Гистерезис магнитный: описание, свойства, практическое применение

Для различных физических, химических, экономических и даже социальных явлений свойственен эффект запаздывания реакции. Данное явление возникает в следствии реакции на определенное раздражение, действие или воздействие. Статья даст подробное описание, что такое гистерезис. Опишет самые распространенные его варианты, влияние этого эффекта в электротехнике и электронике.

Гистерезис магнитный

Это необратимая и неоднозначная зависимость показателя намагниченности вещества (причем это, как правило, ферромагнетики магнитоупорядоченные) от внешнего магнитного поля. При этом поле постоянно изменяется – уменьшается или увеличивается. Общая причина существования гистерезиса – это наличие в минимуме термодинамического потенциала нестабильного состояния и стабильного, а также имеются необратимые переходы между ними. Гистерезис – это также проявление магнитного ориентационного фазового перехода 1-го рода. При них переходы от одной к другой фазам происходят из-за метастабильных состояний. Характеристика – это график, который носит название «петля гистерезиса». Иногда еще его называют «кривой намагниченности».

Гистерезис в электронике

В электротехнике и электронике свойством гистерезиса пользуются устройства, которые используют различные магнитные взаимодействия. Например, магнитные носители информации или триггер Шмитта.

Это свойство необходимо знать, чтобы использовать его для подавления шумов в момент переключения определенных логических сигналов (дребезга контактов, быстрых колебаний).

Упругий гистерезис бывает двух видов: динамический и статический. В первом случае график будет изображать постоянно изменяющуюся петлю, во втором – равномерную.

Наиболее заметно это явление в прецизионных источниках опорного напряжения, которые используются в измерительных преобразователях.

Петля гистерезиса

На графике зависимости М от Н можно видеть:

  1. Из нулевого состояния, при котором М=0 и Н=0, с увеличением Н растет и М.
  2. Когда поле увеличивается, то намагниченность становится практически постоянной и равна значению насыщения.
  3. При уменьшении Н происходит обратное изменение, но вот когда Н=0, намагниченность М не будет равна нулю. Это изменение можно видеть по кривой размагничивания. И когда Н=0, М принимает значение, равное остаточной намагниченности.
  4. При увеличении Н в интервале –Нт… +Нт происходит изменение намагниченности вдоль третьей кривой.
  5. Все три кривые, описывающие процессы, соединяются и образуют своеобразную петлю. Она-то и описывает явление гистерезиса – процессы намагничивания и размагничивания.

Энергия намагничивания

Петля считается несимметричной в том случае, когда максимумы поля Н1, которые прикладываются в обратном и прямом направлениях, не являются одинаковыми. Выше была описана петля, которая характерна для медленного процесса перемагничивания. При них происходит сохранение квазиравновесных связей между значениями Н и М. Нужно обратить внимание на то, что при намагничивании или размагничивании происходит отставание М от Н. И это приводит к тому, что вся та энергия, которая приобретается ферромагнитным материалом во время намагничивания, отдается не полностью при прохождении цикла размагничивания. И вот эта разница идет вся в нагрев ферромагнетика. И петля магнитного гистерезиса оказывается в этом случае несимметричной.

ГИСТЕРЕ́ЗИС

ГИСТЕРЕ́ЗИС (от греч. ὑστέρησις – от­ста­ва­ние, за­паз­ды­ва­ние), за­паз­ды­ва­ние из­ме­не­ния фи­зич. ве­ли­чи­ны, ха­рак­те­ри­зую­щей со­стоя­ние ве­ще­ст­ва, от из­ме­не­ния др. фи­зич. ве­ли­чи­ны, оп­ре­де­ляю­щей внеш­ние ус­ло­вия. Г. име­ет ме­сто в тех слу­ча­ях, ко­гда со­стоя­ние те­ла в дан­ный мо­мент вре­ме­ни оп­ре­де­ля­ет­ся внеш­ни­ми ус­ло­вия­ми не толь­ко в тот же, но и в пред­ше­ст­вую­щие мо­мен­ты вре­ме­ни. В ре­зуль­та­те для цик­лич. про­цес­са (рост и умень­ше­ние внеш­не­го воз­дей­ст­вия) по­лу­ча­ет­ся пет­ле­об­раз­ная (не­од­но­знач­ная) диа­грам­ма, ко­то­рая на­зы­ва­ет­ся пет­лёй ги­стере­зи­са. Воз­ни­ка­ет Г. в разл. ве­ще­ст­вах и при раз­ных фи­зич. про­цес­сах. Наи­боль­ший ин­те­рес пред­став­ля­ют маг­нит­ный, сег­не­то­элек­три­че­ский и уп­ру­гий гис­те­ре­зис.

