4.6
Средняя оценка: 4.6
Всего получено оценок: 203.
4.6
Средняя оценка: 4.6
Всего получено оценок: 203.
От мощности устройства зависит, сколько и за какое время работы оно произведет, но также от нее зависит, сколько энергии будет потреблено. На большинстве бытовых электрических приборах пишется мощность, например, на чайниках, мощность также – одна из характеристик автомобиля. Но измеряются они зачастую в разных единицах, отчего при расчетах инженерам приходится переходить между единицами измерения мощности.
Системные единицы
Дадим определение: под мощностью в физике понимают величину, которая характеризует работоспособность (скорость передачи или преобразования энергии) механизмов и устройств. Оно связано с другим понятиям – работой.
В механике мощность находят по формуле:
$P = \frac {dA}{dt} = F \cdot v \cdot cos \alpha$, из которой следует, что под мощностью понимается работа, измеренная в Джоулях, отнесенная ко времени ее выполнения в секундах.
Рис. 1. Работа по перемещению груза.
Либо:
$P = \frac {dW}{dt}$, т.е. как скорость изменения энергии системы.
В электродинамике для мощности имеется своя формула:
$P = U \cdot I$
Таким образом, единица измерения мощности – это Джоули, деленные на секунду (Вольты, умноженные на Амперы), или Ватты. Последнее название дали в честь инженера Джеймса Уатта, создавшего паровую машину. Именно Ватт является единицей мощность в системе СИ.
В промышленности и на приборах зачастую используют более крупные единицы – киловатты, мегаватты и др. Они получаются добавлением стандартных десятичных приставок. Соответственно, 1 кВт = 1000 Вт, 1 МВт = 1 000 000 Вт.
Рис. 2. Мощность на электрическом приборе.
В системе СГС (сантиметр, грамм, секунда), получившей распространение в электродинамике, мощность принято измерять в эргах, отнесенных к секунде. $ 1 \: эрг = 10^{-7} \: Дж $, тогда $ 1 \: Ватт = 10^7 \: \frac {эрг}{с} $
В системе МКГСС (метр, килограмм-сила, секунда) мощность измеряется в килограммах-силах, умноженных на метр и деленных на с. $1 \: кгс = 10 \: Н$, и тогда $1 \: Ватт = 0,1 \: \frac {кгс \cdot м}{с}$
Измерение мощности электрического тока
Мощность электрического тока напрямую зависит от напряжения и силы тока в цепи. Соответственно, для того, чтобы определить мощность тока, нам понадобится два прибора: амперметр и вольтметр. Умножив показания этих приборов друг на друга, мы получим численное значение мощности.
Также для измерения мощности напрямую существуют специальные приборы — ваттметры (рисунок 1). Они непосредственно измеряют мощность электрического тока в цепи.
Рисунок 1. Лабораторный ваттметр
Внесистемные единицы
Сам Джеймс Уатт, фамилией которого теперь обозначают единицы мощности, измерял этот параметр в лошадиных силах. Так вышло исторически: Джеймс сравнивал, сколько потребуется лошадей на то, чтобы совершить ту же работу, которую делала его паровая машина. 1 л.с. равнялась мощности, которую необходимо затрачивать, чтобы поднимать тело массой 75 кг со скоростью 1 м/с.
Сейчас под единицей измерения, которую использовал Ватт, понимают механическую лошадиную силу – 1 л.с. = 745,7 Вт. Но существуют и другие виды л.с. Например, в России чаще используют метрическую – одна такая л.с. равна 735,5 Вт. Иногда применяют электрическую (746 Вт), котловую (9809,5 Вт) и гидравлическую (745,7 Вт). Все они примерно равны, но в зависимости от сферы удобней применять ту или иную лошадиную силу.
В теплофизике и термодинамике получили распространение другие внесистемные единицы – калории в секунду (кал/с). В международном стандарте 1 калория – это 4,187 Дж. Калорийностью, в частности, назывались теплота сгорания топлива, работа, необходимая для нагрева воды, энергия, получаемая из пищи. Из приведенного соотношения следует, что 1 Ватт – это 0,24 калории.
