, межфазные нарушения (при котором несколько жил оплавляются и свариваются вместе (а часто — и с экранирующей оболочкой) составляют не более 20% от всех повреждений.

Если рассматривать причины, по которым возникают подобные дефекты, то можно выделить следующие:

  • ошибки проектирования (например — заниженная площадь сечения жил);
  • заводской брак (неравномерная изоляция, заусенцы на токоведущих жилах и другие);
  • механические повреждения при прокладке;
  • нарушения при монтаже муфт;
  • повреждения кабеля в ходе эксплуатации.

В любом случае, для того, чтобы избежать разрушения кабеля во время эксплуатации и вовремя выявить его повреждения, и проводятся испытания с применением повышенного напряжения.

Испытание кабелей с изоляцией из сшитого полиэтилена

Особенности кабелей СПЭ диктуют иной подход к испытаниям. Известно, в том числе и по данным ВНИИКП, что кабели СПЭ при работе на переменном напряжении имеют значительно большую электрическую прочность по сравнению с ПБИ. Поэтому проблемы при испытаниях СПЭ-кабелей переменным напряжением 50 Гц такие же, и даже большие, чем для ПБИ кабелей. Однако использование для испытаний СПЭ-кабелей повышенного постоянного напряжения не допустимо, поскольку под его воздействием в основной изоляции кабелей зарождаются дефекты, приводящие к его быстрому выходу из строя. Решение этой проблемы оказалось одновременно простым и оригинальным. Выяснилось, что можно использовать переменное напряжение сверхнизкой частоты (СНЧ), порядка 0,05…0,1Гц. Практически это можно интерпретировать как постоянное напряжение, меняющее свою полярность медленно, с периодом в несколько секунд. Использование такого рода испытательного напряжения не приводит к вредным последствиям для СПЭ кабеля. Главное, что дает такой подход – возможность использовать для испытаний маломощные испытательные установки. Причем, чтобы обеспечить испытания СПЭ-кабелей большой протяженности, достаточно просто уменьшить частоту напряжения. Современные испытательные СНЧ установки имеют такую возможность.

Допустимая величина испытательного напряжения СПЭ кабелей существенно меньше, чем для ПБИ. Это объясняется тем, что СПЭ кабели имеют значительно меньшую по сравнению с ПБИ кабелями электропрочность по постоянному напряжению. Предлагаемые сегодня рынком высоковольтные СНЧ установки существенно дороже испытательных установок, используемых для ПБИ кабелей. Во многом стоимость связана с мощностью установок которая, в свою очередь, определяет возможную длину тестируемых линий. При этом импортные модели в разы дороже отечественных.

Из всего вышеизложенного видно, что испытания ПБИ и СПЭ кабелей радикально отличаются как по роду используемого испытательного напряжения (постоянное, переменное), так и по его уровню. Для ПБИ кабелей уровень испытательного напряжения значительно больше.

Как в таком случае испытывать линии состоящие из этих двух видов кабелей?

Существующие нормы

Сколько времени занимает проверка прочности изоляции силовых кабелей? Для кабелей, имеющих бумажную и пластмассовую изоляцию, нужно 10 минут времени после монтажа, а при эксплуатации – всего 5 минут. Столько же минут требуется для кабеля, у которого изоляция выполнена из резины.

АИИ-70
Для проверки на прочность электроизоляции используются аппараты АИИ-70 и ИВК-5, при этом на выездных работах чаще применяется последний из них.

О том, как правильно проводить испытания повышенным напряжением, можно представить на примере силового кабеля марки ААШВ с сечением провода 3 на 95. Используя один из вышеупомянутых агрегатов, можно при скорости тока 1-2 кВ всего за одну секунду повысить номинальное напряжение до отметки в 60 кВ. После этого начинают отсчитывать время для прохождения испытаний.

Когда завершаются высоковольтные испытания оболочки кабеля, обычно вновь делают замеры для определения сопротивления всей изоляции.

Документальное оформление результатов испытаний

На каждую кабельную линию, находящуюся в эксплуатации должен быть оформлен паспорт, который содержит следующую информацию:

  • наименование предприятия – владельца и его подразделения (отдела, цеха);
  • диспетчерское наименование кабельной линии и схема её прокладки;
  • технические данные линии — протяжённость, марка и сечение кабеля, сведения о соединительных и концевых муфтах с указанием времени их монтажа;
  • информация об испытаниях — когда проводилось испытание или замер сопротивления изоляции кабеля, к паспорту прикладывается протокол измерения сопротивления изоляции;
  • сведения о случаях повреждений и выполненных ремонтных работах.

Результаты высоковольтных испытаний оформляются протоколом установленной формы. В протоколе указывается информация об испытываемом кабеле — марка, сечение, откуда и куда он проложен. По каждой фазе фиксируется сопротивление изоляции кабеля, измеренное до и после испытания. Также приводятся условия проведения испытаний — значение испытательного напряжения, время испытания и зафиксированный ток утечки в миллиамперах. Приводится перечень приборов, которыми производились измерения и тип испытательной установки.

В конце даётся заключение о пригодности линии к эксплуатации.

Испытание повышенным напряжением выпрямленного тока.

Силовые кабели напряжением выше 1 кВ испытываются повышенным напряжением выпрямленного тока.

Величины испытательных напряжений и длительность приложения нормированного испытательного напряжения приведены в таблице 5.

Таблица 5. Испытательные напряжения выпрямленного тока для силовых кабелей

Тип кабеляИспытательные напряжения, кВ; для кабелей на рабочее напряжение, кВПродолжительность испытания, мин
236101035110220
Бумажная1218366010017530045010
Резиновая марок ГТШ, КШЭ, КШВГ, КШВГЛ, КШБГД6125
Пластмассовая1510

Методика проведения испытания повышенным напряжением выпрямленного тока, а также установки и оборудование для испытания представлены испытаниях изоляции электрооборудования повышенным напряжением.