Маг­нит­ный Г. – не­од­но­знач­ная за­ви­си­мость на­маг­ни­чен­но­сти $\boldsymbol M$ маг­ни­то­упо­ря­до­чен­но­го ве­ще­ст­ва (маг­не­ти­ка, напр., фер­ро- или фер­ри­маг­не­ти­ка) от внеш­не­го маг­нит­но­го по­ля $\boldsymbol H$ при его цик­лич. из­ме­не­нии (уве­ли­че­нии и умень­ше­нии). При­чи­ной су­ще­ст­во­ва­ния маг­нит­но­го Г. яв­ля­ет­ся на­ли­чие в оп­ре­де­лён­ном ин­тер­ва­ле из­ме­не­ния $\boldsymbol H$ сре­ди со­стоя­ний маг­не­ти­ка, от­ве­чаю­щих ми­ни­му­му тер­мо­ди­на­мич. по­тен­циа­ла, ме­та­ста­биль­ных со­стоя­ний (на­ря­ду со ста­биль­ны­ми) и не­об­ра­ти­мых пе­ре­хо­дов ме­ж­ду ни­ми. Маг­нит­ный Г. мож­но так­же рас­смат­ри­вать как про­яв­ле­ние маг­нит­ных ори­ен­та­ци­он­ных фа­зо­вых пе­ре­хо­дов 1-го ро­да, для ко­то­рых пря­мой и об­рат­ный пе­ре­хо­ды ме­ж­ду фа­за­ми в за­ви­си­мо­сти от $\boldsymbol H$ про­ис­хо­дят, в си­лу ука­зан­ной ме­та­ста­биль­но­сти со­стоя­ний, при разл. зна­че­ни­ях $\boldsymbol H$.

Рис. 1. Петли магнитного гистерезиса:1 – максимальная, 2 – частная; а – кривая намагничивания, б и в – кривые перемагничивания; МR – остаточная намагниченность, Нс – коэрцитивная сила, Ms – намагничен…

На рис. 1 схе­ма­ти­че­ски по­ка­за­на ти­пич­ная за­ви­си­мость $M$ от $H$ в фер­ро­маг­не­ти­ке; из со­стоя­ния $M=0$ при $H=0$ с уве­ли­че­ни­ем $H$ зна­че­ние $M$ рас­тёт (осн. кри­вая на­маг­ни­чи­ва­ния, $\it а$) и в дос­та­точ­но силь­ном по­ле $H⩾H_{\text m}$ $M$ ста­но­вит­ся прак­ти­че­ски по­сто­ян­ной и рав­ной на­маг­ни­чен­но­сти на­сы­ще­ния $M_{\text s}$. При умень­ше­нии $H$ от зна­че­ния $H_{\text m}$ на­маг­ни­чен­ность из­ме­ня­ет­ся вдоль вет­ви $\it б$ и при $H=0$ при­ни­ма­ет зна­че­ние $M=M_{\text R}$ (ос­та­точ­ная на­маг­ни­чен­ность). Для раз­маг­ни­чи­ва­ния ве­ще­ст­ва ($M=0$) не­об­хо­ди­мо при­ло­жить об­рат­ное по­ле $H= –H_{\text c}$, на­зы­вае­мое ко­эр­ци­тив­ной си­лой. Да­лее при $H=–H_{\text m}$ об­ра­зец на­маг­ни­чи­ва­ет­ся до на­сы­ще­ния ($M=–M_{\text s}$) в об­рат­ном на­прав­ле­нии. При из­ме­не­нии $H$ от $–H_{\text m}$ до $+H_{\text m}$ на­маг­ни­чен­ность из­ме­ня­ет­ся вдоль кри­вой $\it в$. Вет­ви $\it б$ и $\it в$, по­лу­чаю­щие­ся при из­ме­не­нии $H$ от $+H_{\text m}$ до $–H_{\text m}$ и об­рат­но, об­ра­зу­ют замк­ну­тую кри­вую, на­зы­вае­мую мак­си­маль­ной (или пре­дель­ной) пет­лёй Г. Вет­ви $\it б$ и $\it в$ на­зы­ва­ют­ся, со­от­вет­ст­вен­но, нис­хо­дя­щей и вос­хо­дя­щей вет­вя­ми пет­ли Г. При из­ме­не­нии $H$ на от­рез­ке $[–H_1, H_1]$ с $H_1$ за­ви­си­мость $M(H)$ опи­сы­ва­ет­ся замк­ну­той кри­вой (ча­ст­ной пет­лёй Г.), це­ли­ком ле­жа­щей внут­ри макс. пет­ли ги­сте­ре­зи­са.

