Содержание
Вы уже изучили природу процесса протекания тока по металлическому проводнику. Но собственными глазами мы не может увидеть передвижение электронов или само электрическое поле. Как тогда в жизни мы можем понять, что ток в цепи есть без использования электроприборов и других специальных измерительных устройств?
Дело в том, что при прохождении тока по проводнику возникают различные побочные явления. Эти явления называю действиями тока.
Именно о них мы и поговорим в этом уроке. Многие такие явления легко пронаблюдать на опытах. Давайте же перейдем к более детальному их рассмотрению.
Причины нагрева проводников и их этапы
Так почему при прохождении тока проводник нагревается? Ответ на этот вопрос независимо друг от друга дали Джеймс Джоуль в 1841 году, и Эмиль Ленц в 1842 году. В связи с этим. открытый ими закон получил название Джоуля-Ленца.
Закон Джоуля-Ленца
Джеймс Джоуль
Эмиль Ленц
Звучит этот закон, как: мощность тепла, выделяемого в единице объема проводника, равна произведению напряженности электрического тока к его плотности. Если из этого определения вам сразу все стало понятно, то наша статья не для вас. Мы поговорим с теми, кто, как и я, когда услышал первый раз это определение, удивленно хлопал глазами.
Поэтому мы будем по минимуму использовать формулы, а постараемся на пальцах объяснить, что значит этот закон:
| Итак, у нас имеется проводник, по которому протекает электрический ток.
|
| Начнем с объяснения сопротивления проводника. Любой материал обладает так называемой удельной проводимостью – это способность проводит электрический ток. У одних материалов этот показатель достаточно высокий и их называют проводниками. У других материалов эта способность очень низкая, и их называют диэлектриками. |
| Чем выше способность материала проводить электрический ток, тем ниже его сопротивление. Но сопротивление проводника зависит еще от одного параметра – это его сечение. Ведь проводник — это как коридор для заряженных частиц, чем их больше, тем сложнее им пройти. Поэтому чем больше ток, тем большее сечение должно быть у проводника. |
Зависимость сопротивления кабеля от его сечения | Все современные провода и кабели имеют строго определённое сопротивление, которое напрямую зависит от их сечения. Обычно оно указано в паспорте продукта и регламентируется ГОСТами как на видео. |
| Ток, преодолевая сопротивление проводника, выполняет работу. Результатом этой работы является выделение тепла. Чем большее количество этого тепла, тем быстрее нагревается проводник. |
Соответственно, чем большее количество времени протекает ток по проводнику, чем большее сопротивление проводника, чем больший ток протекает по проводнику, тем быстрее и больше он нагревается. Вот так характеризует нагревание проводников электрическим током закон Джоуля-Ленца.
Обратите внимание! Электрическая проводимость, а соответственно и сопротивление проводника, напрямую зависит от его температуры. Чем она выше, тем больше сопротивление проводника. Поэтому получается лавинообразный процесс. Проводник греется, его сопротивление растет, и он греется еще больше. В связи с этим, процессу отвода тепла от проводника следует уделять самое пристальное внимание.
Отвод тепла от проводника и этапы нагрева
В связи с приведенным выше свойством, с нагревом проводников нужно бороться. Достигается это за счет выбора оптимального сечения провода, а также материала. То есть, сечение провода должно соответствовать максимально допустимому току, который может протекать в нем, а также нормально выдерживать кратковременные перегрузки.
- Дабы все это правильно рассчитать, мы должны знать не только как закон Джоуля-Ленца нагревание проводников электрическим током рассчитывает, но и как посчитать отдачу тепла проводником. Ведь наш проводник находится не в вакууме, и отдает тепло окружающей среде.
Площадь проводника
- Сразу давайте определимся, какие параметры влияют на теплоотдачу проводника. Прежде всего, это сечение проводника, ведь вполне логично, что чем большая площадь проводника соприкасается с окружающим воздухом, тем быстрее он ее отдает.
Теплоотдача различных материалов
- Следующим важным критерием является так называемый коэффициент теплоотдачи материала, из которого выполнен проводник. Или как этот параметр еще называют — теплопроводность материала. Ведь ни для кого не секрет, что теплопроводность у материалов разная.
- Ну и последним параметром, является разность между температурой окружающей среды и материалом проводника. Ведь как говорит инструкция: чем больше этот перепад, тем быстрее материал отдает тепло.