При испытании напряжение должно плавно подниматься до испытательной величины и поддерживаться неизменным в течение всего периода испытания. Подъем испытательного напряжения для кабельных линий напряжением до 10 кВ осуществляется в течение 1 мин, а для кабельных линий 20-35 кВ — со скоростью не более 0,5 кВ/с.

В случае, если контроль над испытательным напряжением осуществляется по вольтметру, включенному на первичной стороне повышающего трансформатора, то в результаты измерения может вноситься некоторая погрешность за счет падения напря жения в элементах испытательной схемы, в частности, в кенотронах.

Измерение токов утечки кабеля 3-10 кВ при испытаниях повешенным выпрямленным напряжением производиться с помощью микроамперметров, включенных или на стороне высокого напряжения испытательной установки, или в нуль испытательного трансформатора. При применении последней схемы измерения токов утечки возможно искажение отсчета за счет паразитных токов утечки.

При испытаниях силовых кабельных линий повышенным выпрямленным напряжением оценка их состояния производится не только по абсолютному значению тока утечки, но и путем учета характера изменения тока утечки по времени, асимметрии токов утечки по фазам, характера сохранения и спада заряда и т.п. В эксплуатации принято, что кабельная линия может быть введена в работу, если токи утечки имеют стабильное значение, но не превосходят 300 мкА для линий с номинальным напряжением до 10 кВ. Для коротких кабельных линий (длиною до 100 м) без соединительных муфт допустимые токи утечки не должны превышать 2-3 мкА на 1кВ испытательного напряжения. Асимметрия токов утечки по фазам не должны превышать 8-10 при условии, что абсолютные значения токов не превышают допустимые.

Для исправной изоляции силового кабеля ток утечки спадает в зависимости от длительности приложения испытательного напряжения, и тем больше, чем лучше каче ство изоляции. У силового кабеля с дефектной изоляцией ток утечки увеличивается во времени. При заметном нарастании тока утечки при испытании силового кабеля про должительность испытания увеличивается до 10-20 мин. При дальнейшем нарастании утечки, если оно не вызвано дефектами концевых разделок, испытание должно вестись до пробоя изоляции кабеля.

При испытаниях напряжение от выпрямленной установки подводится к одной из жил испытуемого кабеля. Остальные жилы испытуемого кабеля, а также все жилы других параллельных кабелей данного присоединения должны быть надежно соединены между собой и заземлены. У трехжильных кабелей испытанию подвергается изоляция каждой жилы относительно оболочки и других заземленных жил. У однофазных кабелей и кабелей с отдельно освинцованными жилами испытывается изоляция жилы относительно металлической оболочки.

Кабель считается выдержавшим испытания, если не произошло пробоя, не было скользящих разрядов и толчков тока утечки или его нарастания, после того как он дос тиг установившейся величины.

После каждого испытания цепи кабельной линии ее необходимо разрядить по приведенной методике.

Цены на электроизмерительные работы «ПРОФЭНЕРГИЯ»:

Услуги Единица измерения Стоимость за единицу измерения, руб.
Электроустановки свыше 1000 В до 35кВ
Проверка соответствия смонтированной электроустановки требованиям документации проектной документации осмотр От 3000
Проверка наличия цепи между заземлителями и заземляемыми элементами точка От 25
Испытание предохранителей, предохранителей–разъединителей напряжения свыше 1 кВ. Шт. От 490
Испытание силовых кабельных линий напряжением до 20 кВ. Шт. От 9500
Испытание силовых кабельных линий с изоляцией из сшитого полиэтилена напряжением до 35 кВ. Испытание От 8000
Испытание силовых трансформаторов, автотрансформаторов, масляных реакторов и заземляющих дугогасителей номинальным напряжением до 35кВ. мощностью до 63000 кВа Шт. От 15000
Испытание КРУ и КРУН. Шт. От 14900
Испытание масляных, воздушных, вакуумных выключателей, разъединителей, короткозамыкателей и отделителей. Шт. От 1400
Испытание комплекторных токопроводов (шинопроводов). Шт. От 2500
Испытание сборных и соединительных шин. Шт. От 2500
Испытание вентильных, трубчатых разрядников и ограничителей перенапряжения. Шт. От 4000
Испытание вводов и проходных изоляторов. Шт. От 5000
Испытание подвесных и опорных изоляторов Шт. От 6000
Испытание сухих токоограничивающих реакторов. испытание Испытание От 5000
Ревизия ячеек (проверка и наладка релейной аппаратуры) Комплекс От 15000
Испытание электродвигателей переменного тока номинальным напряжением до 20 кВ. Комплекс От 20000
Проверка РУ и их присоединений Комплекс От 10000
Испытания электрооборудования повышенным напряжением 1кВ промышленной частоты Измерение От 500
Испытание синхронных генераторов и компенсаторов Измерение От 8000
Испытание измерительных трансформаторов тока Испытание От 5000
Испытание измерительных трансформаторов напряжения Испытание От 3500
Испытание сухих токоограничивающих реакторов. Испытание От 4500
Испытание конденсаторов. Шт. От 1800
Испытание трансформаторного масла Проба (1 литр) От 8000
Испытание ЛЭП напряжением выше 1 кВ Комплекс От 20000
Комплексные испытания
Проведение электроизмерительных работ с оформлением технического отчета

от 1000В до 35кВ

Приемосдаточные испытания. Комплекс работ От 20000
Эксплуатационные испытания. Комплекс работ От 20000
Для целей сертификации Комплекс работ От 8000
Выезд инженера Выезд Бесплатно
Составление однолинейных схем Шт. От 2000
Составление паспорта заземляющего устройства Шт. От 10000

Места дефектов изоляции также определяются в 2 стадии. Вначале выполняется предварительная локализация посредством петлевого метода и прецизионного моста, а затем – точное выявление дефектных мест при помощи методики шагового напряжения.

