Холодильное оборудование настолько прочно вошло в нашу жизнь, что даже трудно представить, как можно было без него обходиться. Но классические конструкции на хладагентах не подходят для мобильного использования, например, в качестве походной сумки-холодильника.
Сумка-холодильник на элементах Пельтье, нет компрессора, не нуждается во фреоне или других хладагентах
Для этой цели используются установки, в которых принцип работы построен на эффекте Пельтье. Кратко расскажем об этом явлении.
Что это такое?
Под данным термином подразумевают термоэлектрическое явление, открытое в 1834 году французским естествоиспытателем Жаном-Шарлем Пельтье. Суть эффекта заключается в выделении или поглощении тепла в зоне, где контактируют разнородные проводники, по которым проходит электрический ток.
В соответствии с классической теорией существует следующее объяснение явления: электрический ток переносит между металлами электроны, которые могут ускорять или замедлять свое движение, в зависимости от контактной разности потенциалов в проводниках, сделанных из различных материалов. Соответственно, при увеличении кинетической энергии, происходит ее превращение в тепловую.
На втором проводнике наблюдается обратный процесс, требующий пополнения энергии, в соответствии с фундаментальным законом физики. Это происходит за счет теплового колебания, что вызывает охлаждение металла, из которого изготовлен второй проводник.
Современные технологии позволяют изготовить полупроводниковые элементы-модули с максимальным термоэлектрическим эффектом. Имеет смысл кратко рассказать об их конструкции.
Концепция теплового насоса
Базовая идея теплового насоса заключается в извлечении некоторой полезной энергии из полученной разницы температур. Выходная энергия может быть механической, электрической или другой. Одним из явных примеров, который часто встречается в той же бытовой практике, выступает паровой двигатель. В данном случае нагревается вода с целью получения пара. В свою очередь пар, обладая свойством расширения, создаёт давление.
Классическая схема теплового насоса, применяемого на практике: 1 – холодный цилиндр; 2 – радиатор; 3 – маховик; 4 – источник тепла; 5 – горячий цилиндр; 6 – пар (газ); 7 – контур прохождения пара (газа)
Полученное давление используется для выполнения какой-то работы. Например, для толкания поршня в цилиндре механического привода. Выполняя работу, пар охлаждается, сжимается, конденсируется. Поэтому, чтобы паровая машина работала, необходима внешняя температура ниже температуры пара. Фактически, работа всех тепловых насосов зависит от разницы температур.
Устройство и принцип работы
Современные модули представляет собой конструкцию, состоящую из двух пластин-изоляторов (как правило, керамических), с расположенными между ними последовательно соединенными термопарами. С упрощенной схемой такого элемента можно ознакомиться на представленном ниже рисунке.
Устройство модульного элемента Пельтье
Обозначения:
- А – контакты для подключения к источнику питания;
- B – горячая поверхность элемента;
- С – холодная сторона;
- D – медные проводники;
- E – полупроводник на основе р-перехода;
- F – полупроводник n-типа.
Конструкция выполнена таким образом, что каждая из сторон модуля контактирует либо p-n, либо n-p переходами (в зависимости от полярности). Контакты p-n нагреваются, n-p – охлаждаются (см. рис.3). Соответственно, возникает разность температур (DT) на сторонах элемента. Для наблюдателя этот эффект будет выглядеть, как перенос тепловой энергии между сторонами модуля. Примечательно, что изменение полярности питания приводит к смене горячей и холодной поверхности.
Рис. 3. А – горячая сторона термоэлемента, В – холодная
Термоэлектрический модуль
Элементы Пельтье применение нашли в устройстве, состоящем из множества полупроводников p и n типов. В отличие от транзисторов и диодов, переходные области находятся на границе металла с полупроводником. В модуле Пельтье элементы в большом количестве располагаются между керамическими пластинами, что позволяет сделать устройство мощней.
Каждый элемент содержит 4 перехода на контакте полупроводник-металл. Когда электрическая цепь замкнута, электроны перемещаются от минуса батареи питания к плюсу, проходя через все переходы.
На первом переходе термоэлектрического модуля (ТЭМ) между медной шиной и р-полупроводником в последнем выделяется тепло, так как поток зарядов попадает в область с меньшей энергией.
На другом контакте в полупроводнике поглощается энергия, поскольку электроны “высасываются” электрическим полем, совпадающим с направлением их движения. Там происходит процесс охлаждения.
На третьем контакте энергия электронов поглощается, поскольку полупроводник типа n имеет энергию больше, чем металл.
На четвертом переходе выделяется тепло, так как электроны снова тормозятся электрическим полем.
Таким образом, на одной стороне выделяется тепло, а другая – охлаждается. На одном элементе это явление будет незаметно, но модуль Пельтье, элементы которого располагаются между двумя керамическими пластинами, создает значительный температурный перепад.