Температура установившегося режима
- Исходя из этих всех параметров, влияющих на теплоотдачу, можно предположить, что для любого проводника и любого тока имеется, так называемая, установившаяся температура. То есть, температура, при которой существует равенство получаемой энергии от протекания тока и отводимого тепла.
Рабочая температура проводника с ПВХ изоляцией
- Такую температуру называют установившимся режимом. И она должна быть в пределах рабочей температуры провода. Рабочая температура провода обычно ограничена типом используемой изоляции.
Например, для ПВХ-изоляции она не должна превышать 70⁰С, а разнообразные материалы с пропиткой лаком способны выдерживать температуры до 120⁰С и выше.
Тепловое действие тока в твердых телах
Это самое первое и очевидное для нас действие тока.
Тепловое действие тока проявляется в том, что среда, в которой он протекает, нагревается.
Например, это действие мы используем в таких повседневных приборах, как утюг, электрочайник, кофеварка. В обычных лампах накаливания тоже наблюдается тепловое действие тока (рисунок 1).
Рисунок 1. Тепловое действие тока в лампе накаливания
В таких лампах присутствует тонкая вольфрамовая проволока, которая при протекании по ней тока нагревается настолько, что раскаляется добела. Если мы поднесем руку к такой лампе, то почувствуем тепло. Это и есть наглядное тепловое действие тока.
Конечно, здесь еще присутствует факт того, что эта спираль не только дает тепло, но еще и светится. О световом действии тока мы поговорим чуть ниже.
Как можно наблюдать на опыте тепловое действие тока? Давайте проведем такой опыт, чтобы убедиться в наличии именно теплового действии тока.
Подключим к источнику тока железную или никелевую проволоку, как показано на рисунке 2.
Рисунок 2. Тепловое действие тока
После замыкания ключа в цепи появится ток. Проволока ощутимо нагреется. При этом она немного удлинится и провиснет. Заметьте, что до пропускания через нее тока она была плотно натянута (на рисунке исходное положение обозначено пунктирной линией).
Типы поражения электрическим током
В зависимости от того, какой наступает исход от электроудара, выделяют 5 типов:
- судорожные сокращения мышц, человек находится в сознании;
- судорожные сокращения мышц, человек без сознания, дыхание и работа сердца присутствуют;
- отсутствие дыхания с нарушением работы сердца;
- электрический шок, сильное расстройство дыхания, расстройство функционирования кровеносной и нервной системы, наступление глубокой депрессии которая может длиться от нескольких десятков минут до нескольких суток и в конечном итоге наступает либо полное выздоровление, либо биологическая смерть;
- клиническая смерть, отсутствует дыхания, остановка сердца. Ее еще называют мнимой смертью, длится 6-8 минут, является переходным состоянием от жизни к смерти. По прошествии указанного времени, если не проводить реанимационные мероприятия – наступает биологическая смерть.
Также, большое значение имеет и путь, по которому проходит ток через организм т.е. какими частями тела человек касается токопроводящей части. Чаще всего люди «включаются» в электрическую цепь таким образом, что ток проходит по петлям: «рука-ноги», «рука-рука», «нога-нога», «рука-голова», «ноги-голова».
Наибо̀лее опасны петли прохождения, при которых ток проходит через самые важные жизненные органы: сердце, головной мозг, спинной мозг которые к тому же имеют наименьшее электрическое сопротивление в организме и соответственно пропускают через себя бо̀льшее значение силы тока. Отсюда напрашиваются очевидные выводы что наиболее опасные петли «рука-рака» и пути проходящие через голову, а путь «нога-нога» наименее опасный, но тем не менее это не так, так как при этом возникает шаговое напряжение, ноги парализуются – человек оказывается в лежачем состояние и поражение током наносится всему организму.
Есть два варианта подключения организма к электрической цепи:
- двухфазное – человек одновременно прикасается частями тела к двум фазам (рис 2),
- однофазное – прикосновение к фазе и нулевой точке (рис 3).
Рисунок 2 — Схема двухфазного включения человека в электрическую сеть
Где, а – сеть с изолированной нейтралью; б – сеть с глухозаземленной нейтралью.
Двухфазное подключение самое опасное, так как в этом варианте ток зависит только от напряжения и сопротивления человека (формула 1) и будет иметь максимальное значение чем при однофазном подключение (см. рис 3).
Рисунок 3 — Схема однофазного включения человека в электрическую сеть (а-б)
Рисунок 3 — Схема однофазного включения человека в электрическую сеть (в)
- а – сеть с изолированной нейтралью;
- б – сеть с глухозаземленной нейтралью.
