Когда проводится проверка кабельных линий лабораторией?

Испытания кабельных линий проводятся со следующей периодичностью:

  • ежегодно — для силовых питающих и распределительных линий с резиновой изоляцией, обслуживающих объекты жизнеобеспечения населенных пунктов и других важных потребителей;
  • каждые 3 года — для основных питающих линий 6–35 кВ;
  • каждые 5 лет — для резервных линий.
  • Внеочередные – при аварийном отключении электрооборудования.

Испытание кабеля повышенным напряжением проводится для оценки соответствия величины сопротивления, коэффициента абсорбции и других параметров изолирующей оболочки установленным нормам. В процессе испытательных мероприятий выявляются дефекты, способные спровоцировать аварию и выход из строя дорогостоящего электрооборудования.

Методы испытаний.

1. Проверка целости и фазировки жил кабеля.

Определение целости жил и фазировка КЛ производится после окончания монтажа, перемонтажа муфт или отсоединения жил кабеля в процессе эксплуатации.

Определение целости жил кабелей напряжением до 10кВ производится мегаомметром. После включения КЛ под напряжение производится проверка правильности ее фазировки.

Сущность фазировки под напряжением заключается в определении соответствия фазы кабеля, находящейся под напряжением от распределительного устройства с противоположного конца кабеля, предполагаемой одноименной фазе шин распределительного устройства, где производится фазировка. Для фазировки КЛ 6 и 10 кВ под напряжением применяются указатели напряжения 10 кВ в комплекте с добавочным сопротивлением рисунок №1. Целость и совпадение обозначений фаз подключаемых жил кабеля должна соответствовать.

Рис. №1 Фазировка кабельных линий под напряжением.

а – соответствие фаз кабеля и шин; б – разные фазы шин и кабеля в месте присоединения последнего; 1 – указатель напряжения; 2 – трубка сопротивления; 3 – провод; 4 – шина; 5 – концевая заделка; 6 – кабель; 7 – разъем спуска шин.

Измерение сопротивления изоляции.

Измерение сопротивления изоляции высоковольтных кабелей проводят на полностью отключенном кабеле.

Перед проверкой необходимо проверить надёжность заземления кабельных воронок, брони и подключить к переносному заземлению со специальными зажимами (крокодилами). Второй конец кабеля остаётся свободным, жилы должны быть разведены на достаточное расстояние (примерно 150 — 200 мм).

В случае невозможности обеспечить требуемое расстояние между жилами и жил кабеля до заземлённых частей оборудования, на жилы надеваются изолирующие колпаки или накладки.

Перед началом измерений необходимо убедиться, что на испытываемом объекте нет

напряжения, тщательно очистить изоляцию от пыли. Измерения следует производить при устойчивом положении стрелки прибора; для этого нужно быстро, но равномерно, вращать ручку генератора (120 об/мин) в течение 60 сек. Сопротивление изоляции определяется показанием стрелки прибора мегаомметра. Для присоединения мегаомметра к испытываемому аппарату или линии следует применять раздельные провода с большим сопротивлением изоляции (не менее 100 мОм).

Мегаомметром поочерёдно измеряется сопротивление жил, при этом на свободные от измерения жилы устанавливается переносное заземление. Схема для измерения сопротивления изоляции силовых кабельных линий изображена на рисунке №2

Рис. №2 Схема измерения сопротивления изоляции силового кабеля.

Измерение сопротивления изоляции силовых и контрольных кабелей напряжением до 1000В проводят аналогично, при этом измерения производятся между каждыми двумя проводами (между фазами, между фазными жилами и нулем, между фазными жилами и защитным проводником и между нулевым и защитным проводником). При измерении разрешается объединять нулевой рабочий и нулевой защитный проводники. У четырехжильных кабелей измерение сопротивления изоляции нулевого проводника производится относительно заземленных частей электрооборудования.

Перед первыми или повторными измерениями КЛ должна быть разряжена путем соединения всех металлических элементов между собой и землей не менее чем на 2 мин. Сопротивление изоляции кабелей до 1 кВ должно быть не менее 0,5 МОм. Для силовых кабелей выше 1 кВ сопротивление изоляции не нормируется. Измерение следует производить до и после испытания кабеля повышенным напряжением.