Опи­сан­ные пет­ли Г. ха­рак­тер­ны для дос­та­точ­но мед­лен­ных (ква­зи­ста­ти­че­ских) про­цес­сов пе­ре­маг­ни­чи­ва­ния. От­ста­ва­ние $M$ от $H$ при на­маг­ни­чи­ва­нии и раз­маг­ни­чи­ва­нии при­во­дит к то­му, что энер­гия, при­об­ре­тае­мая маг­не­ти­ком при на­маг­ни­чи­ва­нии, не пол­но­стью от­да­ёт­ся при paзмагничивании. Те­ряе­мая за один цикл энер­гия оп­ре­де­ля­ет­ся пло­ща­дью пет­ли Г. Эти по­те­ри энер­гии на­зы­ва­ют­ся гис­те­ре­зис­ны­ми. При ди­на­мич. пе­ре­маг­ни­чи­ва­нии об­раз­ца пе­ре­мен­ным маг­нит­ным по­лем $\boldsymbol H_{\sim}$ пет­ля Г. ока­зы­ва­ет­ся ши­ре ста­ти­че­ской вслед­ст­вие то­го, что к ква­зи­рав­но­вес­ным гис­те­ре­зис­ным по­те­рям до­бав­ля­ют­ся ди­на­ми­че­ские, ко­то­рые мо­гут быть свя­за­ны с вих­ре­вы­ми то­ка­ми (в про­вод­ни­ках) и ре­лак­са­ци­он­ны­ми яв­ле­ния­ми.

Фор­ма пет­ли Г. и наи­бо­лее важ­ные ха­рак­те­ри­сти­ки маг­нит­но­го Г. (гис­те­ре­зис­ные по­те­ри, $H_с$, $M_{\text R}$ и др.) за­ви­сят от хи­мич. со­ста­ва ве­ще­ст­ва, его струк­тур­но­го со­стоя­ния и темп-ры, от ха­рак­те­ра и рас­пре­де­ле­ния де­фек­тов в об­раз­це, а сле­до­ва­тель­но, от тех­но­ло­гии его пригoтовления и по­сле­дую­щих фи­зич. об­ра­бо­ток (те­п­ло­вой, ме­ха­нич., тер­мо­маг­нит­ной и др.). С маг­нит­ным Г. свя­за­но гис­те­ре­зис­ное по­ве­де­ние це­ло­го ря­да др. фи­зич. свойств, напр. Г. маг­ни­то­стрик­ции, Г. галь­ва­но­маг­нит­ных и маг­ни­то­оп­тич. яв­ле­ний и т. д.