- в – сеть с заземленной нейтралью
При варианте a на рисунке 3, к сопротивлению человека — Rч, добавляется сопротивление обуви Rоб, Rп – сопротивление пола, сопротивление изоляции фаз – Rиз. Те формула силы тока примет следующий вид (формула – 2).
Формула 2 – Сила тока, проходящего через человека при однофазном подключение с изолированной нейтралью.
Где:
- Uф – фазное напряжение, В;
- Rч – сопротивление человека (принимается равным 1000 Ом.
При расчетах принимается наименьшее сопротивление (при сильном опьянении, с мокрой или поврежденной кожей);
- Rоб – сопротивление обуви;
- Rп – сопротивление пола;
- Rиз – сопротивление изоляции.
С учетом что сопротивления пола-обуви-изоляции имеют на порядки большие значения чем сопротивление человека – то и протекающий при таком варианте ток через человека гораздо слабее и менее опасный чем при 2х фазном подключении.
В аварийном режиме (см. рисунок 3б) когда одна из фаз коротит на корпус или уходит в землю, или происходит касание в месте с поврежденной изоляцией – человек может оказаться под полным линейным напряжением, ток проходящий через организм в таком случае рассчитывается по формуле 3:
Формула 3 – Сила тока, проходящего через человека при однофазном подключение в аварийном режиме.
Величина тока при однофазном подключении человека к сети с заземленной нейтралью рассчитывается по формуле 4.
Формула 4 – Сила тока, проходящего через человека при однофазном подключение с заземленной нейтралью.
Вернуться к содержанию
Тепловое действие тока в жидкостях и газах
Проволока в опыте выше представляла собой твердое тело. А будет ли проявляться тепловое действие тока в жидкостях или газах? Будет!
Для этого проведем следующий опыт. Возьмем сосуд с обычной водой и опустим туда две металлические пластины (рисунок 3). Присоединим их с помощью проводов к источнику тока. Теперь эти пластины будут являться электродами.
Опустим в воду термометр и зафиксируем температуру. Замкнем ключ, и по цепи пойдет электрический ток.
Рисунок 3. Тепловое действие тока в жидкости
Через 10-15 секунд вы уже увидите, что столбик термометра пополз вверх. Температура воды стала увеличиваться.
Как это можно объяснить? Электрическое поле заставляет электроны двигаться в определенном направлении. Их скорость увеличивается. Значит, увеличивается и их кинетическая энергия ($E_к = \frac{m \upsilon^2}{2}$).
При своем движении эти электроны будут неизбежно сталкиваться с другими частицами вещества (в нашем случае — воды). При столкновении они будут передавать часть своей энергии этим частицам. Значит, при прохождении тока через воду ее частицы получают какую-то дополнительную энергию. Общая внутренняя энергии воды увеличивается. А вы знаете, что именно это и приводит к повышению температуры.
Опыт, подтверждающий тепловое действие тока в воздухе, мы проделывать не будем, по причине его большой сложности. В общем, явлений, где проявляется тепловое действие тока в воздухе очень мало. Но, например, молния — наглядное природное явление, где тепловое действие тока тоже заметно.
Использование теплового действия электричества
Тепловое действие электрического тока находит широкое применение, в первую очередь, в нагревательных приборах.
Еще одним важным направлением использования теплового действия являются плавкие предохранители. Если необходимо отключить электрическую цепь при превышение допустимого тока, то в цепь можно включить плавкий предохранитель.
Рис. 3. Устройство плавкого предохранителя.
Это небольшая колба из негорючего материала, внутри которой проходит плавкая проволочка или лента, сопротивление которой рассчитано так, чтобы при превышении предельного тока она расплавилась, тем самым разорвав электрическую цепь.
Химическое действие тока в жидкостях
Как можно на опыте пронаблюдать химическое действие тока? Вернемся к предыдущему опыту и более внимательно приглядимся к электродам, опущенным в воду (рисунок 4).
Рисунок 4. Химическое действие тока в воде
Мы увидим, что даже в обычной воде вокруг электродов образуются мелкие пузырьки газа. Они не могут возникнуть сами по себе. Значит, происходит какая-то химическая реакция.
Обратите внимание, что здесь речь идет не о кипении, где мы ранее наблюдали образование пузырьков. Сами электроды еле теплые, мы можем спокойно потрогать их руками. Температура воды тоже далека от ее температуры кипения. Получается, что наличие этих пузырьков — это результат химических реакций, происходящих в воде, при пропускании через нее электрического тока.
