Сила в физике — виды, формулы и определения с примерами

  • Что такое сила
      Чем измеряют силу
  • Сложение сил
  • Равнодействующая сила
  • Что означает понятие «Сила» в физике
  • Графическое изображение сил Сложение сил, действующие вдоль одной прямой
  • Сила:

    При изучения природных явлений используют разные физические величины. Для того чтобы описать качественно и количественно взаимодействие тел, вводят физическую величину, которую называют силой.

    Ньютон, как единица измерения:

    Ньютон – единица измерения силы в Международной системе единиц (СИ), названная в честь английского физика Исаака Ньютона. Ньютон – производная единица.

    Ньютон как единица измерения имеет русское обозначение – Н и международное обозначение – N.

    Исходя из второго закона Ньютона сила в 1 ньютон (Н) определяется как сила, изменяющая за 1 секунду скорость тела массой 1 кг на 1 м/с в направлении действия силы.

    Н = кг · м / с2.

    1 Н = 1 кг · м / с2.

    Встречаются и другие определения. Сила 1 ньютон (Н) – это такая сила, при воздействии которой на тело массой 1 кг тело приобретает ускорение 1 м/с2, или это такая сила, которая совершает работу в 1 Джоуль при перемещении любого тела на 1 метр.

    Н = Дж / м.

    1 Н = 1 Дж / м.

    Исходя из представленных определений можно обнаружить связь ньютона с силой тяжести. Оказывается на тело весом в 102 грамма действует сила тяжести как раз в 1 ньютон, а следовательно сила тяжести действующая на тело массой 1 килограмм равна 9,8 Н.

    В Международную систему единиц ньютон введён решением XI Генеральной конференцией по мерам и весам в 1960 году, одновременно с принятием системы СИ в целом. В соответствии с правилами СИ, касающимися производных единиц, названных по имени учёных, наименование единицы ньютон пишется со строчной буквы, а её обозначение – с заглавной (Н). Такое написание обозначения сохраняется и в обозначениях других производных единиц, образованных с использованием ньютона.

    Определение силы

    Сила — это физическая величина, которая служит мерой взаимодействия тел и является причиной изменения скоростей тел или их частей.

    Наблюдение. Если мы рассматриваем, например, взаимодействие руки с волейбольным мячом, то мы говорим: «Мяч действует с силой на руку или рука действует с силой на мяч».

    Опыт. Подвесим на пружину яблоко (рис. 66).

    Пружина удлинится. Если на неё подвесить два яблока, то она удлинится больше. Итак, два яблока действуют на пружину с большей силой, чем одно.

    Результат действия одного тела на другое зависит от значения приложенной силы.

    Чем плотнее закрыта дверь, тем с большей силой мы должны её толкать или тянуть на себя, чтобы отворить.

    Для того чтобы легче открывать дверь, её ручку прикрепляют как можно дальше от петель. Попробуйте открыть дверь, толкая её в точке, размещённой вблизи петель. Вы убедитесь, что это сделать намного труднее, чем с помощью ручки. Результат действия одного тела на другое зависит от точки приложения силы.

    Для достижения определённого результата действия, например, растяжения или сжатия пружины, закрытия или открытия двери, нужно прикладывать силы в разных направлениях.

    Действие одного тела на другое зависит от направления действия силы.

    Графически силу изображают в виде отрезка прямой со стрелкой на конце (рис. 67).

    Начало отрезка совмещают с точкой приложения силы. Длина отрезка в определённом масштабе равна значению силы. Стрелка показывает направление силы. Величины, характеризующиеся кроме числового значения еще и направлением в пространстве, называют векторными, или векторами (от латинского слова вектор — ведущий, несущий).

    Почему тела изменяют свое состояние в пространстве

    Любые изменения в природе происходят в результате взаимодействия между телами. Чтобы изменить положение вагона на рельсах, железнодорожники направляют к нему локомотив, который смещает вагон с места и приводит его в состояние движения (рис. 32).

    Парусник может длительное время стоять возле берега до тех пор, пока не подует попутный ветер и подействует на его паруса (рис. 33). Колеса игрушечного автомобиля могут вращаться с любой скоростью, но игрушка не изменит своего положения, если под игрушку не положить дощечку или линейку (рис.34). Форму или размер пружины можно изменить, лишь подвесив к ней груз или потянув рукой за один из его концов.

    Все тела в природе так или иначе связаны между собой и действуют друг на друга или непосредственно, или через физические поля. Такое действие всегда является взаимным. Если тепловоз действует на вагон и изменяет его скорость, то скорость тепловоза при этом также изменяется благодаря обратному действию вагона. Солнце действует на все тела на Земле и на саму Землю, удерживая ее на орбите. Но и Земля притягивает Солнце и, в свою очередь, изменяет его траекторию. Таким образом, во всех случаях можно говорить только о взаимном действии тел — взаимодействии.