Сег­не­то­элек­три­че­ский Г. – не­од­но­знач­ная за­ви­си­мость ве­ли­чи­ны век­то­ра элек­трич. по­ля­ри­за­ции $\boldsymbol P$ сег­не­то­элек­три­ков от на­пря­жён­но­сти $\boldsymbol E$ внеш­не­го элек­трич. по­ля при цик­лич. из­ме­не­нии по­след­не­го. Сег­не­то­элек­три­ки об­ла­да­ют в оп­ре­де­лён­ном тем­пе­ра­тур­ном ин­тер­ва­ле спон­тан­ной (т. е. са­мо­про­из­воль­ной, воз­ни­каю­щей в от­сут­ст­вие внеш­не­го по­ля) по­ля­ри­за­ци­ей $\boldsymbol P_{сп}$. На­прав­ле­ние по­ля­ри­за­ции мо­жет быть из­ме­не­но элек­трич. по­лем, при этом зна­че­ние $\boldsymbol P$ при дан­ном $\boldsymbol E$ за­ви­сит от пре­дыс­то­рии, т. е. от то­го, ка­ким бы­ло элек­трич. по­ле в пред­ше­ст­вую­щие мо­мен­ты вре­ме­ни. Сег­не­то­элек­трич. Г. име­ет вид ха­рак­тер­ной пет­ли (пет­ля Г.), осн. па­ра­мет­ра­ми ко­то­рой яв­ля­ют­ся ос­та­точ­ная по­ля­ри­за­ция $\boldsymbol P_{ост}$ при $\boldsymbol E=0$ и ко­эр­ци­тив­ное по­ле $\boldsymbol E_к$, при ко­то­ром про­ис­хо­дит из­ме­не­ние на­прав­ле­ния (пере­клю­че­ние) век­то­ра $\boldsymbol P_{сп}$. Для со­вер­шен­ных мо­но­кри­стал­лов пет­ля Г. име­ет фор­му, близ­кую к пря­мо­уголь­ной, и $\boldsymbol P_{ост}=\boldsymbol P_{сп}$. В ре­аль­ных кри­стал­лах ос­та­точ­ная по­ля­ри­за­ция мень­ше спон­тан­ной из-за раз­биения кри­стал­ла на до­ме­ны.

Су­ще­ст­во­ва­ние сег­не­то­элек­трич. Г. сле­ду­ет из фе­но­ме­но­ло­гич. тео­рии сег­не­то­элек­трич. яв­ле­ний, в со­от­вет­ст­вии с ко­то­рой рав­но­вес­ным зна­че­ни­ям $\boldsymbol P_{сп}$ при лю­бой темп-ре ни­же темп-ры сег­не­то­элек­трич. фа­зо­во­го пе­ре­хо­да от­ве­ча­ют два сим­мет­рич­ных ми­ни­му­ма тер­мо­ди­на­мич. по­тен­циа­ла, раз­де­лён­ные по­тен­ци­аль­ным барь­е­ром. При $E=±E_к$ один из ми­ни­му­мов ис­че­за­ет, и кри­сталл ока­зы­ва­ет­ся в со­стоя­нии с оп­ре­де­лён­ным на­прав­ле­ни­ем век­то­ра $\boldsymbol P_{сп}$. При цик­лич. пе­ре­клю­че­нии спон­тан­ной по­ля­ри­за­ции пло­щадь пет­ли Г. оп­ре­де­ля­ет гис­те­ре­зис­ные по­те­ри – ко­ли­че­ст­во энер­гии элек­трич. по­ля, пе­ре­хо­дя­щей в те­п­ло­ту. Ве­ли­чи­на ко­эр­ци­тив­но­го по­ля свя­за­на так­же с про­цес­са­ми за­ро­ж­де­ния и эво­лю­ции в элек­трич. по­ле сег­не­то­элек­трич. до­ме­нов – об­лас­тей кри­стал­ла с вы­де­лен­ным элек­трич. по­лем на­прав­ле­ни­ем век­то­ра спон­тан­ной по­ля­ри­за­ции.

Рис. 2. Петля упругого гистерезиса.

Уп­ру­гий Г. – не­од­но­знач­ная за­ви­си­мость ме­ха­нического на­пря­же­ния от де­фор­ма­ции уп­ру­го­го те­ла при цик­лич. при­ло­же­нии и сня­тии на­груз­ки. Гра­фик за­ви­си­мо­сти на­пря­же­ния $σ$ от де­фор­мации $ε$ от­ли­ча­ет­ся от от­рез­ка пря­мой ли­нии, со­от­вет­ст­вую­щей за­ко­ну Гу­ка, и пред­став­ля­ет со­бой пет­лю Г. (рис. 2). Пло­щадь этой пет­ли про­пор­цио­наль­на ме­ха­нической энер­гии, ко­то­рая рас­сея­лась (пре­вра­ти­лась в те­п­ло­ту) во вре­мя цик­ла.