Проведем еще один опыт, который более наглядно продемонстрирует нам химическое действие тока.
Заменим воду в сосуде из прошлого опыта на раствор медного купороса $CuSO_4$. Он имеет голубо-зеленоватый цвет. Металлические электроды заменим угольными (рисунок 5).
Рисунок 5. Химическое действие тока в растворе медного купороса
Замкнем ключ. По цепи пойдет ток. А теперь внимательно взглянем на электрод, соединенный с отрицательным полюсом источника тока. На нем образовался красноватый налет.
Что это? Откуда он взялся? Это чистая медь $Cu$. Под действием тока она выделилась из сложного соединения и отложилась на отрицательном электроде.
Химическое действие тока проявляется в том, что при его прохождении через растворы солей, кислот, щелочей на электродах выделяется чистое вещество.
Это действие тока активно применяется на практике в электрометаллургии для получении чистых металлов без каких-либо примесей (рисунок 6).
Рисунок 6. Детальная иллюстрация химического действия тока
Эту методику применяют для нанесения на поверхность различных предметов тонким слоем никеля, серебра, золота. Это придает предметам красивый эстетический вид и защищает их от преждевременного ржавления.
Формула расчета и ее элементы
Суть явления понятна из упомянутого выше общего определения. Движущиеся электроны взаимодействуют с ионами вещества проводника с преобразованием механической энергии в теплоту. Увеличение силы тока повышает интенсивность процесса.
Наглядный пример – электролиз. При опускании в раствор подключенных к батарее пластин положительно заряженные ионы и электроны движутся в противоположных направлениях. Достаточно высокий ток провоцирует перемещение примесей с последующим осаждением на поверхности электродов. Одновременно происходит нагрев жидкости.
При подключении к источнику медного проводника химические реакции отсутствуют. Если исключить механические воздействия (электромагнитная индукция, движение ионов в растворе), вся работа тока в соответствующей цепи будет направлена только на увеличение внутренней энергии вещества.
Действие электрического тока при подключении к жидкому и металлическому проводнику
Следовательно, во втором примере работу (A) можно принять равной увеличению энергетического потенциала, который выражается соответствующим количеством теплоты (Q). Основная формула:
A = Q = U * I *t,
где:
- U – напряжение;
- I – ток;
- t – время.
Для удобства расчетов можно использовать иные эквиваленты на основе формул закона Ома:
- U = I * R;
- R – электрическое сопротивление проводника;
- значит, Q = I2 * R * t.
Химическое действие тока в твердых телах и газах
В твердых телах атомы, молекулы или ионы прочно связаны между собой. Они находятся в узлах кристаллической решетки и способны совершать колебания. Действия тока обычно недостаточно для того, чтобы вырвать их со своих положений. Поэтому, говорят, что обычно химического действия тока в твердых телах не наблюдается.
В газах же возможно наблюдать такое действие. Вспомните электрофорную машину, где между электродами проскакивает искра.
После пропускания электрических искр через воздух, возникает характерный запах. По этому факту и ряду других было открыто такое химическое соединение как озон $O_3$ (рисунок 7). Оно состоит из трех молекул кислорода и обладает сильными окислительными свойствами. Это позволяет его широко использовать в качестве дезинфицирующего средства.
Рисунок 7. Молекула озона
Практическое значение
Снижение потерь энергии
При передаче электроэнергии тепловое действие тока в проводах является нежелательным, поскольку ведёт к потерям энергии. Подводящие провода и нагрузка соединены последовательно — значит, ток в сети I{\displaystyle I} на проводах и нагрузке одинаков. Мощность нагрузки и сопротивление проводов не должны зависеть от выбора напряжения источника. Выделяемая на проводах и на нагрузке мощность определяется следующими формулами
Qw=Rw⋅I2,{\displaystyle Q_{w}=R_{w}\cdot I^{2},} Qc=Uc⋅I.{\displaystyle Q_{c}=U_{c}\cdot I.}
Откуда следует, что Qw=Rw⋅Qc2Uc2{\displaystyle Q_{w}=R_{w}\cdot Q_{c}^{2}/U_{c}^{2}}. Так как в каждом конкретном случае мощность нагрузки и сопротивление проводов остаются неизменными и выражение Rw⋅Qc2{\displaystyle R_{w}\cdot Q_{c}^{2}} является константой, то тепло, выделяемое на проводе, обратно пропорционально квадрату напряжения на потребителе. Повышая напряжение, мы снижаем тепловые потери в проводах. Это, однако, снижает электробезопасность линий электропередачи.