    При взаимодействии могут изменяться скорости тел или их частей.

    Однако, взаимодействуя с различными телами, данное тело будет изменять свою скорость по-разному. Так, парусник может приобрести скорость вследствие действия на него ветра. Но такой же результат можно получить, включив двигатель, который находится на паруснике. Парусник может сдвинуть с места и катер, действуя на него через трос. Чтобы каждый раз не называть все взаимодействующие тела, все эти действия объединяют одним понятием силы.

    Кратные и дольные единицы ньютона:

    Кратные и дольные единицы образуются с помощью стандартных приставок СИ.

    КратныеДольные
    величинаназваниеобозначениевеличинаназваниеобозначение
    101 НдеканьютондаНdaN10−1 НдециньютондНdN
    102 НгектоньютонгНhN10−2 НсантиньютонсНcN
    103 НкилоньютонкНkN10−3 НмиллиньютонмНmN
    106 НмеганьютонМНMN10−6 НмикроньютонмкНµN
    109 НгиганьютонГНGN10−9 НнаноньютоннНnN
    1012 НтераньютонТНTN10−12 НпиконьютонпНpN
    1015 НпетаньютонПНPN10−15 НфемтоньютонфНfN
    1018 НэксаньютонЭНEN10−18 НаттоньютонаНaN
    1021 НзеттаньютонЗНZN10−21 НзептоньютонзНzN
    1024 НиоттаньютонИНYN10−24 НиоктоньютониНyN

    Изменение веса тела

    Действие тела на опору вследствие взаимодействия с Землей чаще именуют весом тела. Интересно, что величина веса тела зависит от ускорения движения в вертикальном направлении. В том случае, когда направление ускорения противоположно ускорению свободного падения, наблюдается увеличение веса. Если ускорение тела совпадает с направлением свободного падения, то вес тела уменьшается. К примеру, находясь в поднимающемся лифте, в начале подъема человек чувствует увеличение веса некоторое время. Утверждать, что его масса меняется, не приходится. При этом разделяем понятия «вес тела» и его «масса».

    Основное утверждение механики

    Для описания движения тела можно взять любую систему отсчета. Обычно для этого используется система отсчета, связанная с Землей. Если какое-то тело меняет свою скорость, рядом с ним всегда можно обнаружить другое тело, которое на него действует. Так, если поднять камень и отпустить, он не останется висеть в воздухе, а упадет вниз. Следовательно, на него что-то подействовало. В данном случае сама Земля притянула камень к себе. Отсюда следует основное утверждение механики:

    Основное утверждение механики

    Изменение скорости (ускорение) тела всегда вызывается воздействием на него других тел.

    Согласно утверждению, если на тело не действуют никакие силы, его ускорение будет нулевым, и оно будет либо покоиться, либо двигаться равномерно и прямолинейно (с постоянной скоростью).

    Но в нашем мире мы не всегда это наблюдаем. И этому есть объяснение. Если тело покоится, оно действительно не меняет свою скорость. Так, мяч лежит на траве до тех пор, пока его не пнут. После того, как его пнут, он начинает катиться, но затем останавливается. Пока мяч катится, к нему больше не прикасаются. Казалось бы, согласно основному утверждению механики, мяч должен катиться вечно. Но этого не происходит, потому что на мяч действует сила трения, возникающая между его поверхностью и травой.

    Основное утверждение механики можно проиллюстрировать в открытом космосе в месте, где сила притяжения космических тел пренебрежимо мала. Если в космосе придать телу скорость и отпустить, оно будет двигаться с такой скоростью по прямой линии до тех пор, пока на него не подействуют другие силы. Ярким примером служат межгалактические звезды, или звезды-изгои. Гравитационно они не связаны ни с одной из галактик, а потому движутся с постоянной скоростью. Так, звезда HE 0437-5439 удаляется от нашей галактики с постоянной скоростью 723 км/с.

    Свободное тело — тело, на которое не действуют другие тела. Свободное тело либо покоится, либо движется прямолинейно и равномерно.

    Виды приборов

    В зависимости от конструкции и принципа действия, все динамометры подразделяются на механические, гидравлические, электрические. Особой категорией измерителей силы являются одноразовые датчики.

    Механические (рычажные или пружинные) динамометры

    Единица измерения силы тока

    Механические динамометры измеряют силу и ее момент, благодаря таким физическим процессам, как упругое растяжение и сжатие.