Чтобы упростить перевод одних единиц измерения в другие, сделали специальные таблицы с переводными коэффициентами. Ниже приведена одна из них:
Рис. 3. Таблица перехода между единицами мощности.
Формы и виды энергии
Поскольку энергия, как сказано выше, является только мерой различных форм движения и взаимодействия материи, мерой перехода движения материи из одних форм в другие, различные формы энергии выделяются в соответствии с различными формами движения материи. Таким образом, в зависимости от уровня проявления, можно выделить следующие формы энергии:
- энергия макромира — гравитационная или энергия притяжения тел,
- энергия взаимодействия тел — механическая,
- энергия молекулярных взаимодействий — тепловая,
- энергия атомных взаимодействий — химическая,
- энергия излучения — электромагнитная,
- энергия, заключенную в ядрах атомов, — ядерная.
Гравитационная энергия — энергия системы тел (частиц), обусловленная их взаимным гравитационным тяготением. В земных условиях, это, например, энергия, «запасенная» телом, поднятым на определенную высоту над поверхностью Земли — энергия силы тяжести. Таким образом, энергию, запасенную в водохранилищах гидроэлектростанций, можно отнести к гравитационной энергии.
Механическая энергия — проявляется при взаимодействии, движении отдельных тел или частиц. К ней относят энергию движения или вращения тела, энергию деформации при сгибании, растяжении, закручивании, сжатии упругих тел (пружин). Эта энергия наиболее широко используется в различных машинах — транспортных и технологических.
Тепловая энергия — энергия неупорядоченного (хаотического) движения и взаимодействия молекул веществ. Тепловая энергия, получаемая чаще всего при сжигании различных видов топлива, широко применяется для отопления, проведения многочисленных технологических процессов (нагревания, плавления, сушки, выпаривания, перегонки и т. д.).
Химическая энергия — это энергия, «запасенная» в атомах веществ, которая высвобождается или поглощается при химических реакциях между веществами. Химическая энергия либо выделяется в виде тепловой при проведении экзотермических реакций (например, горении топлива), либо преобразуется в электрическую в гальванических элементах и аккумуляторах. Эти источники энергии характеризуются высоким КПД (до 98 %), но низкой емкостью.
Электромагнитная энергия — это энергия, порождаемая взаимодействием электрического и магнитного полей. Ее подразделяют на электрическую и магнитную энергии. Электрическая энергия — энергия движущихся по электрической цепи электронов (электрического тока).
Электромагнитная энергия проявляется также в виде электромагнитных волн, то есть в виде излучения, включающего видимый свет, инфракрасные, ультрафиолетовые, рентгеновские лучи и радиоволны. Таким образом, один из видов электромагнитной энергии — это энергия излучения. Излучение переносит энергию в форме энергии электромагнитной волны. Когда излучение поглощается, его энергия преобразуется в другие формы, чаще всего в теплоту.
Ядерная энергия — энергия, локализованная в ядрах атомов так называемых радиоактивных веществ. Она высвобождается при делении тяжелых ядер (ядерная реакция) или синтезе легких ядер (термоядерная реакция).
В эту классификацию несколько не укладываются известные нам со школы понятия потенциальной и кинетической энергии. Современная физика считает, что понятия кинетической и потенциальной энергий (а также энергии диссипации) это не формы, а виды энергии:
Кинетическая энергия — энергия, которой обладают тела вследствие своего движения. Более строго, кинетическая энергия есть разность между полной энергией системы и её энергией покоя; таким образом, кинетическая энергия — часть полной энергии, обусловленная движением. Когда тело не движется, кинетическая энергия равна нулю.
Потенциальная энергия — энергия, обусловленная взаимодействием различных тел или частей одного и того же тела. Потенциальная энергия всегда определяется положением тела относительно некоторого источника силы (силового поля).
Энергия диссипации (то есть рассеяния) — переход части энергии упорядоченных процессов в энергию неупорядоченных процессов, в конечном счёте — в теплоту.