Выбор проводов для цепей
Тепло, выделяемое проводником с током, в той или иной степени выделяется в окружающую среду. В случае, если сила тока в выбранном проводнике превысит некоторое предельно допустимое значение, возможен столь сильный нагрев, что проводник может спровоцировать возгорание находящихся рядом с ним объектов или расплавиться сам. Как правило, при выборе проводов, предназначенных для сборки электрических цепей, достаточно следовать принятым нормативным документам, которые регламентируют выбор сечения проводников.
Электронагревательные приборы
Если сила тока одна и та же на всём протяжении электрической цепи, то в любом выбранном участке будет выделять тепла тем больше, чем выше сопротивление данного участка.
За счёт сознательного увеличения сопротивления участка цепи можно добиться локализованного выделения тепла в этом участке. По этому принципу работают электронагревательные приборы
. В них используется
нагревательный элемент
— проводник с высоким сопротивлением. Повышение сопротивления достигается (совместно или по отдельности) выбором сплава с высоким удельным сопротивлением (например, нихром, константан), увеличением длины проводника и уменьшением его поперечного сечения. Подводящие провода имеют обычное низкое сопротивление и поэтому их нагрев, как правило, незаметен.
Плавкие предохранители
Основная статья: Электрический предохранитель
Для защиты электрических цепей от протекания чрезмерно больших токов используется отрезок проводника со специальными характеристиками. Это проводник относительно малого сечения и из такого сплава, что при допустимых токах нагрев проводника не перегревает его, а при чрезмерно больших перегрев проводника столь значителен, что проводник расплавляется и размыкает цепь.
Магнитное действие тока
Сразу начнем с проведения опыта. Возьмем медный провод, покрытый изоляционным материалом. Намотаем его на гвоздь. Концы его (провода) соединим с источником тока и ключом (рисунок 8).
Рисунок 8. Магнитное действие тока на примере с гвоздем и медным проводом
Замкнем цепь. Поднесем гвоздь к кучке мелких металлических предметов, например, других мелких гвоздиков.
Что мы увидим? Гвоздь притянет к себе другие железные предметы — он стал магнитом. Если мы разомкнем цепь, то гвоздь размагнитится.
Самое интересное, что магнитное действие тока является универсальным. Оно проявляется и в твердых телах, и в жидкостях, и в газах. Кроме того, если заставить заряд направленно двигаться в сильно разреженном пространстве (такое явление называют током в вакууме), то и здесь можно наблюдать его магнитное действие.
Характер и последствия воздействия на человека
Характер и последствия опасного и вредного воздействия на человека электрического тока зависит от многих факторов:
- от величины и рода (переменный или постоянный) протекающего тока;
- продолжительности его воздействия (чем больше время действия тока на человека, тем тяжелее последствия);
- пути протекания;
- от физического и психологического состояния человека;
- от состояния внешней среды, например при высокой влажности воздействие электричества на организм будет сильнее.
Величина и тип протекающего тока является главным фактором от которого зависит исход его воздействия на организм человека (или животного).
По степени воздействия на человека от величины ток делится на три пороговых значения:
- Человек начинает ощущать воздействие проходящего сквозь него переменного тока при значении 0,6 мА, прямого начиная с 5-7 мА. Эти значения называются пороговыми ощутимыми токами.
- Следующий порог – порог неотпускающего (удерживающего) тока. Его значение для переменного тока составляет ≥10 мА, для постоянного ≥50 мА.
- Третье пороговое значение – фибрилляционный ток. Это значение переменного тока 100 мА, а постоянного 300 мА, при длительности воздействия такого тока 0,5 сек, может наступить остановка сердца или его фибрилляция.
В таблице 1 приведены различные реакции организма человека на электрический ток в зависимости от его силы и типа.