Модуль можно применять как генератор электроэнергии, если поддерживать разную температуру пластин. При этом каждый термоэлектрический элемент Пельтье последовательно подключается к соседнему через медные перемычки, и токи их суммируются.
Технические характеристики
Характеристики термоэлектрических модулей описываются следующими параметрами:
- холодопроизводительностью (Qmax), эта характеристика определяется на основе максимально допустимого тока и разности температуры между сторонами модуля, измеряется в Ваттах;
- максимальным температурным перепадом между сторонами элемента (DTmax), параметр приводится для идеальных условий, единица измерения — градусы;
- допустимая сила тока, необходимая для обеспечения максимального температурного перепада – Imax;
- максимальным напряжением Umax, необходимым для тока Imax, чтобы достигнуть пиковой разницы DTmax;
- внутренним сопротивлением модуля – Resistance, указывается в Омах;
- коэффициентом эффективности – СОР (аббревиатура от английского — coefficient of performance), по сути это КПД устройства, показывающее отношение охлаждающей к потребляемой мощности. У недорогих элементов этот параметр находится в пределах 0,3-0,35, у более дорогих моделей приближается к 0,5.
Маркировка
Рассмотрим, как расшифровывается типовая маркировка модулей на примере рисунка 4.
Рис 4. Модуль Пельтье с маркировкой ТЕС1-12706
Маркировка разбивается на три значащих группы:
- Обозначение элемента. Две первые литеры всегда неизменны (ТЕ), говорят о том, что это термоэлемент. Следующая указывает размер, могут быть литеры «С» (стандартный) и «S» (малый). Последняя цифра указывает, сколько слоев (каскадов) в элементе.
- Количество термопар в модуле, изображенном на фото их 127.
- Величина номинального тока в Амперах, у нас – 6 А.
Таким же образом читается маркировка и других моделей серии ТЕС1, например: 12703, 12705, 12710 и т.д.
Применение
Несмотря на довольно низкий КПД, термоэлектрические элементы нашли широкое применение в измерительной, вычислительной, а также бытовой технике. Модули являются важным рабочим элементом следующих устройств:
- мобильных холодильных установок;
- небольших генераторов для выработки электричества;
- систем охлаждения в персональных компьютерах;
- кулеры для охлаждения и нагрева воды;
- осушители воздуха и т.д.
Приведем детальные примеры использования термоэлектрических модулей.
Холодильник на элементах Пельтье
Термоэлектрические холодильные установки значительно уступают по производительности компрессорным и абсорбционным аналогам. Но они имеют весомые достоинства, что делает целесообразным их использование при определенных условиях. К таким преимуществам можно отнести:
- простота конструкции;
- устойчивость к вибрации;
- отсутствие движущихся элементов (за исключением вентилятора, обдувающего радиатор);
- низкий уровень шума;
- небольшие габариты;
- возможность работы в любом положении;
- длительный срок службы;
- небольшое потребление энергии.
Такие характеристики идеально подходят для мобильных установок.
Термоэлектрический автохолодильник установленный в салоне автомобиля
Элемент Пельтье как генератор электроэнергии
Термоэлектрические модули могут работать в качестве генераторов электроэнергии, если одну из их сторон подвергнуть принудительному нагреву. Чем больше разница температур между сторонами, тем выше сила тока, вырабатываемая источником. К сожалению, максимальная температура для термогенератора ограничена, она не может быть выше точки плавления припоя, используемого в модуле. Нарушение этого условия приведет к выходу элемента из строя.
Для серийного производства термогенераторов используют специальные модули с тугоплавким припоем, их можно нагревать до температуры 300°С. В обычных элементах, например, ТЕС1 12715, ограничение – 150 градусов.
Поскольку КПД таких устройств невысокий, их применяют только в тех случаях, когда нет возможности использовать более эффективный источник электрической энергии. Тем не менее, термогенераторы на 5-10 Вт пользуются спросом у туристов, геологов и жителей отдаленных районов. Большие и мощные стационарные установки, работающие от высокотемпературного топлива, используют для питания приборов газораспределительных узлов, аппаратуры метеорологических станций и т.д.
Термоэлектрический генератор B25-12 (М) на 12 вольт, мощностью 25 ватт
Для охлаждения процессора
Относительно недавно данные модули стали использовать в системах охлаждения CPU персональных компьютеров. Учитывая низкую эффективность термоэлементов, польза от таких конструкций довольно сомнительна. Например, чтобы охладить источник тепла мощностью 100-170 Вт (соответствует большинству современных моделей CPU), потребуется потратить 400-680 Вт, что требует установки мощного блока питания.
Второй подводный камень – незагруженный процессор будет меньше выделять тепловой энергии, и модуль может охладить его меньше точки росы. В результате начнет образовываться конденсат, что, гарантировано, выведет электронику из строя.
