Установка УЗИП — схемы подключения, правила монтажа.

УЗИП или реле напряжения

Вполне возможны природные явления, не зависящие от квалификации электромонтеров. Банально упало дерево и оборвало нулевой провод.

Также не забывайте, что любая ВЛ устаревает. И даже то, что к вашему дому подвели новую линию СИПом, а в доме у вас смонтировано все по правилам, не дает гарантии что все хорошо на самой питающей трансформаторной подстанции – КТП.

Там также может окислиться ноль на шинке или отгореть контакт на шпильке трансформатора. Никто от этого не застрахован.

Именно поэтому все новые электрощитки уже не собираются без УЗМ или РН различных модификаций.

Что же касается устройств для защиты от импульсных перенапряжений, или сокращенно УЗИП, то у большинства здесь появляются сомнения в необходимости их приобретения. А действительно ли они так нужны, и можно ли обойтись без них?

Подобные устройства появились достаточно давно, но до сих пор массово их устанавливать никто не спешит. Мало кто из рядовых потребителей понимает зачем они вообще нужны.

Первый вопрос, который у них возникает: ”Я же поставил реле напряжения от скачков, зачем мне еще какой-то УЗИП?”

Запомните, что УЗИП в первую очередь защищает от импульсов вызванных грозой. Здесь речь идет не о банальном повышении напряжения до 380В, а о мгновенном импульсе в несколько киловольт!

Никакое реле напряжения от этого не спасет, а скорее всего сгорит вместе со всем другим оборудованием. В то же самое время и УЗИП не защищает от малых перепадов в десятки вольт и даже в сотню.

Например устройства для монтажа в домашних щитках, собранные на варисторах, могут сработать только при достижении переменки до значений свыше 430 вольт.

Поэтому оба устройства РН и УЗИП дополняют друг друга.

Классификация

Устройства защиты от импульсных перенапряжений отличаются функциональными возможностями, которые определяются классом модели. Всего выделяют три типа УЗИП:

1 класс

В этой категории устройства, которые первыми берут на себя удар в случае прямого попадания молнии в здание, мачты или ЛЭП. Применяются в щитовых вводных распределительных устройств, на объектах, которые расположены на открытой местности с рядом установленными молниеотводами. УЗИП 1 класса рассчитаны на работу с импульсными разрядами, сила тока которых может достигать 30-60 кА. Например, УЗИП ОПС-10В-1Р-R 1 класса.

2 класс

Предназначены для непосредственной защиты сетей потребителей от остаточных явлений грозового разряда или коммуникационных перенапряжений. Как правило, устанавливаются в щитовых на входе в квартиры. Поскольку эти устройства защиты относятся ко «второй линии обороны», номинальное значение разрядного тока, на который они рассчитаны, ниже, чем у 1 класса и составляет от 20 до 40 кА. Примером подобных устройств выступает УЗИП ОПС-10С-1Р 2 Класса.

3 класс

УЗИП, используемые для предотвращения воздействия импульсного перенапряжения непосредственно на используемое оборудование. В зависимости от исполнения, могут подключаться непосредственно к розетке или отдельной группе при распределении электропроводки. Представленные устройства защиты рассчитаны на работу с импульсными токами в пределах 5-10 кА. Например, УЗИП ОПС-10D-2Р 3 класса.

Стоит обратить внимание на следующее: все представленные УЗИП могут быть установлены как частично, так и полностью на одном объекте. Однако все зависит от конфигурации имеющейся схемы энергоснабжения.

Защита дома от грозы

Гроза это стихийное явление и просчитать его до сих пор не особо получается. При этом молнии вовсе не обязательно попадать прямо в линию электропередач. Достаточно ударить рядышком с ней.

Даже такой грозовой разряд вызывает повышение напряжения в сети до нескольких киловольт. Кроме выхода из строя оборудования это еще чревато и развитием пожара.

Даже когда молния ударяет относительно далеко от ВЛ, в сетях возникают импульсные скачки, которые выводят из строя электронные компоненты домашней техники. Современный электронный счетчик с его начинкой, тоже может пострадать от этого импульса.