Дело в том, что каждая из перечисленных выше форм энергии может проявляться в виде потенциальной и кинетической энергии. То есть виды энергии должны трактоваться в обобщенном смысле, ибо они относятся к любой форме движения и, следовательно, к любой форме энергии. Например, имеется кинетическая электрическая энергия, и это не то же самое, что кинетическая механическая энергия. Это кинетическая энергия движения электронов, а не кинетическая энергия механического движения тела. Точно так же потенциальная электрическая энергия это не то же самое, что потенциальная механическая энергия. А химическая энергия складывается из кинетической энергии движения электронов и электрической энергии их взаимодействия друг с другом и с атомными ядрами.
Вообще, насколько я понял при подготовке этого материала, пока не существует общепринятой классификации форм и видов энергии. Впрочем, возможно нам и не нужно до конца разбираться в этих физических понятиях. Важно только помнить, что энергия — это не какая-то реальная материальная субстанция, а только мера, предназначенная для оценки перемещения некоторых форм материи или преобразования одной формы материи в другую.
С понятием энергии и работы неразрывно связано понятие мощности.
Работы силы, формула
Сила, приложенная к телу и перемещающая его, совершает работу (рис. 1).
Рис. 1. Сила перемещает тело и совершает работу
Работа силы — это скалярное произведение вектора силы на вектор перемещения.
Работу, совершаемую силой, можно посчитать, используя векторный или скалярный вид записи такой формулы:
Векторный вид записи
\[ \large \boxed{ A = \left( \vec{F} , \vec{S} \right) }\]
Для решения задач правую часть этой формулы удобно записывать в скалярном виде:
\[ \large \boxed{ A = \left| \vec{F} \right| \cdot \left| \vec{S} \right| \cdot cos(\alpha) }\]
\( F \left( H \right) \) – сила, перемещающая тело;
\( S \left( \text{м} \right) \) – перемещение тела под действием силы;
\( \alpha \) – угол между вектором силы и вектором перемещения тела;
Работу обозначают символом \(A\) и измеряют в Джоулях. Работа – это скалярная величина.
В случае, когда сила постоянная, формула позволяет рассчитать работу, совершенную силой за полное время ее действия.
Если сила изменяется со временем, то в каждый конкретный момент времени будем получать мгновенную работу. Эти, мгновенные значения для разных моментов времени будут различаться.
Рассмотрим несколько случаев, следующих из формулы:
- Когда угол между силой и перемещением острый, работа силы положительная;
- А если угол тупой — работа отрицательная, так как косинус тупого угла отрицательный;
- Если же угол прямой – работа равна нулю. Сила, перпендикулярная перемещению, работу не совершает!
Кто придумал использовать ватты
Единица измерения силы тока
Специфическое наименование дано этой единице измерения по фамилии шотландского изобретателя Д. Ватта. Именно он впервые предложил использовать нормированную величину мощности – лошадиную силу. Такой подход стал основой для стандартизации этого важнейшего параметра, основной оценки энергетического потенциала силовых агрегатов.
Чертеж паровой машины, которую усовершенствовал James Watt
К сведению. Одна лошадиная сила эквивалентна мощности, необходимой для подъема предмета с весом 75 кг на высоту 1 метр за секунду (≈734 Вт).
Кратные единицы Вт
Базовая величина (1 вт) слишком мала для оценки бытовых потребностей. Для наглядного примера можно изучить эксплуатацию современной стиральной машины. Суммарную мощность техники определяют рабочие параметры:
- электродвигателя, вращающего барабан;
- нагревательного элемента (ТЭНа);
- насоса для принудительного слива жидкости;
- блока управления и контроля.
На реальный расход электроэнергии оказывают влияние следующие факторы:
- рабочая температура;
- длительность и другие особенности отдельных режимов;
- скорость вращения;
- объем загрузки.
Приведенная информация демонстрирует невозможность получения корректных результатов с помощью измерений. Для удобства покупателей на стадии выбора установлены стандарты энергоэффективности. Современные модели маркируют латинской буквой «А» с добавлением «плюсов». Чем больше итоговое обозначение, тем меньше будет счет за потребленную электроэнергию.
По сопроводительной документации можно уточнить параметры, которые официально указывает производитель. Пример современной модели по энергопотреблению (Samsung WF60):
- класс – А+++;
- за один стандартный рабочий цикл –860 Вт;
- за год – 175 000 Вт.