Для выявления мест повреждений самих жил используются различные технологии:

  • для 3-жильного кабеля – прожиг;
  • для начальной локализации – беспрожиговые методы;
  • для высокоточного выявления дефектов – акустический способ.

Своевременное проведение испытаний высоковольтных линий нужно для повышения надежности электросетей и увеличения срока их бесперебойного использования.

Проведение электроизмерительных работ с оформлением технического отчета

от 1000В до 35кВ

Приемосдаточные испытания. Комплекс работ От 20000
Эксплуатационные испытания. Комплекс работ От 20000
Для целей сертификации Комплекс работ От 8000
Выезд инженера Выезд Бесплатно
Составление однолинейных схем Шт. От 2000
Составление паспорта заземляющего устройства Шт. От 10000

Современные электротехнические возможности позволяют обеспечивать энергией любые объекты народного хозяйства. Ввиду плотности застройки городской инфраструктуры, а также по причине минимального расстояния между промышленными и производственными предприятиями, линии электропередач оснащаются силовыми кабелями высокого напряжения. При распределении на точки потребления онj трансформируется до нужного уровня.

Начало работ

Проводится испытание после подачи более высокого напряжения, но ток при этом обязан быть выпрямленным. Он должен прикладываться ко всем частям силового кабеля к каждому по отдельности. При этом всё, к чему напряжение не приложено, должно иметь заземление, а именно:

  • незадействованные жилы;
  • металлозащита;
  • экранирующая поверхность.

Так реально определить, прочна ли изоляция между какой-то жилой и поверхностью земли, ну и конечно, также и в отношении прочих фаз.

Если кабель не имеет брони и не экранирован, то напряжение прикладывается между нужной жилой и другими частями, которые имеют связь между собой и заземлением.

Можно взять одновременно все фазы в кабеле, сколько бы их не было, и проверить все сразу повышенным напряжением, но тогда по каждому проводу надо точно измерить значение токов утечки. Если у силового кабеля имеется всего-навсего одна фазная жила, при этом защищенная броней или экранирующей поверхностью (выполненной из сшитого полиэтилена), то данное напряжение здесь нужно приложить между одной из жил и оболочкой, в последнем случае это будет металлозащита или экранированное покрытие.

Силовой кабель совсем обесточивается от подключенной к нему аппаратуры или присоединенных шин, его провода разделяются и отводятся в стороны на 15 см.

Периодичность испытаний в процессе эксплуатации.

Кабели напряжением 2-35кВ:

а) 1 раз в год – для кабельных линий в течение первых 2 лет после ввода в эксплуатацию, а в дальнейшем:

  • 1 раз в 2 года – для кабельных линий, у которых в течение первых 2 лет не наблюдалось аварийных пробоев и пробоев при профилактических испытаниях, 1 раз в год для кабельных линий, на трассах которых производились строительные и ремонтные работы и на которых систематически происходят аварийные пробои изоляции;
  • 1 раз в 3 года – для кабельных линий на закрытых территориях (подстанции, заводы и т.д.);во время капитальных ремонтов оборудования для кабельных линий, присоединённых к агрегатам, кабельных перемычек 6-10кв между сборными шинами и трансформаторами в ТП и РП;

б) Допускается не проводить испытание:

  • Для кабельных линий длиной до 100 метров, которые являются выводами из РУ и ТП на воздушные линии и состоящих из двух параллельных кабелей;
  • Для кабельных линий со сроком эксплуатации более 15 лет, на которых удельное число отказов из-за электрического пробоя составляет 30 и более отказов на 100 километров в год;
  • Для кабельных линий, подлежащих реконструкции или выводу из работы в ближайшие 5 лет;

в) Допускается распоряжением технического руководителя предприятия устанавливать

другие значения периодичности испытаний и испытательных напряжений:

  • Для питающих кабельных линий на напряжение 6-10кВ со сроком эксплуатации более 15 лет при числе соединительных муфт более 10 на 1 километр длины;
  • Для питающих кабельных линий на напряжение 6-10кВ со сроком эксплуатации более 15 лет, на которых смонтированы концевые заделки только типов КВВ и КВБ и соединительные муфты местного изготовления, при значении испытательного напряжения не менее 4Uн и периодичности не реже 1 раза в 5 лет.
  • Для кабельных линий напряжением 20-35кВ в течение первых 15 лет испытательное напряжение должно составлять 5Uн, а в дальнейшем 4Uн.

6.3.8 Кабели на напряжение 3-10кВ с резиновой изоляцией:

  • в стационарных установках – 1 раз в год;
  • в сезонных установках – перед наступлением сезона;
  • после капитального ремонта агрегата, к которому присоединен кабель.

Зачем проводятся испытания

В течение длительной эксплуатации кабельные линии неизбежно подвергаются внешнему воздействию.

К факторам, определяющим износ КЛ, относятся:

  • резкая амплитуда сезонных температур;
  • активность грунтовых вод;
  • чрезмерная атмосферная активность (особенно опасен ледяной шторм);
  • подвижность почвы.

Кроме того, губительное воздействие оказывает постоянная перегрузка линий. По мере изнашивания изоляционного слоя КЛ постепенно теряет свои изначальные эксплуатационные характеристики.

Чтобы внешние факторы не оказывали разрушающего воздействия, рекомендуется систематически проводить испытание кабельных линий повышенным напряжением. Грамотная организация испытаний обеспечивает безупречное функционирование сетей, а также минимизацию аварийных и нештатных ситуаций.