Общая длина проводов и кабелей в частном доме или коттедже достигает нескольких километров.

Сюда входят как силовые цепи так и слаботочка:

  • интернет

  • TV

  • видеонаблюдение

  • охранная сигнализация

Все эти провода принимают на себя последствия грозового удара. То есть, все ваши километры проводки получают гигантскую наводку, от которой не спасет никакое реле напряжения.

Единственное что поможет и защитит всю аппаратуру, стоимостью несколько сотен тысяч, это маленькая коробочка называемая УЗИП.

Монтируют их преимущественно в коттеджах, а не в квартирах многоэтажек, где подводка в дом выполнена подземным кабелем. Однако не забывайте, что если ваше ТП питается не по кабельной линии 6-10кв, а воздушной ВЛ или ВЛЗ (СИП-3), то влияние грозы на среднем напряжении, также может отразиться и на стороне 0,4кв.

Поэтому не удивляйтесь, когда в грозу в вашей многоэтажке, у многих соседей одновременно выходят из строя WiFi роутеры, радиотелефоны, телевизоры и другая электронная аппаратура.

Молния может ударить в ЛЭП за несколько километров от вашего дома, а импульс все равно прилетит к вам в розетку. Поэтому не смотря на их стоимость, задуматься о покупке УЗИП нужно всем потребителям электричества.

Цена качественных моделей от Шнайдер Электрик или ABB составляет примерно 2-5% от общей стоимости черновой электрики и средней комплектации распредщитка. В общей сумме это вовсе не такие огромные деньги.

Основные виды

К виду сетевой помехи относят как перенапряжение, связанное с перекосом фазы большей длительности, так и перенапряжение, вызванное грозовым разрядом.

Важно! Когда происходит импульсное перенапряжение, то это свидетельствует о возникновении кратковременного высокого напряжения между фазами или фазой и землей с длительностью, как правило, до 1 мс.

Грозовой разряд представляет собой мощное импульсное перенапряжение. Оно возникает при попадании молнии в электросистему. Если расстояние от разряда молнии достигает до 1 км, тогда подобное импульсное перенапряжение может стать причиной выхода из строя электротехники. При прямом попадании удара производится мгновенный импульсный ток до 100 кА/с. Как правило, длительность разряда составляет до 1 мС.

Если имеется система громоотвода, импульс разряда может равномерно распределиться между громоотводом, сетью питания, линией связи, а также бытовыми коммуникациями. Данный процесс зависит от конструкции самого сооружения, коммуникационной системы, а также прокладки линии.

Переключения в энергосети вызывает импульсное перенапряжение мощности. Например, если отключить разделительный трансформатор, который имеет мощность 1кВА 220/220 В от сети, тогда вся энергия выбрасывается в нагрузку в виде высоковольтного импульса с напряжением до 2 кВ.

Мощность любого трансформатора в энергосети гораздо больше, соответственно, и выбросы будут мощнее. Помимо этого, переключения происходят на фоне возникновения дуги, которая становится источником радиочастотных помех.

Обратите внимание! Электростатический заряд, который накапливается в ходе работы технологического оборудования, хоть и имеет небольшую энергию, разряжается в непредсказуемый момент.

Амплитуда и тип перенапряжения импульса меняются не столько от источника помехи, сколько от параметров самой сети. Не бывает двух одинаковых случаев импульсного перенапряжения, но для производства и испытаний устройств защиты существует стандарт параметров тока, формы и напряжения, перенапряжения в различных случаях.

К примеру, для предполагаемого тока от разряда молнии берут импульс тока 10/350 мкс, а для косвенного воздействия молнии и разнообразных коммутационных перенапряжений — импульс тока с характеристиками 8/20 мкс. При сравнении двух устройств с высоким импульсным током разряда 20 кА при 10/350 мкс и 20 кА при импульсе 8/20 мкс реальная мощность первого окажется в 20 раз больше.