Таблица 1 – воздействие электрического тока на человека в зависимости от пороговые значения и типа (постоянного и переменного)
Сила тока, мА | Характер воздействия | |
Постоянный ток | Переменный ток 50 Гц | |
0,6—1,6 | Не ощущается | Начало ощущения — слабый зуд, пощипывание кожи под электродами |
2—4 | Не ощущается | Ощущение тока распространяется и на запястье руки, слегка сводит руку |
5—7 | Начало ощущения. Впечатление нагрева кожи под электродом | Болевые ощущения усиливаются во всей кисти руки, сопровождаются судорогами. Руки, как правило, можно оторвать от электродов |
8—10 | Усиление ощущения нагрева | Сильные боли и судороги во всей руке, включая предплечье. Руки трудно оторвать от электродов |
10—15 | Усиление ощущения нагрева | Едва переносимые боли во всей руке. Руки невозможно оторвать от электродов. |
20—25 | Еще большее усиление ощущения нагрева кожи. | Руки парализуются мгновенно, оторваться от электродов невозможно. Сильные боли, дыхание затруднено |
25—50 | Ощущение сильного нагрева, боли и судороги в руках. При отрыве рук от электродов возникают едва переносимые боли в результате судорожного сокращения мышц | Очень сильная боль в руках и груди. Дыхание крайне затруднено. При длительном токе может наступить паралич дыхания или ослабление деятельности сердца с потерей сознания |
50—80 | Ощущение очень сильного поверхностного и внутреннего нагрева, сильные боли во всей руке и в области груди. Затруднение дыхания. Руки невозможно оторвать от электродов из-за сильных болей при нарушении контакта | Дыхание парализуется через несколько секунд, нарушается работа сердца. При длительном протекании тока может наступить фибрилляция сердца |
100 | Паралич дыхания при длительном протекании тока | Фибрилляция сердца через 2-3 с; еще через несколько секунд — паралич сердца |
300 | Фибрилляция сердца через 2-3 с; еще через несколько секунд — паралич дыхания | То же действие за меньшее время |
более 5000 | Дыхание парализуется немедленно — через доли секунды. Фибрилляция сердца, как правило, не наступает; возможна временная остановка сердца в период протекания тока. При длительном протекании тока (несколько секунд) тяжелые ожоги, разрушения тканей |
Как видно из таблицы 1, переменный ток более опасен чем постоянный. Тем не менее, даже небольшой, ниже порога ощущения постоянный ток, дает сильные удары способные вызвать судороги мышц. А при значении напряжения выше 500 В уже опаснее постоянный ток так как он обладает большой «липучестью» и от него практически невозможно самостоятельно освободиться.
В то же время, хотя переменный ток считается более опасным для человека, но это касается в основном частоты 50 Гц. С увеличением частоты, даже с учетом что сопротивление организма падает и ток текущий через него увеличивается – опасность поражения снижается электротоком и полностью исчезает при частоте 450 — 500 гГц, т.к. при высокой частоте возникает так называемый «skin» эффект – ток идет по поверхности организма, те по коже, и не может поразить человека. Но с токами такой частоты мы практически не сталкиваемся ни в быту, ни на производстве, в отличие от 50 герцового переменного напряжения, которое является стандартом в электросетях России.
Вернуться к содержанию
Гальванометр. Магнитное действие тока в его устройстве
Для начала рассмотрим, как будет взаимодействовать проводник с током и магнит.
Для этого соорудим следующую конструкцию. На небольшую рамку закрепим несколькими витками тонкую медную проволоку. Сама рамка у нас будет подвешена на нитях, чтобы мы могли наблюдать любое ее движение.
Проволока, которой обвита рамка, подсоединена к полюсам источника тока. Замкнем ключ. Рамка останется неподвижной (рисунок 9).
Рисунок 9. Рамка с током неподвижна
А теперь возьмем магнит. Расположим его так, чтобы рамка с током оказалась между его полюсами (рисунок 10).
Рисунок 10. Рамка с током, помещенная между полюсами магнита, поворачивается
Теперь рамка начала поворачиваться! Именно это явление взаимодействия такой своеобразной катушки с током и магнитом лежит в основе устройства специального прибора — гальванометра (рисунок 11).
Рисунок 11. Гальванометр и его обозначения для схем электрической цепи
Гальванометр — это прибор, с помощью которого можно судить о наличии тока в проводнике.
На рисунке 11, а показан внешний вид этого прибора. На рисунке 11, б приведен условный знак, которым гальванометр обозначается на схеме электрической цепи.
Стрелка гальванометра связана с катушкой внутри самого прибора. Под катушкой мы подразумеваем провод намотанный на каркас из диэлектрика.
Эта катушка внутри прибора находится в магнитном поле. Когда по катушке течет ток, стрелка отклоняется. Так, при подсоединении гальванометра в цепь, мы можем судить о наличии в ней электрического тока.
Выбор проводников
Как вы можете понять из всего выше написанного, проводники следует выбирать из условий нагрева. Дабы при определённом токе их температура не превышала максимально допустимую. Сделать это можно своими руками, благодаря таблицам в ПУЭ. Но и в этом вопросе сначала необходимо разобраться.