Выбор испытательного напряжения

Рабочее напряжение кабеля/оборудования Испытательное напряжение постоянного тока
От 24 до 50 В От 50 до 100 В постоянного тока
От 50 до 100 В От 100 до 250 В постоянного тока
От 100 до 240 В От 250 до 500 В постоянного тока
От 440 до 550 В От 500 до 1000 В постоянного тока
2400 В От 1000 до 2500 В постоянного тока
4100 В От 1000 до 5000 В постоянного тока
От 5000 до 12 000 В От 2500 до 5000 В постоянного тока
> 12 000 В От 5000 до 10 000 В постоянного тока

В приведенной выше таблице показаны рекомендованные испытательные напряжения в соответствии с рабочими напряжениями установок и оборудования (значения взяты из руководства IEEE 43-2000).

Кроме того, эти значения задаются для электрических приборов в самых разнообразных местных и международных стандартах (IEC 60204, IEC 60439, IEC 60598 и т.д.).

Во Франции, например, стандарт NFC15-100 предусматривает значения испытательного напряжения и минимального сопротивления изоляции для электроустановок (500 В постоянного тока и 0,5 МОм при номинальном напряжении от 50 до 500 В).

Однако вам настоятельно рекомендуется обратиться к изготовителю кабеля/оборудования, чтобы узнать их собственные рекомендации по требуемому испытательному напряжению.

Испытание повышенным напряжением выпрямленного тока.

Испытание изоляции кабельных линий повышенным напряжением выпрямленного тока производится с целью выявления местных сосредоточенных дефектов, которые не обнаруживаются при измерении мегаомметром, путем доведения их в процессе испытания до пробоя. Такое испытание повышенным напряжением выпрямленного тока производится от специальной установки типа: АИД-70, СКАТ-70 и т.п.

Напряжение от установки прикладывается поочередно к каждой фазе кабеля, при заземлении двух других фаз и оболочки кабеля (аналогично проведению измерения изоляции мегаомметром). Схема испытания кабеля повышенным напряжением выпрямленного тока изображена на рисунке №3.

Рис. №3 Испытание кабеля повышенным напряжением выпрямленного тока.

Изоляция одножильных кабелей без металлического экрана (оболочки, брони),

проложенных на воздухе, не испытываются. Изоляция одножильных кабелей с металлическим экраном (оболочкой, броней) испытываются между жилой и экраном. Изоляция многожильных кабелей без металлического экрана (оболочки, брони) испытываются между каждой жилой и остальными жилами, соединенными между собой и землей.

Изоляция многожильных кабелей с общим металлическим экраном (оболочкой, броней) испытывается между каждой жилой и остальными жилами, соединенными между собой и экраном (оболочкой, броней). При всех указанных выше видах испытаний металлические экраны (оболочки, броня) должны быть заземлены. Пластмассовые оболочки (шланги) кабелей, проложенных в земле, испытываются между отсоединенными от земли экранами (оболочками) и землей. Пластмассовые оболочки (шланги) кабелей, проложенных на воздухе не испытываются. Значение испытательного напряжения принимается в соответствии с таблицей №2

Испытательное напряжение кВ, для силовых кабелей.

Таблица №2

Вид испытанийИспытательное напряжение (кВ) для кабельных линий
Кабели с бумажной изоляцией
До 1кВ6кВ10кВ
П63660
К2,53660
М3660
Вид испытанийКабели с пластмассовой изоляцией
До 1кВ*6кВ10кВ
П3,53660
К3660
М3660
Вид испытанийКабели с резиновой изоляцией
До 3кВ6кВ10кВ
П61220
К61220
М6**12**20**

* — испытание повышенным напряжением одножильных кабелей с пластмассовой изоляцией без брони (экранов), проложенных в воздухе, не производится.

** — после ремонтов, не связанных с перемонтажом кабеля, изоляция проверяется мегаомметром на напряжение 2500В, а испытание повышенным выпрямленным напряжением не производится.

Для кабелей на напряжение до 10кВ с бумажной и пластмассовой изоляцией длительность приложения полного испытательного напряжения при приёмосдаточных испытаниях 10 минут, в эксплуатации 5 минут. Для кабелей с резиновой изоляцией на напряжение 6-10кВ длительность приложения полного испытательного напряжения 5 минут.