Коммутирующие защитные аппараты

У подобных ограничителей есть другие названия, например, искровой разрядник. Принцип действия данного устройства основан на применении явления искрового промежутка. Конструкция имеет воздушный зазор в перемычке, служащий для соединения линий электропередачи с контуром заземления. Цепь в перемычке разомкнута при номинальном напряжении.

Если происходит разряд молнии из-за перенапряжения в линии электропередачи, произойдет пробой воздушного зазора, цепь между фазой и землей будет замкнута, а импульс высокого напряжения будет напрямую заземлен. Конструкция разрядника клапана в цепи с искровым разрядником представляет собой подобие резистора, на котором подавляются импульсы высокого напряжения. Как правило, разрядники используются в высоковольтных сетях.

Ограничители (ОПН)

Благодаря новым устройствам удалось заменить более устаревшие громадные модели. Для определения работоспособности ограничителя следует тщательно ознакомиться с характеристиками нелинейного резистора, так как разрядник функционирует на основе вольтамперной функции.

При производстве варистора, как правило, применяется материал оксид цинка. Образование компонента происходит за счет соединения раствора с другими веществами. В результате получается p-n-переход с вольтамперными характеристиками. Если напряжение в сети соответствует номинальным параметрам, тогда ток в цепи варистора равен нулю. Когда в p-n-переходе возникает перенапряжение, происходит увеличение токопроводимости. Из-за этого значение напряжения падает до номинального параметра.

Вам это будет интересно Заземление электрощитка

Характеристика ограничителя сетевого перенапряжения

Обратите внимание! После стандартизации параметров сети варистор возвращается в непроводящий режим, не влияя на работу устройства.

Комбинированные

Комбинированные приборы действуют в условиях нормальной работы при неблагоприятном напряжении от 0,94 до 1,96 значения. Такие модели оснащены резистором. В действии комбинированный прибор не только заземляет напряжение, но и параллельно стабилизирует значение в самой конструкции.

Классы

Такие устройства разделяют на несколько категорий:

  • I предотвращает прямое воздействие попадания ударов молнии. Как правило, такие приборы имеют входное распределительное оборудование (АСУ). Его обычно используют для административных и промышленных зданий и жилых МКД;
  • II способствует обеспечению защите распределительной сети от перенапряжения, которое может быть вызвано при переключении или выполнении функции вторичной защиты. Это делается с целью предотвращения воздействия сильного удара молнии. Как правило, их установка и подключение осуществляются непосредственно к сети в щитке;
  • III тщательно защищает оборудование от импульсов напряжения, которые могут возникнуть в результате остаточных скачков и асимметричного распределения напряжения между фазовой и нейтральной линиями. Принцип действия подобного устройства — это работа при режиме фильтра высокочастотных помех. Их подключают и устанавливают в частных домах или квартирах. Особой популярностью пользуется изделие, изготовленное в виде модуля. Такое устройство легко устанавливается на DIN-рейку.

Классы УЗИП

На сегодняшний день все устройства от импульсных перенапряжений делятся на три класса. И каждый из них выполняет свою роль.

Модуль первого класса гасит основной импульс, он устанавливается на главном вводном щите.

После погашения самого большого перенапряжения, остаточный импульс принимает на себя УЗИП 2 класса. Он монтируется в распределительном щитке дома.

Если у вас не будет устройства I класса, высока вероятность что весь удар воспримет на себя модуль II. А это может для него весьма печально закончится.

Поэтому некоторые электрики даже отговаривают заказчиков ставить импульсную защиту. Мотивируя это тем, что раз вы не можете обеспечить первый уровень, то не стоит вообще на это тратить денег. Толку не будет.

Однако давайте посмотрим, что говорит об этом не знакомый электрик, а ведущая фирма по системам грозозащиты Citel:

То есть в тексте прямо сказано, класс II монтируется либо после класса 1, либо КАК САМОСТОЯТЕЛЬНОЕ УСТРОЙСТВО.

Третий модуль защищает уже непосредственно конкретного потребителя.