Для упрощения оценки подобных потребителей удобно использовать обозначение киловатт – 103 (кватт, кВт). Применив такую размерность, можно получить следующий результат вместо приведенных в предыдущем перечне данных:
- за цикл потребление составит 0,86 кВт;
- за год – 175 кВт.
Из этого примера понятно, что обозначение ватт подходит для уровней мощности от 0,1 до 999.
В распределительных и магистральных сетях, а также в производственных технологических процессах оперируют со значительно большими величинами. Ватт единица измерения не подходит. Для выполнения расчетов применяют кратность 106 (мегаватт сокращение МВт). Большую букву «М» используют, чтобы исключить путаницу с мВт. Таким дополнением при необходимости будет обозначаться дольная часть ватта (0,03 Вт = 30 мВт).
Кратные и дольные значения
Десятичный множитель | Приставка | Обозначение | Пример | ||
русская | международная | русское | международное | ||
101 | дека | deca | да | da | дал — декалитр |
102 | гекто | hecto | г | h | гПа — гектопаскаль |
103 | кило | kilo | к | k | кН — килоньютон |
106 | мега | mega | М | M | МПа — мегапаскаль |
109 | гига | giga | Г | G | ГГц — гигагерц |
1012 | тера | tera | Т | T | ТВ — теравольт |
1015 | пета | peta | П | P | Пфлопс — петафлопс |
1018 | экса | exa | Э | E | Эм — эксаметр |
1021 | зетта | zetta | З | Z | ЗэВ — зеттаэлектронвольт |
1024 | иотта | yotta | И | Y | Иг — иоттаграмм |
10−1 | деци | deci | д | d | дм — дециметр |
10−2 | санти | centi | с | c | см — сантиметр |
10−3 | милли | milli | м | m | мА — миллиампер |
10−6 | микро | micro | мк | µ | мкф — микрофарад |
10−9 | нано | nano | н | n | нм — нанометр |
10−12 | пико | pico | п | p | пФ — пикофарад |
10−15 | фемто | femto | ф | f | фс — фемтосекунда |
10−18 | атто | atto | а | a | ас — аттосекунда |
10−21 | зепто | zepto | з | z | зКл — зептокулон |
10−24 | иокто | yocto | и | y | иг — иоктограмм |
Таким образом, чтобы отображать единицы или кратность единиц для сопротивления, тока или напряжения, мы использовали бы в качестве примера:
- 1 кВ = 1 киловольт- что равно 1000 вольт.
- 1 мА = 1 миллиампер,что равно одной тысячной (1/1000) ампера.
- 47 кОм = 47 килоом- что равно 47000 Ом.
- 100uF = 100 микрофарад,что равно 100 миллионной (100/1 000 000) фарада.
- 1 кВт = 1 киловатт, что равно 1000 Вт.
- 1MHz = 1 мегагерц,что равно миллиону Герц.
Для преобразования из одного префикса в другой необходимо либо умножить, либо разделить на разницу между двумя значениями. Например, для того чтобы преобразовать МГц в кГц, необходимо значение в кГц умножить на 1000, т.е. 1МГц = 1000кГц.
Определение мощности
Быстроту выполнения работы характеризуют физической величиной, называемой мощность.
Мощность — это физическая величина, равная отношению работы ко времени, за которое она была совершена.
Чтобы вычислить мощность, нужно работу разделить на время, в течение которого совершена эта работа:
$$мощность = \frac{работа}{время}$$
или
$$N = \frac{A}{t}$$
где $N$ — мощность, $A$ — работа, $t$ — время выполнения работы.
Мощность может быть:
- Постоянной, если за каждую секунду совершается одинаковая работа
- Непостоянной, если за каждую секунду совершается разная работа. В таком случае говорят о средней мощности: $N_{ср} = \frac{A}{t}$
Дольные единицы Вт
Выяснив, что измеряется в ваттах, можно перейти к важным для практики нюансам. В некоторых ситуациях базовые единицы слишком велики для оценки рабочих параметров. Так, некоторые датчики (тепла, освещенности) потребляют минимум электроэнергии. Мощность подходящего блока питания можно определить после выполнения расчета. Для удобства вместо 1 ватт применяют дробные значения:
- 10-3 – мвт, милливатт;
- 10-6 – мквт, микроватт;
- 10-9 – нвт, нановатт.