Допустимые токи утечки в зависимости от испытательного напряжения и допустимые значения коэффициента асимметрии при измерении тока утечки приведены в таблице №3. абсолютное значение тока утечки не является браковочным показателем. Кабельные линии с удовлетворительной изоляцией должны иметь стабильные значения токов утечки. При проведении испытаний ток утечки должен уменьшаться. Если не происходит уменьшения тока утечки, а также при его увеличении или нестабильности, испытание производится до выявления дефекта, но не более чем 15 минут.

Тема 2. Электрические испытания

Электрические испытания приборов и систем проводятся с целью проверки электрической прочности, сопротивления изоляции и нормального функционирования ЛА. Электрические испытания включают в себя: автономные испытания приборов, агрегатов и систем до установки на аппарат, испытания в процессе сборки; комплексные испытания расстыкованного и состыкованного ЛА. Электрическая прочность и сопротивление изоляции проверяются на собранных блоках или системах:

— между электрическими цепями и металлическими изолированными частями приборов;

— между разъединяющимися в процессе функционирования электрическими цепями;

— между электрически не соединенными цепями.

Вначале проверяется электрическая прочность, а затем измеряется электрическое сопротивление изоляции. Объем электрических испытаний определяется НТД.

2.1. Проверка электрической прочности изоляции

Электрической прочностью является способность электрической изоляции выдерживать действие приложенного к ней электрического напряжения. Она определяется значением напряжения, при котором наступает пробой – пробивным напряжением.

Электрическую прочность можно определить с помощью формулы

где — коэффициент неоднородности поля; — напряжение, вызывающее пробой; — толщина изоляции.

Пробивное напряжение зависит от шерховатости поверхности, наличия масла, влаги, пыли, гигроскопичности и т.д. Номинальное напряжение, приложенное к изоляции изделия при нормальном функционировании, меньше пробивного напряжения. Испытательное напряжение для проверки электрической прочности изоляции зависит от номинального напряжения, его мощности, режимов эксплуатации и определяется НТД.

При испытаниях допускается объединять несколько электрически независимых цепей, имеющих одинаковое рабочее напряжение, в единую систему.

Испытательное напряжение рассчитывается по формуле

где — напряжение, определяемое НТД; — коэффициент; — номинальное напряжение. Испытательное напряжение должно быть синусоидальным. Практически изоляцию подвергают воздействию максимального напряжения с амплитудой .

При пикообразном напряжении при том же действующем значении амплитуда гораздо больше.

Испытательное напряжение должно увеличиваться и уменьшаться плавно. При резком включении или отключении напряжения в исследуемой цепи, имеющей значительную индуктивность, могут возникнуть ударные перенапряжения, ударная напряженность поля в момент импульса окажется больше электрической прочности изоляции, и тогда произойдет пробой. Продолжительность изменения испытательного напряжения до должна быть более 10с. Возможно ступенчатое изменение напряжения от 0 до 0,5 , затем ступенями по (0,05 – 0,10) повышение до максимального напряжения , выдержка в течении 1 мин и ступенчатое снижение напряжения.

Установки для испытаний электрической прочности изоляции обычно обладают мощностью более 500ВА, поэтому к работе допускаются только специалисты, прошедшие специальный инструктаж по технике безопасности.

Изоляцию ЛА, обладающих различной проводимостью в различных направлениях, подвергают испытанию напряжением постоянного тока.

Электрическую прочность межвитковой изоляции обмоток электрических машин проверяют на холостом ходу плавным повышением напряжения на обмотке. Изоляция должна выдерживать в течении 5 минут напряжение в 1,5-2 раза превышающее рабочее напряжение. Пробой межвитковой изоляции обмотки контролируется по снижению напряжения.

При проверке электрической прочности изделий в условиях пониженного давления испытания проводят в барокамере при испытательном давлении.

2.2. Проверка сопротивления изоляции

Под воздействие приложенного напряжения электроизоляционные материалы проявляют свойство электропроводности. Электропроводность диэлектриков намного ниже, чем проводников, и вместе с тем эта характеристика диэлектриков играет важную роль в функционировании оборудования. Ток утечки диэлектрика имеет две составляющие: ток, проходящий по его поверхности, и ток, проходящий через диэлектрики. Отношение напряжения, приложенного к диэлектрику, к силе тока утечки называется сопротивлением изоляции. Сопротивление изоляции может быть определено соотношением

где — сила тока утечки по поверхности изоляции; — сила тока утечки через слой изоляции.