По­яв­ле­ние уп­ру­го­го Г. в ме­тал­лах свя­за­но с тем, что в не­ко­то­рых зёр­нах по­ли­кри­стал­ла мик­ро­на­пря­же­ния су­ще­ст­вен­но пре­вы­ша­ют ср. на­пря­же­ния в об­раз­це, что при­во­дит к по­яв­ле­нию пла­стич. де­фор­ма­ций и тем са­мым к рас­сея­нию ме­ха­нич. энер­гии. В не­ко­то­рых слу­ча­ях вклад в уп­ру­гий Г. да­ют элек­тро­маг­нит­ные яв­ле­ния.

Уп­ру­гий Г. как про­яв­ле­ние от­ли­чия ре­аль­но­го уп­ру­го­го те­ла от иде­аль­но уп­ру­го­го на­блю­да­ет­ся у всех твёр­дых тел, да­же при весь­ма низ­ких темп-рах. Уп­ру­гий Г. яв­ля­ет­ся при­чи­ной за­ту­ха­ния сво­бод­ных ко­ле­ба­ний уп­ру­гих тел, за­ту­ха­ния в них зву­ка, умень­ше­ния ко­эф. вос­ста­нов­ле­ния при не­уп­ру­гом уда­ре и др. В об­щем слу­чае от­кло­не­ние уп­ру­го­сти от иде­аль­ной вклю­ча­ет­ся в по­ня­тие внут­рен­не­го тре­ния.

Гистерезисные потери

Во время динамического перемагничивания ферромагнетика переменным магнитным полем наблюдаются потери. Причем они составляют лишь малую долю от полных магнитных потерь. Если петли имеют одинаковую высоту (одинаковое максимальное значение намагниченности М), петля динамического вида оказывается шире статической. Происходит это вследствие того, что ко всем потерям добавляются новые. Это динамические потери, они обычно связаны с вихревым током, магнитной вязкостью. В сумме же получаются достаточно существенные потери на гистерезис.

Свойства ферромагнитных материалов. Гистерезис

Если среда способна намагничиваться в магнитном поле, т.е. создавать собственное магнитное поле, то такая среда называется магнетиком. В самом деле, если ненамагниченный магнетик поместить в магнитное поле с индукцией , то он намагничивается и дает добавочную индукцию поля´, которая векторно складывается с первоначальной индукцией , т.е. ´.

Векторная сумма называется вектором магнитной индукции внутри магнетика.

Вещества, для которых ´ совпадает по направлению с , называются парамагнетиками. Внутри парамагнетиков магнитное поле усиливаются.

Вещества, для которых ´ и противоположны по направлению, называются диамагнетиками. Магнитное поле внутри диамагнетиков ослабляются. Для парамагнетиков (алюминий, платина и др.) магнитная проницаемость µ>1. Для диамагнетиков (медь, поваренная соль и др.) µ<1.

Наряду с пара- и диамагнетиками существуют ферромагнетики (железо, никель, кобальт и др.), для которых µ>>1, т.е. они способны сильно намагничиваться.

Для пара- и диамагнетиков зависимость между и линейная, так как µ=const. Для ферромагнетиков эта зависимость носит нелинейный характер (рис.32), потому что µ≠const, а зависит от Н, т.е. µ=ƒ(Н) (рис.33).

Рис. 32 Рис. 33

Характерной особенностью ферромагнетиков является гистерезис. Явление гистерезиса заключается в том, что магнитная индукция В зависит не только от мгновенного значения Н, но и от того, какова была напряженность поля раньше. При этом происходит отставание изменения индукции В при изменении Н. Если ненамагниченный ферромагнетик поместить в магнитное поле, которое увеличивается от нуля, то зависимость В от Н (кривая намагничивания) выразится кривой Oa (рис.34). Точка «a» на рис. 34 соответствует магнитному насыщению.