Разновидности испытаний

Первое, что следует установить — это сопротивление изолирующей оболочки кабеля. Измерения в данном случае проводятся при помощи мегомметра при подаче тока напряжением 2.500 В. При этом, сопротивление должно составлять: для линий до 1.000 В — не менее 500 кОм, а для линий более 1.000 В — не менее 10 МОм.

Испытание кабеля повышенным напряжением

Следующий тест — это проверка подачей завышенного напряжения. При этом проводится измерение сопутствующих токов утечки, определяют их характер и фазовую асимметричность. Применение подобного метода позволяет выполнить проверку целостности и однородности кабеля заметно точнее, чем мегомметром (а для некоторых типов дефектов такая проверка является единственно возможной).

Перед ее началом выполняют заземление оболочки кабеля, а также всех его жил, кроме тестируемой. В зависимости от рабочего вольтажа линии и материала ее изоляции, величина повышенного напряжения, а также время его подачи для определения пробоя является различной (для правильного выбора подаваемого напряжения и времени можно воспользоваться таблицей).

Также следует помнить, что если тестируемый кабель расположен параллельно с другим, то следует выполнить его фазировку. Для этого на один из концов кабеля подают рабочее напряжение, а на другом выполняют его замер.

Следующий вид проверок — это контроль маслонаполненных линий. При нем осуществляется ряд замеров жидкости: на соответствие рабочим характеристикам и на отсутствие нерастворимых газов (количество последних не должно быть более 0,1%), а для линий выше 110 кВ — и растворимых.

Проверка изоляции кабеля

Проверка высоковольтной линии на целостность может осуществляться и при помощи омметра. Для этого определяют одну из жил (заведомо целую) и ведут дальнейшие замеры относительно нее (при этом определяют сопротивление цепей остальных замкнутых жил).

Также, выполняют промер распределения силы тока в жилах. При этом величина неравномерности при исправном кабеле но должна превышать 10%.

Методика проверки кабелей

На кабельных линиях с рабочим напряжением от 20 кВ проводят определение значения электроемкости. Выполняется это либо с помощью использования мостовой схемы либо при помощи вольтамперметра.

Метод амперметра-вольтметра

Высоковольтные кабели в пластиковой изоляции тестируют подачей завышенного выпрямленного напряжения в течение 1 минуты.

Оболочки кабелей в металлической броне проверяют на наличие очагов коррозии.

Также, периодически выполняется контроль соединительных муфт, заделок, конструкций кабельных колодцев и других технических элементов.

Способы испытаний

7.1. Контроль целостности, одноименности и чередования фаз жил СКЛ:

7.1.1. Проверка целостности, одноименности и чередования жил силовых линий проводится после завершения монтажных работ или переустановки муфт. Если испытание выполняется в процессе эксплуатации — предварительно отсоедините жилы силового кабеля от шин ТП или РУ.

7.1.2. Целостность жил проверяйте с помощью мегаомметра.

7.1.3. После подключения СКЛ к сети протестируйте правильность чередования фаз. Суть выполнения фазировки состоит в проверке соответствия фаз на шинах распределительного устройства, одноименным жилам на другом конце подключенного к ним силового кабеля.

7.1.4. Фазировку СКЛ 6 или 10 кВ выполните с использованием указателя напряжений, укомплектованного добавочным сопротивлением (Рис.1):

Рис.1. Фазировка СКЛ 6 или 10 кВ под напряжением.

а) фазы шин и кабеля соответствуют; б) фазы шин и кабеля в месте присоединения СКЛ не соответствуют; 1 — указатель напряжения; 2 — трубка сопротивления; 3 — жилы; 4 — шины; 5 — оконцовка; 6 — СКЛ; 7 — разъем шинного спуска.

7.2. Тестирование изоляции

7.2.1. Проверку изоляции силового кабеля путем измерения сопротивления выполните при полностью отключенной СКЛ.

7.2.2. Перед проверкой убедитесь в надежности заземления воронок и брони. Затем их подключите «крокодилами» (особыми зажимами) к мобильному заземлению. Обратный конец силового кабеля оставьте свободным.

7.2.3. Концы жил разведите в стороны не ближе 150–200 мм друг от друга.

7.2.4. Когда не представляется возможным развести концы жил друг от друга более 150 мм или если они расположены близко к заземленным элементам оборудования, изолируйте концы жил защитными накладками либо колпаками.

7.2.5. Убедитесь в отсутствии напряжения на объекте. Удалите пыль и другие загрязнения с изоляции кабеля.

7.2.6. Соедините контакты мегаомметра с тестируемым силовым кабелем или электроустановкой с помощью раздельных проводов, сопротивление изоляции которых не менее 100 МОм.

7.2.7. Сделайте замеры при устойчивом положении стрелки прибора. В течение 1 минуты равномерно вращайте рукоятку генератора с темпом 120 об/мин. Параметры сопротивления фиксируйте по показаниям стрелки.

7.2.8. Измерьте поочередно сопротивление изоляции всех жил, предварительно соединив свободные концы с переносным сопротивлением, руководствуясь следующей схемой (Рис.2):

Рис.2. Схема замеров параметров сопротивления изоляции СКЛ.

7.2.9. В аналогичном порядке выполните замеры сопротивления изоляции СКЛ и контрольных кабелей. При этом замеры производите между всеми парами жил:

  • фаза — фаза;
  • фаза — ноль;
  • фаза — защитный проводник;
  • нуль — защитный проводник.

При измерении разрешается объединять рабочий ноль с нулем защитного проводника. Измерение сопротивления изоляции четырехжильного силового кабеля выполните относительно заземленных элементов электроустановки.