Сопротивление изоляции зависит от механических воздействий, температуры, проникающего излучения, состояния поверхности диэлектрика, качества обработки, сборки, пропитки и т.п.

Проверку сопротивления изоляции производят, как правило, в нормальных климатических условиях после воздействия механических и климатических факторов.

Нижний предел сопротивления изоляции должен быть:

— в холодном сухом состоянии ≥20 Мом;

— в нагретом состоянии ≥2 Мом;

— в увлажненном состоянии не менее 1 Мом;

В отдельных случаях может устанавливаться более низкий предел сопротивления изоляции.

Проверку сопротивления изоляции производят следующими способами:

— сетевым и ручным мегаомметрами,

— с помощью вольтметра с определенным внутренним сопротивлением.

Сопротивление изоляции входа измерительных приборов должно превышать на порядок измеряемое сопротивление изоляции. Измерительное напряжение должно соответствовать рабочему напряжению измеряемой цепи. Регистрацию значений сопротивления изоляции проводят, как правило, через одну минуту после подачи измерительного напряжения.

Для измерения сопротивления изоляции наиболее часто применяются магнитоэлектрические мегаомметры и мегаомметры с использованием электронных автокомпенсационных схем.

Электрические испытания приборов и систем проводятся с целью проверки электрической прочности, сопротивления изоляции и нормального функционирования ЛА. Электрические испытания включают в себя: автономные испытания приборов, агрегатов и систем до установки на аппарат, испытания в процессе сборки; комплексные испытания расстыкованного и состыкованного ЛА. Электрическая прочность и сопротивление изоляции проверяются на собранных блоках или системах:

— между электрическими цепями и металлическими изолированными частями приборов;

— между разъединяющимися в процессе функционирования электрическими цепями;

— между электрически не соединенными цепями.

Вначале проверяется электрическая прочность, а затем измеряется электрическое сопротивление изоляции. Объем электрических испытаний определяется НТД.

2.1. Проверка электрической прочности изоляции

Электрической прочностью является способность электрической изоляции выдерживать действие приложенного к ней электрического напряжения. Она определяется значением напряжения, при котором наступает пробой – пробивным напряжением.

Электрическую прочность можно определить с помощью формулы

где — коэффициент неоднородности поля; — напряжение, вызывающее пробой; — толщина изоляции.

Пробивное напряжение зависит от шерховатости поверхности, наличия масла, влаги, пыли, гигроскопичности и т.д. Номинальное напряжение, приложенное к изоляции изделия при нормальном функционировании, меньше пробивного напряжения. Испытательное напряжение для проверки электрической прочности изоляции зависит от номинального напряжения, его мощности, режимов эксплуатации и определяется НТД.

При испытаниях допускается объединять несколько электрически независимых цепей, имеющих одинаковое рабочее напряжение, в единую систему.

Испытательное напряжение рассчитывается по формуле

где — напряжение, определяемое НТД; — коэффициент; — номинальное напряжение. Испытательное напряжение должно быть синусоидальным. Практически изоляцию подвергают воздействию максимального напряжения с амплитудой .

При пикообразном напряжении при том же действующем значении амплитуда гораздо больше.

Испытательное напряжение должно увеличиваться и уменьшаться плавно. При резком включении или отключении напряжения в исследуемой цепи, имеющей значительную индуктивность, могут возникнуть ударные перенапряжения, ударная напряженность поля в момент импульса окажется больше электрической прочности изоляции, и тогда произойдет пробой. Продолжительность изменения испытательного напряжения до должна быть более 10с. Возможно ступенчатое изменение напряжения от 0 до 0,5 , затем ступенями по (0,05 – 0,10) повышение до максимального напряжения , выдержка в течении 1 мин и ступенчатое снижение напряжения.

Установки для испытаний электрической прочности изоляции обычно обладают мощностью более 500ВА, поэтому к работе допускаются только специалисты, прошедшие специальный инструктаж по технике безопасности.

Изоляцию ЛА, обладающих различной проводимостью в различных направлениях, подвергают испытанию напряжением постоянного тока.

Электрическую прочность межвитковой изоляции обмоток электрических машин проверяют на холостом ходу плавным повышением напряжения на обмотке. Изоляция должна выдерживать в течении 5 минут напряжение в 1,5-2 раза превышающее рабочее напряжение. Пробой межвитковой изоляции обмотки контролируется по снижению напряжения.