- В ПУЭ приведены таблицы, по которым можно осуществить выбор проводников по нагреву, экономической плотности тока, способу прокладки и другим параметрам. Но для начала мы точно должны знать условия монтажа и работы провода. Давайте разберем, зачем это нужно.
Допустимые перегрузки для кабелей в бумажной изоляции
- Но прежде разберемся с током. Ни для кого не секрет, что в течение времени ток в проводнике будет меняться. И какой из них следует рассматривать в качестве результирующего для выбора сечения проводника, непонятно. На этот вопрос нам отвечает п. 1.3.2 ПУЭ, который гласит, что для выбора следует применять средний ток в течении получаса, наиболее нагруженного в течении суток.
На фото поправочные температурные коэффициенты
- Теперь давайте определимся с температурой. В разных местах монтажа она может достаточно сильно отличаться от рабочей температуры. Это следует учитывать. Поэтому в табл. 1.3.3 ПУЭ приведены поправочные коэффициенты для различной кабельно-проводниковой продукции, если температуры в которых будет работать кабель, отличается от рабочей.
- Выбор проводников по нагреву, плотности тока, обязательно учитывает способ прокладки проводника. Это может быть одиночная прокладка по воздуху, а может быть монтаж в земле или в трубах. Согласитесь, теплоотведение у таких проводников будет существенно отличаться. И это обязательно стоит учитывать.
- Так же следует учитывать количество жил проводника. То ли у нас охлаждается одна жила, то ли три, которые соприкасаются.
Обратите внимание! В табл. 1.3.12 ПУЭ имеется отдельный поправочный коэффициент при монтаже проводников пучками. Ведь если у нас рядом проложено сразу несколько проводников, то они вполне могут нагревать друг друга и заметно хуже остывать. И это так же должно учитываться.
Выбор сечения проводников в резиновой и ПВХ изоляции
- В итоге мы сможем воспользоваться таблицами 1.3.4. – 1.3.11 ПУЭ, которые предписывают, проводники какого сечения использовать для различных токов, и при использовании проводников с различными типами изоляции.
Обратите внимание! Если вы выбираете проводник для жилого помещения, то сразу должны исключить провода и кабели, выполненные из алюминия. Ведь согласно новых норм ПУЭ от 2001 года, такой материал в электропроводках жилых зданий запрещен.
Таблица экономической плотности тока
- Но эти таблицы можно применять для не самых мощных линий. При расчётах межсистемных высоковольтных линий с напряжением в 330кВ и выше, опираться на эти таблицы нельзя. В этом случае используют таблицу 1.3.36 ПУЭ, которая позволяет выбрать сечение проводников, исходя из экономической плотности тока.
Из этого видео Вы узнаете о требованиях к проводникам.
Световое действие тока
Старые лампы накаливания излучают свет больше за счет высокой температуры, которую имеет вольфрамовая проволока в их устройстве. Поэтому в их работе наблюдается больше тепловое действие тока.
Но во второй половине XX века были изобретены новые источники света. Здесь уже не играет роль температура самого проводника, а происходят более сложные процессы.
Наверное, вы уже догадались, что речь идет о светодиодных лампах (рисунок 12). На данный момент именно такие лампы чаще всего мы используем в повседневной жизни.
Рисунок 12. Светодиодные лампы
Световое действие проявляется в возникновении светового излучения при прохождении тока.
Электрическая дуга
Электрическая дуга является довольно эффективным преобразователем электрической энергии. Она используется при сварке металлических конструкций, а также служит мощным световым источником.
В основу устройства входит следующее. Берут два угольных стержня, подсоединяют провода и прикрепляют их в изолирующих держателях. После этого стержни подключают к источнику тока, который дает малое напряжение, но рассчитан на большую силу тока. Подключают реостат. Угли в городскую сеть включать запрещается, так как это может стать причиной пожара. Если коснуться одним углем о другой, то можно заметить, как сильно они раскалятся. Лучше не смотреть на это пламя, потому что оно вредно для зрения. Электрическую дугу используют в печах для плавки металла, а также в таких мощных осветительных приборах, как прожекторы, кинопроекторы и прочее.
Задания
Задание №1
Рассмотрите рисунок 8, на котором изображена установка для наблюдения магнитного действия тока. Что представляет собой каждая часть этой установки? Расскажите, как протекает опыт.