    Основными разновидностями таких приборов являются:

    • Рычажные – в таких приборах упругим телом служит рычаг, деформация которого передается на соединенный с ним датчик или измерительное устройство;
    • Механические – это самые простые и распространенные динамометры, состоят из упругой пружины, соединенной со стрелкой, перемещающейся по круглой или вертикальной шкале, с нанесенными делениями, или датчиком, который передает электрический сигнал на электронный блок с электронным табло (монохромным жидкокристаллическим дисплеем).

    На заметку. Перед тем, как измерить силу с помощью механического динамометра, являющегося по своей сущности и конструкции обычным безменом, обязательно убеждаются в том, что стрелка на круглой или вертикальной шкале расположена на значении «0». Если стрелка сбилась и показывает при отсутствии нагрузки значение больше нуля, то значит, что упругий элемент претерпел непоправимую деформацию, вызванную приложением к нему нагрузки, значительно превышающей предельно допустимую. Такой прибор уже не будет точным и со временем выйдет из строя.

    Гидравлический динамометр

    Гидравлический измеритель состоит из:

    • Нескольких цилиндров, внутри которых находятся подвижные штоки с поршнями;
    • Рычага, закрепленного на верхней части штоков;
    • Измеряющего устройства (манометра).

    В качестве рабочей жидкости в таких измерителях применяется масло.

    Работает такой прибор следующим образом:

    1. Прикладываемое к рычагу усилие через штоки и поршни воздействует на находящуюся в цилиндрах жидкость;
    2. Вытесняемая жидкость по трубкам поступает к манометру;
    3. Манометр измеряет давление поступившей из цилиндров жидкости и отображает его на круглой аналоговой стрелочной шкале или жидкокристаллическом монохромном цифровом дисплее в виде определённого значения воздействующего на рычаг усилия.

    Такие приборы позволяют определять значение силы с большей точностью, чем механические аналоги. Однако, по сравнению с последними, такие динамометры характеризуются более высокой ценой, дорогостоящим ремонтом и обслуживанием, неточностью при разгерметизации цилиндров и появлении протечек рабочей жидкости.

    Электрический динамометр

    Электрические динамометры состоят из:

    • Упругого элемента, соединённого с реагирующим на его деформацию датчиком индуктивного, емкостного, пьезоэлектрического, вибрационно-частотного или тензорезисторного типа;
    • Усилителя поступающего от датчика электрического сигнала;
    • Электронного блока, оборудованного дисплеем.

    Принцип действия такого прибора достаточно прост:

    1. Усилие, прилагаемое к упругому телу, регистрируется датчиком;
    2. Датчик посылает электрический сигнал на усилитель, который, в свою очередь, передает его на электронный блок;
    3. Электронный блок со встроенной микросхемой переводит полученный от усилителя сигнал в графическое изображение значения силы на дисплее.

    На заметку. Так как такие электрические приборы, в отличие от большинства механических и гидравлических, снабжены электронным блоком и дисплеем, перед использованием их необходимо включать специальной кнопкой. Питание таких приборов осуществляется от встроенных аккумуляторных батарей. Некоторые модели можно для обеспечения питанием подключать к сети, имеющей напряжение 220 В. Устройства, имеющие разряженное питание или не подключённые к сети, включаться и работать не будут.

    Одноразовые датчики

    Такие датчики, в отличие от описанных выше аналогов, используются для измерения разрушительных нагрузок, имеющих огромную мощность: очень сильного удара, мощного взрыва. Однако перед тем, как потерять целостность и полностью выйти из строя, они достаточно точно измеряют и передают на расположенный на безопасном расстоянии электронный блок данные о силе, разрушившей их.

    Взаимодействие магнитного поля с током

    Влияние магнитного поля на постоянный ток описывается При этом сила, с которой магнитное поле действует на проводник с током, помещенный в него, называется силой Ампера.

    Взаимодействие магнитного поля с вызывает силовое проявление. Сила Ампера, формула которой имеет вид F = IBlsinα, зависит от (В), длины активной части проводника (l), (I) в проводнике и угла между направлением тока и магнитной индукцией.

    Благодаря последней зависимости можно утверждать, что вектор действия магнитного поля может измениться при повороте проводника или изменении направления тока. Правило левой руки позволяет установить направление действия. Если левую руку расположить таким образом, чтобы вектор магнитной индукции входил в ладонь, четыре пальца были направлены по току в проводнике, то отогнутый на 90 ° большой палец покажет направление действия магнитного поля.

    Применение этому воздействию человечеством найдено, к примеру, в электродвигателях. Вращение ротора вызывается магнитным полем, созданным мощным электромагнитом. Формула силы позволяет судить о возможности изменения мощности двигателя. С увеличением силы тока или величины поля вращательный момент возрастает, что приводит к увеличению мощности двигателя.

    Применение динамометров

    Динамометры имеют очень широкое применение. Например, в медицине используются специальные медицинские динамометры. Они предназначены для измерения силы различных мышечных групп человека.