Если у вас нет желания выстраивать всю эту трехступенчатую защиту, приобретайте УЗИП, которые изначально идут с расчетом работы в трех зонах 1+2+3 или 2+3.

Такие модели тоже выпускаются. И будут наиболее универсальным решением для применения в частных домах. Однако стоимость их конечно отпугнет многих.

Как определить тип системы заземления

Для определения типа системы заземления нужно рассмотреть проводники PEN, то есть как они разделены. Если все готово, проводка похожа на систему TN-C-S. В этом случае для трехфазной цепи пять главных проводов выходят из основного распределительного щитка дома, а для однофазной цепи используются только три провода. PEN-проводники разделяются на два компонента: PE и N.

Обратите внимание! Если он не разделен, проводка будет работать в соответствии с системой TN-C: с 4 проводами от трехфазной системы и 2 проводами от однофазной системы, идущими от распределительного щита.

Основываясь на описанных принципах, можно легко определить тип системы заземления. Во всех случаях, когда система TN-C используется в частных домах, рекомендуется перенести ее на схему TN-C-S, которая является более перспективной и безопасной.

Вам это будет интересно Особенности однофазного электросчетчика

Схема электрощита с УЗИП

Схема качественно укомплектованного с точки зрения защиты от всех скачков и перепадов напряжения распределительного щита, должна выглядеть примерно следующим образом.

На вводе перед счетчиком — вводной автоматический выключатель, защищающий прибор учета и цепи внутри самого щитка. Далее счетчик.

Между счетчиком и вводным автоматом — УЗИП со своей защитой. Электроснабжающая организация конечно может запретить такой монтаж. Но вы можете обосновать это необходимостью защиты от перенапряжения и самого счетчика.

В этом случае потребуется смонтировать всю схемку с аппаратами в отдельном боксе под пломбой, дабы предотвратить свободный доступ к оголенным токоведущим частям до прибора учета.

Однако здесь остро встанет вопрос замены сработавшего модуля и срыва пломб. Поэтому согласовывайте все эти моменты заранее.

После прибора учета находятся:

  • реле напряжения УЗМ-51 или аналог
  • УЗО 100-300мА – защита от пожара

  • УЗО или дифф.автоматы 10-30мА – защита человека от токов утечки

  • простые модульные автоматы

Если с привычными компонентами при комплектации такого щитка вопросов не возникает, то на что же нужно обратить внимание при выборе УЗИП?

На температуру эксплуатации. Большинство электронных видов рассчитано на работу при окружающей температуре до -25С. Поэтому монтировать их в уличных щитках не рекомендуется.

Второй важный момент это схемы подключения. Производители могут выпускать разные модели для применения в различных системах заземления.

Например, использовать одни и те же УЗИП для систем TN-C или TT и TN-S уже не получится. Корректной работы от таких устройств вы не добьетесь.

Схемы подключения

Вот основные схемы подключения УЗИП в зависимости от исполнения систем заземления на примере моделей от Schneider Electric. Схема подключения однофазного УЗИП в системе TT или TN-S:

Здесь самое главное не перепутать место подключения вставного картриджа N-PE. Если воткнете его на фазу, создадите короткое замыкание.

Схема трехфазного УЗИП в системе TT или TN-S:

Схема подключения 3-х фазного устройства в системе TN-C:

На что нужно обратить внимание? Помимо правильного подключения нулевого и фазного проводников немаловажную роль играет длина этих самых проводов.

От точки подключения в клемме устройства до заземляющей шинки, суммарная длина проводников должны быть не более 50см!

А вот подобные схемы для УЗИП от ABB OVR. Однофазный вариант:

Трехфазная схема:

Давайте пройдемся по некоторым схемкам отдельно. В схеме TN-C, где мы имеем совмещенные защитный и нулевой проводники, наиболее распространенный вариант решения защиты – установка УЗИП между фазой и землей.

Каждая фаза подключается через самостоятельное устройство и срабатывает независимо от других.