7.2.10. Перед каждым замером обязательно разрядите силовую линию путем соединения металлических частей с землей на время не менее 2 минут. Величина сопротивления изоляции кабеля до 1 кВ должна быть более 0,5 МОм. Для линий от 1 кВ параметры сопротивления изоляции не регламентируются. Замеры выполните как до, так и после испытаний СКЛ повышенным напряжением.

7.3. Испытания СКЛ повышенным напряжением постоянного тока (ПНПТ)

7.3.1. Испытания силовых линий ПНПТ требуются для обнаружения локальных трещин, эрозии, газовых включений, других сосредоточенных дефектов, выявить которые в процессе замеров мегаомметром не удается.

7.3.2. Чтобы определить местоположение структурных повреждений, доведите их до пробоя высоким напряжением. Для этого используйте специальную установку «АИД-70» или ее аналог.

7.3.3. Испытания проведите в порядке, аналогичном замерам сопротивления изоляции с применением мегаомметра. Приложите поочередно напряжение ко всем фазам, предварительно заземлив другие жилы и изолирующий экран кабеля согласно следующей схеме (Рис.3):

Рис.3. Испытание СКЛ ПНПТ.

7.3.4. Разрешается не тестировать оболочки воздушных одножильных трасс без брони или металлических экранов.

7.3.5. Изолирующие оболочки одножильных СКЛ с металлическими экранами или броней испытываются между жилами и экранами.

7.3.6. Оболочки многожильных силовых линий без брони или экранов тестируйте между каждой жилой и остальными проводниками, объединенными друг с другом и заземлением.

7.3.7. Испытание оболочек многожильных СКЛ с общим экраном (броней) выполните между всеми жилами и остальными проводниками, объединенными между собой и броней (оболочкой, экраном).

7.3.8. Вышеперечисленные испытания выполняйте только после предварительного заземления брони, оболочки или экрана.

7.3.9. Пластмассовые изоляции силовых трасс, проложенных в земле, испытывайте между отсоединенными от заземления оболочками (экранами) и землей.

7.3.10. Параметры испытательных напряжений указаны в таблице №2:

тип силового кабеля, кВменее 1*610
бумажная изолирующая оболочка
П63660
К2,5
М
пластиковая изолирующая оболочка
П3,53660
К
М
резиновая изолирующая оболочка
П61220
К
М6*12*20*

Т. №2. Испытательное напряжение для СКЛ, кВ

* — разрешено не проводить испытания воздушных одножильных силовых линий с пластиковой оболочкой без экранов (брони); ** — после ремонтных работ без перемонтажа СКЛ, оболочка тестируется напряжением 2,5 кВ с помощью мегаомметра. В этом случае разрешается не проводить испытание повышенным напряжением постоянного тока.

7.3.11. В процессе приемо-сдаточных испытаний силовой трассы до 10 кВ с бумажными или пластиковыми оболочками длительность воздействия высокого испытательного напряжения 10 минут. При тестировании эксплуатируемого силового кабеля — 5 минут. СКЛ 6–10 кВ с резиновыми оболочками испытываются в течение 5 минут.

7.3.12. Допустимые токи утечек (ДТУ) с учетом параметров испытательного напряжения и допустимые коэффициенты асимметрии (ДКА) указаны в таблице №3.

СКЛ, кВнапряжение, кВДТУ, мАДКА
6360,28
10450,3
500,5
60

Т. №3. Допустимые токи утечки и коэффициенты асимметрии для СКЛ.

7.3.13. Периодичность испытаний СКЛ в процессе эксплуатации:

  • кабельные трассы 2–35 кВ: 1 раз в 12 месяцев в период первых 24 месяцев после ввода силовой трассы в эксплуатацию;
  • 1 раз в 24 месяца после 2 лет эксплуатации силовой линии, если на трассе не было аварийных пробоев, в том числе и в процессе профилактических (плановых) электроиспытаний;
  • 1 раз в 12 месяцев, когда на линии проводились строительные или монтажно–ремонтные мероприятия, либо на трассе регулярно случаются аварийные пробои оболочек;
  • 1 раз в 36 месяцев для силовых линий, проложенных на закрытой территории (подстанция, завод, др.);
  • 1 раз в 36 месяцев в процессе капремонта электрооборудования кабельных трасс, подключенных к электроустановкам;
  • 1 раз в 36 месяцев в процессе капитального ремонта перемычек 6–10 кВ, смонтированных между трансформаторами и шинами РП или ТП;
  • разрешается не выполнять испытания:
      силовых линий до 100 м на базе 2 параллельных кабелей, обеспечивающих выводы на воздушные трассы из ТП или РУ;
  • силовых трасс с периодом эксплуатации более 15 лет при условии, что количество отказов в год, спровоцированных пробоями, не превышает 30 на 100 км;
  • силовых линий, запланированных для реконструкции или вывода из эксплуатации в течение следующих 5 лет;
  • разрешено техническим руководителям предприятий изменять параметры испытательных напряжений и сроки испытаний для следующих СКЛ:
      питающие линии 6–10 кВ с количеством муфт более 10 на участке 1 км в период эксплуатации более 15 лет;
  • 1 раз в 5 лет для питающих трасс 6–10 кВ с концевыми заделками исключительно КВБ или КВВ, а также с муфтами местного производства при величине испытательных напряжений до 4 Uн;
  • силовые линии 20–35 кВ в период первых 15 лет испытываются напряжением 5Uн, затем разрешается снижение до 4Uн;
  • кабельные линии 3–10 кВ в резиновых оболочках испытываются:
      1 раз в 12 месяцев — силовые трассы, подключенные к стационарным электроустановкам;
  • перед следующим сезоном — линии, подключенные к сезонным электроустановкам;
  • после капитального ремонта электроустановки, к которой подключена кабельная линия.
  • 7.4. Порядок испытаний:

    • Подключите к дизельному генератору или к стационарной сети 220/380В мобильную лабораторию серии ЭТЛ-10-5М либо другую аналогичную аппаратуру.
    • Установите на панели управления выключатель в положение «Испытание высоким напряжением постоянного тока».
    • Медленно увеличивая реостатом подачу напряжения, доведите его до величины, указанной в Т.№2 с учетом вида испытаний и типа силовой линии.
    • Продолжительность подключения (воздействия на кабель высоким напряжением), указана в п. 7.2.10.
    • Уменьшите испытательное напряжение до нуля, плавно вращая рукоятку реостата против часовой стрелки.
    • Убедитесь в отсутствии на тестируемой линии остаточных напряжений, затем отключите установку от испытуемого кабеля (электроустановки).

    В процессе испытаний строго руководствуйтесь требованиями ПОТ РМ, а также нормами, указанными в разделе №9. «Указания по безопасности и требования по охране окружающей среды» настоящей инструкции.

    7.4.1. Результаты испытаний считаются удовлетворительными, если в процессе тестирования не было:

    • пробоев либо перекрытий изоляции;
    • резких изменений показаний амперметра (бросков тока) или вольтметра (провалов напряжения);
    • появления дыма, запахов или гари;
    • прослушивания разрядов.

    7.4.2. После завершения тестирований органической изоляции прощупайте поверхность оболочки, чтобы убедиться в отсутствии локальных нагревов.

    7.5. Испытание СКЛ высоким напряжением переменного тока 50 Гц

    Выполните испытания в последовательности, аналогичной порядку тестирования силовой линии напряжением постоянного тока, изложенному в п. 6.3.13.

    7.6. Измерение распределений токов в одножильных СКЛ

    7.6.1. На силовых линиях замеряются параметры токов, протекающих не только в жилах, но и в броне, металлических оболочках. Измерения выполните с помощью токоизмерительных клещей.

    7.6.2. С учетом типа материала брони, изоляции и положения силовой трассы в пространстве величина протекающих токов может достигать 100% токов жил, что сказывается на нагреве линии. Одновременно с замерами токов при нагрузке, близкой к номинальному значению, измерьте температуру наружных оболочек кабелей, чтобы вычислить величину нагрева жил. Замеры температур делайте на наиболее прогретых участках линий. Их величина не должна превышать допустимых значений для конкретных участков кабельной линии.

    7.6.3. При обнаружении неравномерностей распределения токов выше 10%, выполните выравнивание токов по фазам. Это необходимо для исключения лимитирования отдельными кабелями величины суммарной пропускной способности всей линии

    Испытание повышенным напряжением выпрямленного тока.

    Испытание изоляции кабельных линий повышенным напряжением выпрямленного тока производится с целью выявления местных сосредоточенных дефектов, которые не обнаруживаются при измерении мегаомметром, путем доведения их в процессе испытания до пробоя. Такое испытание повышенным напряжением выпрямленного тока производится от специальной установки типа: АИД-70, СКАТ-70 и т.п.

    Напряжение от установки прикладывается поочередно к каждой фазе кабеля, при заземлении двух других фаз и оболочки кабеля (аналогично проведению измерения изоляции мегаомметром). Схема испытания кабеля повышенным напряжением выпрямленного тока изображена на рисунке №3.

    Рис. №3 Испытание кабеля повышенным напряжением выпрямленного тока.

    Изоляция одножильных кабелей без металлического экрана (оболочки, брони),

    проложенных на воздухе, не испытываются. Изоляция одножильных кабелей с металлическим экраном (оболочкой, броней) испытываются между жилой и экраном. Изоляция многожильных кабелей без металлического экрана (оболочки, брони) испытываются между каждой жилой и остальными жилами, соединенными между собой и землей.

    Изоляция многожильных кабелей с общим металлическим экраном (оболочкой, броней) испытывается между каждой жилой и остальными жилами, соединенными между собой и экраном (оболочкой, броней). При всех указанных выше видах испытаний металлические экраны (оболочки, броня) должны быть заземлены. Пластмассовые оболочки (шланги) кабелей, проложенных в земле, испытываются между отсоединенными от земли экранами (оболочками) и землей. Пластмассовые оболочки (шланги) кабелей, проложенных на воздухе не испытываются. Значение испытательного напряжения принимается в соответствии с таблицей №2

    Испытательное напряжение кВ, для силовых кабелей.

    Таблица №2

    Вид испытанийИспытательное напряжение (кВ) для кабельных линий
    Кабели с бумажной изоляцией
    До 1кВ6кВ10кВ
    П63660
    К2,53660
    М3660
    Вид испытанийКабели с пластмассовой изоляцией
    До 1кВ*6кВ10кВ
    П3,53660
    К3660
    М3660
    Вид испытанийКабели с резиновой изоляцией
    До 3кВ6кВ10кВ
    П61220
    К61220
    М6**12**20**

    * — испытание повышенным напряжением одножильных кабелей с пластмассовой изоляцией без брони (экранов), проложенных в воздухе, не производится.

    ** — после ремонтов, не связанных с перемонтажом кабеля, изоляция проверяется мегаомметром на напряжение 2500В, а испытание повышенным выпрямленным напряжением не производится.

    Для кабелей на напряжение до 10кВ с бумажной и пластмассовой изоляцией длительность приложения полного испытательного напряжения при приёмосдаточных испытаниях 10 минут, в эксплуатации 5 минут. Для кабелей с резиновой изоляцией на напряжение 6-10кВ длительность приложения полного испытательного напряжения 5 минут.