Рис.34

Если же затем уменьшить Н до 0, то кривая намагничивания не совпадает с Oa, а пойдет по кривой ав. В результате, когда Н станет равной нулю, намагничивание не исчезнет, и будет характеризоваться величиной Ве, которая называется остаточной индукцией (отрезок «ов»). Намагничивание обращается в нуль (точка С) лишь под действием поля с напряженностью Нс (отрезок ос), имеющего направление, противоположное полю, вызывающему намагничивание. Напряженность магнитного поля Нс называется коэрцетивной силой.

При воздействии переменного магнитного поля напряженностью Н индукция В ферромагнетика меняется в соответствии с кривой авсаа′в′с′а (рис3.4), которая называется петлей гистерезиса. Петля гистерезиса может быть объяснена наличием в ферромагнетиках отдельных областей самопроизвольного намагничивания, называемых доменами.

Если максимальные значения напряженности поля Н таковы, что намагничивание достигает насыщения, получается так называемая максимальная петля гистерезиса (обозначена сплошной линией на рис.33). Если при максимальных значениях Н насыщение не достигается, получается петля, называемая частным циклом (обозначена пунктирной линией на рис. 33).

Ферромагнетики различают по величине коэрцетивной силы. Если она находится в пределах (0,02-0,05) А/м, то это магнитомягкий ферромагнетик. Такие материалы используются на переменном токе. Если же пределы коэрцетивной силы лежат в области (20-30) кА/м, то это магнитотвердые ферромагнетики и они применяются для производства постоянных магнитов

Если среда способна намагничиваться в магнитном поле, т.е. создавать собственное магнитное поле, то такая среда называется магнетиком. В самом деле, если ненамагниченный магнетик поместить в магнитное поле с индукцией , то он намагничивается и дает добавочную индукцию поля´, которая векторно складывается с первоначальной индукцией , т.е. ´.

Векторная сумма называется вектором магнитной индукции внутри магнетика.

Вещества, для которых ´ совпадает по направлению с , называются парамагнетиками. Внутри парамагнетиков магнитное поле усиливаются.

Вещества, для которых ´ и противоположны по направлению, называются диамагнетиками. Магнитное поле внутри диамагнетиков ослабляются. Для парамагнетиков (алюминий, платина и др.) магнитная проницаемость µ>1. Для диамагнетиков (медь, поваренная соль и др.) µ<1.

Наряду с пара- и диамагнетиками существуют ферромагнетики (железо, никель, кобальт и др.), для которых µ>>1, т.е. они способны сильно намагничиваться.

Для пара- и диамагнетиков зависимость между и линейная, так как µ=const. Для ферромагнетиков эта зависимость носит нелинейный характер (рис.32), потому что µ≠const, а зависит от Н, т.е. µ=ƒ(Н) (рис.33).

Рис. 32 Рис. 33

Характерной особенностью ферромагнетиков является гистерезис. Явление гистерезиса заключается в том, что магнитная индукция В зависит не только от мгновенного значения Н, но и от того, какова была напряженность поля раньше. При этом происходит отставание изменения индукции В при изменении Н. Если ненамагниченный ферромагнетик поместить в магнитное поле, которое увеличивается от нуля, то зависимость В от Н (кривая намагничивания) выразится кривой Oa (рис.34). Точка «a» на рис. 34 соответствует магнитному насыщению.

Рис.34

Если же затем уменьшить Н до 0, то кривая намагничивания не совпадает с Oa, а пойдет по кривой ав. В результате, когда Н станет равной нулю, намагничивание не исчезнет, и будет характеризоваться величиной Ве, которая называется остаточной индукцией (отрезок «ов»). Намагничивание обращается в нуль (точка С) лишь под действием поля с напряженностью Нс (отрезок ос), имеющего направление, противоположное полю, вызывающему намагничивание. Напряженность магнитного поля Нс называется коэрцетивной силой.

При воздействии переменного магнитного поля напряженностью Н индукция В ферромагнетика меняется в соответствии с кривой авсаа′в′с′а (рис3.4), которая называется петлей гистерезиса. Петля гистерезиса может быть объяснена наличием в ферромагнетиках отдельных областей самопроизвольного намагничивания, называемых доменами.

Если максимальные значения напряженности поля Н таковы, что намагничивание достигает насыщения, получается так называемая максимальная петля гистерезиса (обозначена сплошной линией на рис.33). Если при максимальных значениях Н насыщение не достигается, получается петля, называемая частным циклом (обозначена пунктирной линией на рис. 33).