Тем, кто решиться создать такую систему самостоятельно, потребуется провести серию расчетов по подбору мощности модуля под определенную модель процессора.
Исходя из выше сказанного, использовать данные модули в качестве системы охлаждения CPU не рентабельно, помимо этого они могут стать причиной выхода компьютерной техники из строя.
Совсем иначе обстоит дело с гибридными устройствами, где термомодули используются совместно с водяным или воздушным охлаждением.
Термоэлектрический кулер Армада
Гибридные системы охлаждения доказали свою эффективность, но высокая стоимость ограничивает круг их почитателей.
Кондиционер на элементах Пельтье
Теоретически такое устройство конструктивно будет значительно проще классических систем климат-контроля, но все упирается в низкую производительность. Одно дело — охладить небольшой объем холодильной камеры, другое — помещение или салон автомобиля. Кондиционеры на термоэлектрических модулях будут больше (в 3-4 раза) потреблять электроэнергии, чем оборудование, работающее на хладагенте.
Что касается использования в качестве автомобильной системы климат-контроля, то для работы такого устройства мощности штатного генератора будет недостаточно. Замена его на более производительное оборудование приведет к существенному расходу топлива, что не рентабельно.
В тематических форумах периодически возникают дискуссии на эту тему и рассматриваются различные самодельные конструкции, но полноценного рабочего прототипа пока не создано (не считая кондиционера для хомячка). Вполне возможно, ситуация измениться, когда появятся в широком доступе модули с более приемлемым КПД.
Для охлаждения воды
Термоэлектрический элемент часто используют как охладитель для кулеров воды. Конструкция включает в себя: охлаждающий модуль, контролер, управляемый термостатом и обогреватель. Такая реализация значительно проще и дешевле компрессорной схемы, помимо этого, она надежней и проще в эксплуатации. Но есть и определенные недостатки:
- вода не охлаждается ниже 10-12°С;
- на охлаждение требуется дольше времени, чем компрессорному аналогу, следовательно, такой кулер не подойдет для офиса с большим количеством работников;
- устройство чувствительно к внешней температуре, в теплом помещении вода не будет охлаждаться до минимальной температуры;
- не рекомендуется установка в запыленных комнатах, поскольку может забиться вентилятор и охлаждающий модуль выйдет из строя.
Настольный кулер для воды с использованием элемента Пельтье
Осушитель воздуха на элементах Пельтье
В отличие от кондиционера, реализация осушителя воздуха на термоэлектрических элементах вполне возможна. Конструкция получается довольно простой и недорогой. Охлаждающий модуль понижает температуру радиатора ниже точки росы, в результате на нем оседает влага, содержащаяся в воздухе, проходящем через устройство. Осевшая вода отводится в специальный накопитель.
Простой и недорогой китайский осушитель воздуха на элементах Пельтье
Несмотря на низкий КПД, в данном случае эффективность устройства вполне удовлетворительная.
Мастер-класс по сборке
Итак, мы нашли в интернете очень подробную и в то же время простую инструкцию по сборке самодельного генератора электроэнергии на базе печи и элемента Пельтье. Для начала Вам необходимо подготовить следующие материалы:
- Непосредственно сам элемент Пельтье с параметрами: максимальный ток 10 А, напряжение 15 Вольт, размеры 40*40*3,4 мм. Маркировка – TEC 1-12710.
- Старый блок питания от компьютера (с него нужен только корпус).
- Стабилизатор напряжения, со следующими техническими характеристиками: входное напряжение 1-5 Вольт, на выходе – 5 Вольт. В данной инструкции по сборке термоэлектрического генератора используется модуль с USB выходом, что упростит процесс подзарядки современного телефона либо планшета.
- Радиатор. Можно взять от процессора сразу с куллером, как показано на фото.
- Термопаста.
Подготовив все материалы можно переходить к изготовлению устройства своими руками. Итак, чтобы Вам было понятнее, как самому сделать генератор, предоставляем пошаговый мастер-класс с картинками и подробным объяснением:
- Разберите старый блок питания и оставьте только корпус. Он будет использоваться, как место розжига огня (так называемая печь).
- К ровной поверхности радиатора приклейте пластину Пельтье на термопасту. Клеить нужно маркировкой к радиатору, это будет холодная сторона. Если Вы перепутаете полярность, в дальнейшем нужно будет поменять полярность проводов, чтобы термоэлектрический генератор работал правильно.
- К обратной стороне модуля приклейте корпус блока питания, как показано на фото ниже.
- К выводам пластины припаяйте стабилизатор с выходом USB. Кстати, для соединения можно и паяльник сделать своими руками.