При проверке электрической прочности изделий в условиях пониженного давления испытания проводят в барокамере при испытательном давлении.

2.2. Проверка сопротивления изоляции

Под воздействие приложенного напряжения электроизоляционные материалы проявляют свойство электропроводности. Электропроводность диэлектриков намного ниже, чем проводников, и вместе с тем эта характеристика диэлектриков играет важную роль в функционировании оборудования. Ток утечки диэлектрика имеет две составляющие: ток, проходящий по его поверхности, и ток, проходящий через диэлектрики. Отношение напряжения, приложенного к диэлектрику, к силе тока утечки называется сопротивлением изоляции. Сопротивление изоляции может быть определено соотношением

где — сила тока утечки по поверхности изоляции; — сила тока утечки через слой изоляции.

Сопротивление изоляции зависит от механических воздействий, температуры, проникающего излучения, состояния поверхности диэлектрика, качества обработки, сборки, пропитки и т.п.

Проверку сопротивления изоляции производят, как правило, в нормальных климатических условиях после воздействия механических и климатических факторов.

Нижний предел сопротивления изоляции должен быть:

— в холодном сухом состоянии ≥20 Мом;

— в нагретом состоянии ≥2 Мом;

— в увлажненном состоянии не менее 1 Мом;

В отдельных случаях может устанавливаться более низкий предел сопротивления изоляции.

Проверку сопротивления изоляции производят следующими способами:

— сетевым и ручным мегаомметрами,

— с помощью вольтметра с определенным внутренним сопротивлением.

Сопротивление изоляции входа измерительных приборов должно превышать на порядок измеряемое сопротивление изоляции. Измерительное напряжение должно соответствовать рабочему напряжению измеряемой цепи. Регистрацию значений сопротивления изоляции проводят, как правило, через одну минуту после подачи измерительного напряжения.

Для измерения сопротивления изоляции наиболее часто применяются магнитоэлектрические мегаомметры и мегаомметры с использованием электронных автокомпенсационных схем.

Допустимые токи утечки и значения коэффициента ассиметрии для силовых кабелей.

Таблица №3

Кабели напряжением (кВ)Испытательное напряжение (кВ)Допустимые значения токов утечки (мА)Допустимые значения коэфф. ассиметрии
6360,28
10450,38
500,58
600,58

Разрешается техническому руководителю предприятия в процессе эксплуатации (М) исходя их местных условий как исключение уменьшать уровень испытательного напряжения для кабельных линий напряжением 6-10кВ до 0,4Uн.

Периодичность испытаний в процессе эксплуатации.

Кабели напряжением 2-35кВ:

а) 1 раз в год – для кабельных линий в течение первых 2 лет после ввода в эксплуатацию, а в дальнейшем:

  • 1 раз в 2 года – для кабельных линий, у которых в течение первых 2 лет не наблюдалось аварийных пробоев и пробоев при профилактических испытаниях, 1 раз в год для кабельных линий, на трассах которых производились строительные и ремонтные работы и на которых систематически происходят аварийные пробои изоляции;
  • 1 раз в 3 года – для кабельных линий на закрытых территориях (подстанции, заводы и т.д.);во время капитальных ремонтов оборудования для кабельных линий, присоединённых к агрегатам, кабельных перемычек 6-10кв между сборными шинами и трансформаторами в ТП и РП;

б) Допускается не проводить испытание:

  • Для кабельных линий длиной до 100 метров, которые являются выводами из РУ и ТП на воздушные линии и состоящих из двух параллельных кабелей;
  • Для кабельных линий со сроком эксплуатации более 15 лет, на которых удельное число отказов из-за электрического пробоя составляет 30 и более отказов на 100 километров в год;
  • Для кабельных линий, подлежащих реконструкции или выводу из работы в ближайшие 5 лет;

в) Допускается распоряжением технического руководителя предприятия устанавливать

другие значения периодичности испытаний и испытательных напряжений:

  • Для питающих кабельных линий на напряжение 6-10кВ со сроком эксплуатации более 15 лет при числе соединительных муфт более 10 на 1 километр длины;
  • Для питающих кабельных линий на напряжение 6-10кВ со сроком эксплуатации более 15 лет, на которых смонтированы концевые заделки только типов КВВ и КВБ и соединительные муфты местного изготовления, при значении испытательного напряжения не менее 4Uн и периодичности не реже 1 раза в 5 лет.
  • Для кабельных линий напряжением 20-35кВ в течение первых 15 лет испытательное напряжение должно составлять 5Uн, а в дальнейшем 4Uн.