    Одним из таких приборов является ручной динамометр, который называется силомером (рисунок 3). С его помощью измеряется мускульная сила руки при сжатии кисти в кулак.

    Для того чтобы измерить тяговые усилия локомотивов, тракторов, морских буксиров и другой техники, используют специальные тяговые динамометры (рисунок 4).

    Рисунок 4. Применение тягового динамометра.

    Такие динамометры способны измерять силы до нескольких десятков тысяч ньютонов. Современные модели имеют пульт дистанционного управления с дисплеем (рисунок 5).

    Рисунок 5. Тяговый динамометр.

    При монтаже проводов и кабелей используют динамометры для определения силы натяжения провода (рисунок 6). Существуют специальные монтажные таблицы с необходимыми значениями.

    Рисунок 6. Динамометр для монтажных работ.

    Динамометры используют не только в специальной технике, но и в обычных для нас местах: в метро, в автобусах и даже в лифте. Здесь эти приборы используют для измерения силы сжатия створок различных автоматических дверей.

    Проблемы плазмы

    Взаимодействие магнитного поля и вещества используется в циклотронах. Проблемы, связанные с лабораторным изучением плазмы, не позволяют содержать ее в замкнутых сосудах. Высоко может существовать только при высоких температурах. Удержать плазму в одном месте пространства можно посредством магнитных полей, закручивая газ в виде кольца. Управляемые можно изучать, также закручивая высокотемпературную плазму в шнур при помощи магнитных полей.

    Пример действия магнитного поля в естественных условиях на ионизированный газ — Полярное сияние. Это величественное зрелище наблюдается за полярным кругом на высоте 100 км над поверхностью земли. Загадочное красочное свечение газа пояснить смогли лишь в ХХ веке. Магнитное поле земли вблизи полюсов не может препятствовать проникновению солнечного ветра в атмосферу. Наиболее активное излучение, направленное вдоль линий магнитной индукции, вызывает ионизацию атмосферы.

    Траектории частиц

    Взаимодействие магнитного поля с зарядом широко используется в масс-спектрографах при исследовании элементарных частиц.

    Действие поля при этом вызывает появление силы, названной силой Лоренца. При попадании в магнитное поле движущейся с некоторой скоростью заряженной частицы формула которой имеет вид F = vBqsinα, вызывает движение частицы по окружности.

    В этой математической модели v — модуль скорости частицы, электрический заряд которой — q, В — магнитная индукция поля, α — угол между направлениями скорости и магнитной индукции.

    Частица движется по окружности (либо дуге окружности), так как сила и скорость направлены под углом 90 ° друг к другу. Изменение направления линейной скорости вызывает появление ускорения.

    Правило левой руки, рассмотренное выше, имеет место и при изучении силы Лоренца: если левую руку расположить таким образом, чтобы вектор магнитной индукции входил в ладонь, четыре пальца, вытянутых в линию, были направлены по скорости положительно заряженной частицы, то отогнутый на 90 ° большой палец покажет направление действия силы.

    Содержание

    Сила — это векторная физическая величина, имеющая направление и численное значение. Как же определить ее численное значение?

    Как вы уже знаете, для этого нам необходимо определить единицу измерения — некий эталон, принятый за единицу. За такую единицу можно принять любую силу. Например, силу тяжести, которая действует на какое-то определенное тело.

    Также можно принять и силу упругости выбранной пружины, растянутой до некоторой длины. В данном уроке вы узнаете, какую силу приняли за единицу, получите формулу для определения силы тяжести и научитесь ею пользоваться для решения задач.

    Еще одна единица

    Помимо ньютона, в СИ существует и более большая физическая единица измерения силы — килоньютон (кН). Он равняется 1000 Н. Например, тяговое усилие от класса Y в паровозе локомотива и тяга из F100 истребителя реактивного двигателя — оба около 130 кН.

    Один килоньютон составляет 102,0 kgf или около 100 кг нагрузки.

    1 кН=102 кг × 9,81 м / с2

    Так, например, платформа, которая показывает его, оценивается в 321 кН (72000 фунтов F ), будет надежно поддерживать 32,100 кг (70800 фунтов) нагрузки. Эта единица используется в следующих спецификациях безопасности:

    • удерживающие ценности крепежа, якоря земли и других предметов, используемых в строительной промышленности;
    • рабочие нагрузки на растяжение и на сдвиг;
    • оборудование для скалолазания;
    • тяги в ракетных двигателей и ракет-носителей;
    • усилие зажима различных форм в литьевых машинах, используемых для изготовления пластиковых деталей.
    Рейтинг
    ( 1 оценка, среднее 4 из 5 )
    Понравилась статья? Поделиться с друзьями:
    Для любых предложений по сайту: [email protected]