Зептоватты (10-21) и другие мельчайшие единицы практического значения в быту не имеют. Этими значениями пользуются при теоретических вычислениях различных физических процессов.
Формула взаимосвязи между мощностью, напряжением и силой тока
Для вывода зависимостей между рассматриваемыми параметрами можно вернуться к определению с работой. В этом случае рассматривают перемещение заряда (Q) на заданное расстояние. При движении из точки F1 в F2 будет выполнена работа (А), равная изменению потенциала или напряжению. Базовую формулу несложно преобразовать:
P=A/t = (U/t)*Q.
Сила тока определяется величиной заряда, который перемещается за контрольное время (I = Q/t). После совмещения отмеченных зависимостей получится следующий результат:
P = U * I.
Из этого выражения убраны «сопутствующие» параметры. Оставлены типичные электрические величины. Если добавить известную формулу закона Ома, можно установить рабочие соотношения для расчетов с учетом электрического сопротивления:
P = U2/ R = I2 * R.
Базовые формулы для расчета
К сведению. Представленные зависимости позволяют получить точный результат вычислений при работе с источником постоянного тока. Однако в стандартной бытовой сети применяют однофазное питание 220 V. Амплитуда сигнала изменяется с нормированной частотой 50Гц, поэтому нужно учитывать особенности потребления энергии разными типами нагрузок.
Если подключается классическая лампа накаливания или бойлер с ТЭНом для нагрева воды, допустимо применение рассмотренных выше формул. Однако простая технология не подходит при работе с реактивным сопротивлением нагрузки. Индуктивные и емкостные компоненты образуют колебательный контур. Активизируется процесс накопления и обмена энергии с источником питания. В ходе подобных циклов часть мощности расходуется впустую, поэтому для точной оценки выделяют активную составляющую:
Pакт = U * I * cos ϕ.
Дополнительный множитель в формуле характеризует потери в определенной нагрузке. Значение cos ϕ указывают на шильдиках электродвигателей, в сопроводительной документации к станкам, трансформаторам, генераторам.
Специалисты советуют не забывать о «бесполезной» реактивной мощности (Pреакт = U * I * sin ϕ). Прохождение тока по цепи в любом направлении увеличивает энергетический потенциал молекулярной решетки проводника. Этот процесс сопровождается нагревом. Если исключить данную составляющую из расчетов, увеличивается риск возникновения поломок и аварийных ситуаций. Полную мощность ватт можно вычислить по формуле:
Pполн = √((Pакт)2 + (Pреакт)2).
Для проверки рабочих схем, ремонта и настройки применяют специальное оборудование. Измерять мощность можно ваттметром. Для постоянного контроля в режиме онлайн такой блок можно установить в электрощитке. Изделия этой категории оснащают индикацией показаний. Некоторые модели способны передавать информацию по локальной сети и через интернет.
В мобильном варианте исполнения ваттметр используют для уточнения потребления электроэнергии подключенными к розетке устройствами
Вместо специализированной техники можно применить типовой универсальный мультиметр. Чтобы измерить ток, прибор включают в электрическую цепь последовательно с нагрузкой. Параллельное подсоединение поможет узнать напряжение. Далее по представленным выше формулам вычисляют, какую мощность вт потребляет телевизор или другая техника.
Формула мощности
Единица освещенности
По базовому определению из рассмотренного выше примера с лошадиной силой понятен принцип расчета потребленной энергии. Мощность (P) можно измерить через работу (А), выполненную за определенный временной интервал (t) следующим образом:
P=A/t.
Обратная пропорциональность подчеркивает относительное увеличение затрат энергии на быстрое выполнение определенного действия.
Допустимо представить рассматриваемый параметр через приложенную к предмету силу (F) и скорость перемещения (V):
P = F * V.
Прямая зависимость мощности от двух компонентов из второй части формулы понятна без подробного объяснения. Если скорость выразить через пройденное расстояние (D) за определенное время (V = D/t), можно после простого математического преобразования получить следующий результат:
P = (F * D)/t.