Ферромагнетики различают по величине коэрцетивной силы. Если она находится в пределах (0,02-0,05) А/м, то это магнитомягкий ферромагнетик. Такие материалы используются на переменном токе. Если же пределы коэрцетивной силы лежат в области (20-30) кА/м, то это магнитотвердые ферромагнетики и они применяются для производства постоянных магнитов

Однодоменные ферромагнетики

В том случае, если частицы имеют различный размер, протекает процесс вращения. Происходит это по причине того, что образование новых доменов невыгодно с энергетической точки зрения. Но процессу вращения частиц мешает анизотропия (магнитная). Она может иметь разное происхождение – образовываться в самом кристалле, возникать вследствие упругого напряжения и т. д.). Но именно при помощи этой анизотропии намагниченность удерживается внутренним полем. Его еще называют эффективным полем магнитной анизотропии. И гистерезис магнитный возникает вследствие того, что намагниченность изменяется в двух направлениях – прямом и обратном. Во время перемагничивания однодоменных ферромагнетиков происходит несколько скачков. Вектор намагниченности М разворачивается в сторону поля Н. Причем поворот может быть однородным или неоднородным.

Многодоменные ферромагнетики

В них кривая намагничивания строится по подобному образу, но вот процессы протекают иные. При перемагничивании происходит смещение границ доменов. Следовательно, одной из причин возникновения гистерезиса может являться задержка смещений границ, а также необратимые скачки. Иногда (если у ферромагнетиков довольно большое поле) гистерезис магнитный определяется задержкой роста и образования зародышей перемагничивания. Именно из этих зародышей образуется доменная структура ферромагнитных веществ.

Теория гистерезиса

Стоит учитывать, что явление магнитного гистерезиса происходит также при вращении поля Н, а не только при его изменении по знаку и величине. Называется это гистерезисом магнитного вращения и соответствует изменению направления намагниченности М с изменением направления поля Н. Возникновение гистерезиса магнитного вращения наблюдается также при вращении исследуемого образца относительно фиксированного поля Н.

Кривая намагничивания характеризует также магнитную структуру домена. Структура изменяется при прохождении процессов намагничивания и перемагничивания. Изменения зависят от того, насколько смещаются границы доменов, от воздействий внешнего магнитного поля. Абсолютно все, что способно задержать все процессы, описанные выше, переводит ферромагнетики в нестабильное состояние и является причиной того, что возникает гистерезис магнитный.

Нужно учесть, что гистерезис зависит от множества параметров. Намагниченность меняется под воздействием внешних факторов – температуры, упругого напряжения, следовательно, возникает гистерезис. При этом появляется гистерезис не только намагниченности, но и всех тех свойств, от которых он зависит. Как можно видеть отсюда, явление гистерезиса можно наблюдать не только при намагничивании материала, но и при других физических процессах, связанных прямо или косвенно с ним.

Полезный гистерезис

Гистерезис в электронике используется при создании электронных термостатов. Такие устройства работают по принципу включения или отключения при достижении определенного условия. Например, если разница установлена на 2 градуса, а температурный режим на 20 градусов, то терморегулятор включится при достижении 18 градусов, а отключится когда температура станет 22 градуса. Такой подход помогает значительно снизить расход электрической энергии при постоянной работе обогревателя.

Также этот эффект применяется при работе триггеров. Гистерезис помогает осуществлять точное включение без влияния помех, перепадов напряжения или магнитных полей.

Это явление способно проявляться на биметаллических пластинах. Такие элементы способны терять и восполнять упругость своей структуры при смене температуры. При нагреве материала возникает тепловое расширение, которое изменяет механическое напряжение всей структуры. В результате контакт размыкается. После остывания, структура пластины принимает исходный размер, возвращает первоначальное свое механическое напряжение и замыкает контакт. Такие терморегуляторы часто устанавливаются в нагревательных приборах (печи, утюги, чайники). Момент между нагреванием и остыванием называется температурным зазором. Он устанавливается только в зависимости от способности вещества расширяться и сужаться при определенной температуре.

Рейтинг
( 1 оценка, среднее 5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]