    Допустимые токи утечки в зависимости от испытательного напряжения и допустимые значения коэффициента асимметрии при измерении тока утечки приведены в таблице №3. абсолютное значение тока утечки не является браковочным показателем. Кабельные линии с удовлетворительной изоляцией должны иметь стабильные значения токов утечки. При проведении испытаний ток утечки должен уменьшаться. Если не происходит уменьшения тока утечки, а также при его увеличении или нестабильности, испытание производится до выявления дефекта, но не более чем 15 минут.

    Испытания: как проводятся

    Первая проверка на исправность осуществляется сразу после прокладки кабеля, еще до официального запуска в эксплуатацию. Позже в повседневном функционале данная операция повторяется.

    Работы не проводятся при минусовой температуре. Даже незначительное понижение ртутного столбика за нулевую отметку — веское основание для отмены испытаний. Дело в том, что обледеневшие частички воды имеют диэлектрические свойства (часть их с большой долей вероятности попадет в кабель). Высоковольтные испытания будут бесполезными или же полученные результаты не будут достоверными.

    Методика испытания повышенным выпрямленным напряжением состоит в том, что оно подается на каждую жилу кабеля (при этом остальные заземляются).

    Утечка определяется следующим образом:

    • испытанием изоляции по отношению к земле;
    • испытанием междуфазной изоляции.

    Работоспособность КЛ признается, если не прослеживаются толчки и мелкие разряды. По завершении линия разряжается.

    Высоковольтные испытания кабеля из сшитого полиэтилена (регламент)

    Периодичность
    • Перед включением линии (первый раз).
    • После каждого ремонта.
    • Плановые испытательные проверки – каждые 5 лет.
    • Запасные КЛ – один раз в 5 лет.
    • КЛ, питающие важные объекты — каждые 3 года.
    • Генеральные линии (стратегически важные) – раз в 12 месяцев.

    Важно! При отсутствии пробоев оболочка кабеля инспектируется на целостность раз в 5 лет.

    Первый метод Второй метод
    Испытание кабеля из сшитого полиэтилена 10 кв Осуществляется при помощи переменного напряжения частотой 0.1 Гц. Длительность — 30 минут. Если только что закончились ремонтные работы КЛ, достаточно 20 минут.

    Важно! Задействуется промышленное диагностическое СНЧ-установка для СПЭ-кабелей.

    Методика испытаний:

    • Выполняется визуальный осмотр самой линии, а также тоннеля.
    • Если надо, меняются дефектные концевые муфты.
    • Заземляются экраны кабелей.
    • Напряжение подается на кабель. Уровень его подъема контролируется при помощи СНЧ-оборудованием, а время – таймером.
    • Изменение полярности напряжения фиксирует киловольтметр (допускается расхождение на 5-10%).
    • Уменьшение напряжения до нулевой отметки специальной рукояткой.
    Проверка КЛ 10 6 кВ выполняется переменным напряжением (соответственно — 10 или 6 кВ).

    Напряжение прилагается между жилой и экраном. Длительность — 24 часа.

    Методика испытаний:

    • Первичный осмотр кабеля и тоннеля с заменой концевых муфт (аналогично 1-му способу).
    • Подача напряжения на каждую жилу с одновременным заземлением экрана (при проверке состояния изоляции).
    • Постепенное увеличение напряжения до максимума (этот уровень поддерживается в течение всего времени).

    Важно! Расчет времени начинается с того момента, когда напряжение поднимается до предельного уровня.

    Утечки тока, считающиеся нормой Для кабеля 6 кВ — до 200 мкА. Для 10 кВ — не более 500 мкА.

    Лицензированный Инженерный проводит испытание кабеля 10 кВ с гарантией качества. Наличие лицензий Ростехнадзора и СРО, современное оборудование — гарантия точности полученных результатов. По итогам испытаний наши специалисты готовят отчет.

    Проверка целостности и фазировки жил кабеля.

    Перед включением кабеля в работу производится его фазировка, т.е. обеспечивается соответствие фаз кабеля фазам присоединяемого участка электроустановки. Проверка производится прозвонкой с помощью телефонных трубок или мегаомметра. На основании проверки производится раскраска жил в соответствии с раскраской принятой на данной установке.

    Технология «прозвонки» с помощью телефонных трубок заключается в следующем: один работник подсоединяет свою телефонную трубку к жиле кабеля и оболочке (заземленной части электропроводки), а другой поочередно к жилам кабеля со своей стороны, пока не дойдет до той жилы, к которой подключился первый работник. При этом устанавливается телефонная связь между работниками и они могут договориться о порядке проверки другой жилы. На проверенные жилы навешивают временные бирки с соответствующей маркировкой. Проверка жил «прозвонкой» будет успешной, если исключить возможность образования обходных цепей. Во избежание ошибок необходимо убедиться, что связь возможна только по одной жиле; для этого подсоединяют трубку к каждой из оставшихся жил и убеждаются, что связи по ним нет. Для «прозвонки» используют низкоомные телефонные трубки, а в качестве источника питания — батарейку от карманного фонаря.