В верхней части рисунка изображен источник тока. К его положительному полюсу подсоединена проволока в изолирующем материале (провод). Далее этот провод намотан на обычный железный гвоздь. От гвоздя провод тянется до ключа, а от ключа до источника тока (его отрицательного полюса).
На рисунке ключ замкнут. В цепи течет электрический ток. Железный гвоздь моментально намагничивается — становится магнитом. Он притягивает к себе другие мелкие железные предметы.
Как только мы разомкнем цепь, по проводам перестанет идти ток. Железный гвоздь размагнитится. Все мелкие предметы, ранее примагниченные к нему, отпадут.
Задание №2
По рисункам 9 и 10 расскажите, как на опыте наблюдают взаимодействие рамки с током и магнита.
Соберем электрическую цепь из источника тока, ключа, соединительных проводов и рамки с обмоткой из тонкой проволоки, соединенной с проводами. Рамку подвесим на нитях, чтобы была возможность отслеживать любое ее движение.
Замкнем ключ. По цепи пойдет ток. Рамка при этом останется неподвижной.
Теперь возьмем магнит. Поместим его так, чтобы рамка оказалась между его полюсами. Снова замкнем цепь. Теперь рамка пришла в движение — она начала поворачиваться.
Так проявляется магнитное действие электрического тока. Именно это явление используется в устройстве гальванометра.
Закон Джоуля-Ленца
Электричество — неотъемлемый признак нашей эпохи. Абсолютно всё вокруг завязано на нём. Любой современный человек, даже без технического образования, знает, что электрический ток, текущий по проводам, способен в некоторых случаях нагревать их, зачастую до очень высоких температур. Казалось бы, это заведомо всем известно и не стоит упоминания. Однако, как объяснить это явление? Почему и как происходит нагрев проводника?
Опыты Ленца
Перенесемся в 19 век-эпоху накопления знаний и подготовки к технологическому прыжку 20 века. Эпоха, когда по всему миру различные учёные и просто изобретатели-самоучки чуть ли не ежедневно открывают что-то новое, зачастую тратя огромное количество времени на исследования и, при этом, не представляя конечный результат.
Один из таких людей, русский учёный Эмилий Христианович Ленц, увлекался электричеством, на тогдашнем примитивном уровне, пытаясь рассчитывать электрические цепи. В 1832 году Эмилий Ленц «застрял» с расчётами, так как параметры его смоделированной цепи «источник энергии — проводник — потребитель энергии» сильно разнились от опыта к опыту. Зимой 1832-1833 года учёный обнаружил, что причиной нестабильности является кусочек платиновой проволоки, принесённый им с холода. Отогревая или охлаждая проводник, Ленц также заметил что существует некая зависимость между силой тока, электрическим сопротивлением и температурой проводника.
Использование теплового действия электричества
Тепловое действие электрического тока находит широкое применение, в первую очередь, в нагревательных приборах.
Еще одним важным направлением использования теплового действия являются плавкие предохранители. Если необходимо отключить электрическую цепь при превышение допустимого тока, то в цепь можно включить плавкий предохранитель.
Рис. 3. Устройство плавкого предохранителя.
Это небольшая колба из негорючего материала, внутри которой проходит плавкая проволочка или лента, сопротивление которой рассчитано так, чтобы при превышении предельного тока она расплавилась, тем самым разорвав электрическую цепь.
Плюсы и минусы от нагрева электрическим током
- Плюсы. Нагревание проводников электрическим током находит свое применение в различных полезных приборах и устройствах: электроплитах, чайниках, кофеварках, кипятильниках, фенах, утюгах, обогревателях.
- Минусы. Очень часто инженерам-электронщикам приходится бороться с этим эффектом для того, чтобы, например, обеспечить работоспособность электронных плат, которые напичканы огромным количеством электронных деталей, микросхем и т.д. Все эти элементы греются в соответствие с законом Джоуля-Ленца. И если не предпринять меры для принудительного охлаждения с помощью металлических радиаторов или вентиляторов (кулеров), то платы быстро выйдут из строя от перегрева.
Рис. 2. Бытовые нагревательные приборы: чайник, утюг, фен, электроплита.
Часто для быстрого соединения проводов многие пользуются способом “скрутки”. Это приводит к значительному увеличению сопротивления, а следовательно, место “скрутки” будет греться сильнее, чем остальная часть проводки. Поэтому скрутка проводов часто бывает причиной пожаров в домах и квартирах. Для улучшения контакта требуется хорошо пропаять это место.