- Аккуратно поместите 5-вольтовый преобразователь в радиаторе и переходите к испытаниям самодельного термоэлектрического генератора.
Работает термоэлектрический генератор следующим образом: внутри печи засыпаете дрова, поджигаете их и ждете несколько минут, пока одна из сторон пластины не нагреется. Для подзарядки телефона нужно, чтобы разница между температурами разных сторон была около 100оС. Если охлаждающая часть (радиатор) будет нагреваться, его нужно остужать всеми возможными методами – аккуратно поливать водой, поставить на него кружку со льдом и т.д.
А вот и видео, на котором наглядно показывается, как работает самодельный электрогенератор на дровах:
Также можно установить на холодную сторону вентилятор от компьютера, как показывается на втором варианте самодельного термоэлектрического генератора с элементом Пельтье:
В этом случае куллер будет затрачивать небольшую долю мощности генераторной установки, но в итоге система будет с более высоким КПД. Помимо телефонной зарядки модуль Пельтье можно использовать в качестве источника электроэнергии для светодиодов, что не менее полезный вариант применения генератора. Кстати, второй вариант самодельного термоэлектрического генератора с виду и по конструкции немного похож. Единственная модернизация, помимо системы охлаждения, это способность регулировать высоту так называемой горелки. Для этого автор элемента использует «тело» CD-ROMа (на одном из фото хорошо видно, как самому можно изготовить конструкцию).
Если сделать термоэлектрический генератор своими руками по такой методике, на выходе у Вас может быть до 8 Вольт напряжения, поэтому чтобы заряжать телефон, не забудьте подключить преобразователь, который на выходе оставит только 5 В.
Ну и последний вариант самодельного источника электроэнергии для дома может быть представлен такой схемой: элемент – два алюминиевых «кирпичика», медная труба (водяное охлаждение) и конфорка. Как результат – эффективный генератор, позволяющий сделать бесплатное электричество в домашних условиях!
Вот мы и предоставили три простых варианта самодельного аппарата, который можно собрать из подручных средств. Теперь Вы знаете как сделать термоэлектрический генератор своими руками, на чем основан принцип работы элемента Пельтье и для чего его можно использовать!
Будет интересным к прочтению:
- Как меньше платить за свет законно
- Как сделать солнечную батарею своими руками
- Экономное отопление гаража электричеством
Как проверить элемент Пельтье на работоспособность?
Самый простой и надежный способ – тактильный. Необходимо подключить модуль к соответствующему источнику напряжения и дотронуться до его разных сторон. У работоспособного элемента одна из них будет теплее, другая – холоднее.
Если подходящего источника под рукой нет, потребуется мультиметр и зажигалка. Процесс проверки довольно прост:
- подключаем щупы к выводам модуля;
- подносим зажженную зажигалку к одной из сторон;
- наблюдаем за показаниями прибора.
В рабочем модуле при нагреве одной из сторон генерируется электрический ток, что отобразится на табло прибора.
Как сделать элемент Пельтье своими руками?
Сделать самодельный модуль в домашних условиях практически невозможно, тем более в этом нет смысла, учитывая их относительно невысокую стоимость (порядка $4-$10). Но можно собрать устройство, которое будет полезным в походе, например, термоэлектрический генератор.
Схема подключения самодельного термогенератора
Для стабилизации напряжения необходимо собрать простой преобразователь на микросхеме ИМС L6920.
Принципиальная схема преобразователя напряжения
На вход такого преобразователя подается напряжение в диапазоне 0,8-5,5 В, на выходе он будет выдавать стабильные 5 В, что вполне достаточно для подзарядки большинства мобильных устройств. Если используется обычный элемент Пельтье, необходимо ограничить рабочий диапазон температуры нагреваемой стороны 150 °С. Чтобы не утруждать себя отслеживанием, в качестве источника тепла лучше использовать котелок с кипящей водой. В этом случае элемент гарантировано не нагреется выше температуры 100 °С.
Исследовательская часть
Собственно, почему элемент Пельтье? Гораздо логичнее приобрести фонарик с мышечным приводом («жужелицу»), солнечными батареями, или, на худой конец, построить ветряк. Раньше я тоже думал, что вполне можно обойтись «жужелицей». Но в ней очень много движущихся деталей, которые сделаны дядюшкой Ляо из дешевого пластика. Первая поломка в условиях Большого Песца – и ты остаешься без электричества. Хорошо, спросите вы, почему не солнечные батареи? Там нет движущихся частей. Согласен, отвечу я, но в условиях ядерной или вулканической зимы или под двухметровым бетонным перекрытием убежища солнышко не так-то легко поймать.
Ветряк? А какой площади должны быть его лопасти для того, чтобы он мог крутиться даже от слабого ветра? Движущиеся детали, опять же. Ветряк годится для стационарной установки при оборудовании долговременного укрытия.