6.3.8 Кабели на напряжение 3-10кВ с резиновой изоляцией:

  • в стационарных установках – 1 раз в год;
  • в сезонных установках – перед наступлением сезона;
  • после капитального ремонта агрегата, к которому присоединен кабель.

Содержание Предыдущий § Следующий

8-11. ИСПЫТАНИЕ ЭЛЕКТРИЧЕСКОЙ ПРОЧНОСТИ ИЗОЛЯЦИИ

Испытание электрической прочности изоляции (на пробой) производится путем приложения к этой изоляции на 1 мин

напряжения переменного тока 50
гц
практически синусоидальной формы. Величина этого испытательного напряжения указана в табл. 8-6.

Подъем и снижение испытательного напряжения должны быть плавными 1

и начинаться с напряжения не более 7з испытательного. Испытанию изоляции от корпуса подвергается поочередно каждая электрическая независимая цепь, при этом один полюс источника испытательного напряжения прикладывается к выводу испытуемой обмотки, а другой — к заземленному корпусу машины, с которым на время испытания данной обмотки электрически соединяются все прочие (не участвующие в испытании) обмотки.

Соединенные между собой многофазные обмотки считаются за одну цепь, если начало и конец каждой фазы не выведены к специальным зажимам. В этом случае вся многофазная обмотка испытывается от корпуса целиком. При наличии выводов начала и конца каждой фазы испытание от корпуса делается поочередно для каждой фазы при присоединенных к корпусу прочих фазах.

Если одна из обмоток машины при номинальном режиме работы связана с корпусом машины, то на время испытания электрической прочности изоляции такой обмотки она должна быть отсоединена от корпуса машины.

Если при ремонте произведена полная замена какой-либо обмотки на новую, то эту обмотку испытывают на полное пробивное напряжение для вновь изготовленной машины в соответствии с ГОСТ 183-55.

Если при ремонте заменена лишь часть обмотки, а часть обмотки осталась старая, бывшая в эксплуатации, то электрическую прочность всей обмотки испытывают напряжением, равным 1,3 номинального напряжения машины, но не меньше 0,5 испытательного напряжения, указанного в табл. 8-6.

Поверочные испытания электрической прочности изоляции после доставки машины на место сборки и сушки

1 Подробнее см. ГОСТ 183-55.

Таблица 8-6

испытательное напряжение при испытаний электрической

прочности изоляции обмоток относительно корпуса машины

и между обмотками (по ГОСТ 183-55)

Электрическая машина или ее части

Испытательное напряжение (действующее значение)
Машины мощностью не менее 500 в плюс двукратное номи-
1 кет

(или 1
ква),
а также все

нальное напряжение
машины на номинальное напряже-
ние не свыше 36 в
Машины мощностью от 1 кет 1 000 в плюс двукратное но-
[или 1 ква) до 3 кет

(или 3
ква)

минальное напряжение
включительно при номинальном
напряжении выше 36 в
а) машины мощностью более 1 000 8 плюс двукратное но-
3 кет

(или 3
ква),
за исклю-

минальное напряжение, но не
чением перечисленных в п 3, б менее 1 500 в
настоящей таблицы, при номи-
нальном напряжении свыше 36 в
б) Машины мощностью от
1 000 кет

(или 1 000
ква)
и вы-

ше на номинальное напряжение:
до 3 300 в

включительно

1 000 в плюс двукратное но-
минальное напряжение
свыше 3 300 до 6 600 6 вклю- 2,5-кратное номинальное на-
чительно пряжение
свыше 6 600 в 3 000 в

плюс двукратное но-

минальное напряжение
Обмотки возбуждения синхрон- Десятикратное номинальное
ных генераторов, у которых номи- напряжение возбудительной си-
нальное напряжение возбудитель- стемы, но не менее 1 500 в

и

ной системы не превышает 800 в не более 3 500 в
Обмотки возбуждения синхрон-
ных двигателей и синхронных ком-
ПспЪа 1 UpUD,