    После предварительной прозвонки перед включением кабельной линии в работу производится фазировка ее под напряжением. Для этого с одного конца кабеля подается рабочее напряжение, а с другого конца производится проверка соответствия фаз измерениями напряжений между одноименными и разноименными фазами. Газировка производится вольтметрами (в сетях до 1кВ) или вольтметрами с трансформаторами напряжения, а также с помощью указателей напряжения типа УВН-80, УВНФ и др. (в сетях напряжением выше 1 кВ),

    Порядок проведения фазировки в линиях различного напряжения примерно одинаков. Так фазировка кабельной линии с помощью указателей напряжения выполняется в следующей последовательности (см. рис. 1). Проверяется исправность указателя напряжения, для чего щупом трубки без неоновой лампы касаются заземления, а щуп другой трубки подносят к жиле кабеля находящегося под напряжением, при этом неоновая лампа должна загореться. Затем щупами обеих трубок касаются одной жилы находящей под напряжением. Лампа индикатора при этом гореть не должна. После этого проверяется наличие напряжения на выводах электроустановки и кабеля (см. рис. 1в). Данную проверку производят для того, чтобы исключить ошибку при фазировке линии имеющей обрыв (например, из-за неисправности предохранителя). Процесс собственно фазировки состоит в том, что щупом одной трубки указателя касаются любого крайнего вывода установки, например фазы С, а щупом другой трубки — поочередно трех выводов со стороны фазируемой линии (см. рис. 1г). В двух случаях касания (С-А 1 и С-B1) неоновая лампа загорается, в третьем (С-С1) лапа гореть не будет, что укажет на одноименность фаз. Аналогично определяют другие одноименные фазы.

    Методы испытаний.

    1. Проверка целости и фазировки жил кабеля.

    Определение целости жил и фазировка КЛ производится после окончания монтажа, перемонтажа муфт или отсоединения жил кабеля в процессе эксплуатации.

    Определение целости жил кабелей напряжением до 10кВ производится мегаомметром. После включения КЛ под напряжение производится проверка правильности ее фазировки.

    Сущность фазировки под напряжением заключается в определении соответствия фазы кабеля, находящейся под напряжением от распределительного устройства с противоположного конца кабеля, предполагаемой одноименной фазе шин распределительного устройства, где производится фазировка. Для фазировки КЛ 6 и 10 кВ под напряжением применяются указатели напряжения 10 кВ в комплекте с добавочным сопротивлением рисунок №1. Целость и совпадение обозначений фаз подключаемых жил кабеля должна соответствовать.

    Рис. №1 Фазировка кабельных линий под напряжением.

    а – соответствие фаз кабеля и шин; б – разные фазы шин и кабеля в месте присоединения последнего; 1 – указатель напряжения; 2 – трубка сопротивления; 3 – провод; 4 – шина; 5 – концевая заделка; 6 – кабель; 7 – разъем спуска шин.

    Измерение распределения тока по одножильным кабелям

    На силовом кабеле измеряются токи, протекающие как в жилах, так и в металлических оболочках и броне. Измерения производятся токоизмерительными клещами.

    В зависимости от материала оболочки, брони и положения кабеля в пространстве токи в них могут достигать 100% по отношению к току жилы и сильно влиять на нагрев кабелей. Одновременно с измерением токов при нагрузках, близких к номинальной, должны быть проведены измерения температуры наружных покровов кабелей, по которой может быть вычислена температура жилы. Эта температура должна измеряться в самом нагретом месте КЛ и не должна превосходить допустимую для данного места измерения. При неравномерности распределения токов более 10%, когда отдельные кабели лимитируют пропускную способность всей группы кабелей, должны быть приняты меры по выравниванию токов по фазам.

    Протокол испытания силовой кабельной линии выше 1000В

    Ниже приведён пример заполнения таблиц протокола испытаний:

    В таблице «Общие данные» в графе кол-во муфт предлагаю записывать не только промежуточные, но и концевые муфты. В этом случае даже на кабеле без промежуточных муфт необходимо в этой графе указывать цифру 2. При таком заполнении данная графа остаётся пустой только в случае испытания силового кабеля например на барабане, или до укладки и монтажа.

    Начало КЛКонец КЛТип кабеляДлина, мКол-во муфтПримечание
    ЗРУ, яч.1ТП-2, Т-1СБГ 3х352502

    В таблице «Испытание изоляции повышенным напряженим» в графе токов утечек необходимо записывать ток в начале испытаний (установившийся) и ток в конце испытания перед снятием напряжения.

    НаименованиеКабельПримечание
    L1–(L2+L3+^)L2–(L1+L3+^)L3–(L2+L1+^)
    Uисп (кВ)606060
    Iут. (мкА)110/100120/100110/80начало/конец
    Продолж. испытаний5 мин5 мин5 мин

    Чем же все-таки руководствоваться специалистам при проведении испытаний: ГОСТ или СТО?

    Из приведенной таблицы видно, что СТО однозначно устанавливает использование правил эксплуатационных испытаний изоляции кабельных линий, определенных для СПЭ кабелей, как для комбинированных кабельных линий, так и для ПБИ линий. Надо заметить, что режимы СНЧ испытаний в СТО значительно отличаются от предлагаемых ГОСТ 55025-2012 для СПЭ кабелей. Если это обоснованно, тогда встает вопрос о необходимости корректировки ГОСТа.

    В ПАО «РОССЕТИ» проблема единого нормативного подхода к испытаниям ПБИ и СПЭ кабелей решена. Вопрос о «недоиспытанности» ПБИ кабелей оставлен за скобками. Можно дискутировать о применимости режимов испытаний СПЭ кабелей для ПБИ кабелей, однако главное то, что появилась определенность, узаконенность. Специалисты ПАО «РОССЕТИ» теперь могут работать не на свой страх и риск, а опираясь на конкретный нормативный документ, но тогда возникает вопрос:

    • Чем руководствоваться множеству других больших и малых предприятий эксплуатирующих комбинированные силовые кабельные линии?
    • Ссылаться на то, что ГОСТ является рекомендательным документом и продолжать руководствоваться собственным опытом и здравым смыслом?
    • Или пришла пора корректировать ГОСТы под требования времени?

    Однозначных официальных ответов на эти вопросы в настоящее время нет.

    Рейтинг
    ( 1 оценка, среднее 4 из 5 )
    Понравилась статья? Поделиться с друзьями:
    Для любых предложений по сайту: [email protected]