а) если машина предназначена

Десятикратное номинальное
для непосредственного пуска со напряжение возбудительной си-
стороны переменного тока с об- стемы, но не менее 1 500 в
моткой возбуждения, замкнутой
на сопротивление или на ис-
точник своего питания
б) то же, но предназначенная 1 000 в плюс десятикратное
для пуска с разомкнутой обмот- номинальное напряжение воз-
кой возбуждения, подразделен- будительной системы, но не
ной на секции менее 1 500 в
в) то же, но предназначенная 1000 в

плюс 20-кратное но-

для пуска с разомкнутой об- минальное напряжение возбуди-
моткой возбуждения, не сек- тельной системы, но не менее
ционированной 1 500 в и не более 8 000 в

Продолжение табл. 8-6

Электрическая машина или ее части Испытательное напряжение (действующее значение)
г) синхронные двигатели и син- Десятикратное номинальное
хронные компенсаторы, пускаемые напряжение возбудительной си-
специальными пусковыми двигате- стемы, но не менее 1 500 в
лями
Возбудители для электрических
машин
а) возбудители для электри- 1 000 в плюс двукратное но-
ческих машин, кроме синхрон- минальное напряжение, но не
ных менее 1 500 в
б) возбудители для синхрон- Десятикратное номинальное
ных генераторов, у которых но- напряжение, но не менее 1 500 в
минальное напряжение возбу- и не более 3 500 в
дительной системы не превы-
шает 800 в
в) возбудители для синхрон- Десятикратное номинальное
ных двигателей и синхронных напряжение, но не менее 1 500 в
компенсаторов
Вторичные обмотки асинхрон-
ных двигателей, не находящиеся в
непрерывном короткозамкнутом
состоянии:
а) для двигателей, допускаю- 1 000 в

плюс четырехкратное

щих торможение противовклю- номинальное напряжение вто-
чением ричной обмотки
б) для двигателей, не пред- 1 000 в

плюс двукратное но-

назначенных для торможения минальное напряжение вторич-
противовключением ной обмотки
Собранные в группы электриче- Если испытанию подвергается
ские машины и аппараты группа, собранная из несколь-
ких новых, только что уста-
новленных и соединенных вмес-
те электрических машин и ап-
паратов, из которых каждая
машина и каждый аппарат про-
ходили испытания электриче-
ской прочности, то испытатель-
ное напряжение не должно
превышать 85% испытательного
напряжения той машины (или
того аппарата), у которой это
напряжение наименьшее
производятся в течение 1 мин

напряжением, равным

75% напряжения, указанного в таблице.

Содержание Предыдущий § Следующий

Измерение распределения тока по одножильным кабелям

На силовом кабеле измеряются токи, протекающие как в жилах, так и в металлических оболочках и броне. Измерения производятся токоизмерительными клещами.

В зависимости от материала оболочки, брони и положения кабеля в пространстве токи в них могут достигать 100% по отношению к току жилы и сильно влиять на нагрев кабелей. Одновременно с измерением токов при нагрузках, близких к номинальной, должны быть проведены измерения температуры наружных покровов кабелей, по которой может быть вычислена температура жилы. Эта температура должна измеряться в самом нагретом месте КЛ и не должна превосходить допустимую для данного места измерения. При неравномерности распределения токов более 10%, когда отдельные кабели лимитируют пропускную способность всей группы кабелей, должны быть приняты меры по выравниванию токов по фазам.

Почему прочность уменьшается

Есть несколько основных факторов, которые напрямую влияют на уменьшение прочности в сети:

  • Переменные напряжения;
  • Температурные значения.

В первом случае напряжение в сети может меняться. Например, на электрической станции линия достигает значений двести двадцать киловольт, но в случае поломок напряжение может упасть до ста десяти киловольт.

После обслуживания и ремонта напряжение вернётся к изначальным значением.

Такое напряжение и называют переменным, изменяющееся в определённый временной промежуток. Из-за того, что в России многие сети существуют довольно давно, они уже обзавелись своими ресурсами.

Переменное напряжение не является редким явлением для наших сетей.

При прохождении тока кабели соответственно нагреваются. Постоянные высокие температуры могут воздействовать на проводник, что влияет и на слой изоляции. Пробои напрямую зависят от разных температур.

Рейтинг
( 1 оценка, среднее 5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]