В варианте сети TN-S, где уже произошло разделение нейтрального и защитного проводника, схема похожа, однако здесь монтируется еще дополнительный модуль между нулем и землей. Фактически на него и сваливается весь основной удар.

Именно поэтому при выборе и подключении варианта УЗИП N-PE, указываются отдельные характеристики по импульсному току. И они обычно больше, чем значения по фазному. Помимо этого не забывайте, что защита от грозы это не только правильно подобранный УЗИП. Это целый комплекс мероприятий.

Их можно использовать как с применением молниезащиты на крыше дома, так и без нее.

Особое внимание стоит уделить качественному контуру заземления. Одного уголка или штыря забитого в землю на глубину 2 метра здесь будет явно не достаточно. Хорошее сопротивление заземления должно составлять 4 Ом.

Принцип действия

Принцип действия УЗИП основан на ослаблении скачка напряжения до значения, которое выдерживают подключенные к сети приборы. Другими словами, данное устройство еще на вводе в дом сбрасывает излишки напряжения на контур заземления, тем самым спасая от губительного импульса дорогостоящее оборудование.

Определить состояние устройства защиты достаточно просто:

  • зеленый индикатор – модуль рабочий
  • красный – модуль нужно заменить

При этом не включайте в работу модуль с красным флажком. Если нет запасного, то лучше его вообще демонтировать.

УЗИП это не всегда одноразовое устройство, как некоторым кажется. В отдельных случаях модели 2,3 класса могут срабатывать до 20 раз!

Принцип действия устройства

Принцип действия защитного устройства достаточно прост. Как правило, УЗИП может мгновенно устранить перенапряжение. Это несложная схема отвода напряжения. К примеру, если напряжение нормальное, то сопротивление варистора будет определяться мегаомами. Если на линии появляется перенапряжение, тогда варистор перемещается в категорию кабеля. Через проводник проходит электрический ток, который устремляется в заземление.

К сведению! Принцип работы УЗИП классифицируют по двум категориям: вентильные/искровые разрядники. Обычно их применяют для сетей с высоким напряжением, как и защитные устройства с варисторами.

Когда в разрядниках фиксируется действие грозового разряда при перенапряжении, тогда это может пробить воздушный проход в перемычке, которая соединяет фазы с контуром заземления. Импульс с высоким напряжением бьет в землю. В случае с вентильными разрядниками понижение высоковольтного импульса в цепи с искровым промежутком происходит на резисторе.

УЗИП в газонаполненных разрядниках подходят для строений, где внешняя система молниезащиты или подача электроэнергии происходит по воздуху за счет спецлиний.

Оборудования с варистором подключаются параллельно с защищаемым устройством. В случае отсутствия импульсного напряжения ток, который идет через варистор, составляет почти ноль. Однако при возникновении перенапряжения сопротивление оборудования резко падает, оно пропускает ток, рассеивая поглощенную энергию, что приводит к снижению напряжения до номинала. Таким образом варистор возвращается в непроводящий режим.

УЗИП обладает встроенной тепловой защитой, которая исключает выгорание при истечении срока эксплуатации. Однако со временем устройство выходит из строя, и нужно произвести замену ограничителя напряжения. О неполадках информирует сам индикатор.

Вам это будет интересно Как работает УЗО и что это такое

Автоматы или предохранители перед УЗИП

Он не всегда дает возможность варисторному модулю вернуться в закрытое положение. Фактически тот не восстанавливается после срабатывания, как по идее должен был.

В итоге, дуга внутри устройства поддерживается и приводит к короткому замыканию и разрушениям. В том числе самого устройства.

Автомат же при таком пробое срабатывает и обесточивает защитный модуль. Бесперебойное электроснабжение дома продолжается.

Запомните, что этот автомат защищает в первую очередь не разрядник, а именно вашу сеть.

При этом многие специалисты рекомендуют ставить в качестве такой защиты даже не автомат, а модульные предохранители.

Объясняется это тем, что сам автомат во время пробоя оказывается под воздействием импульсного тока. И его электромагнитные расцепители также будут под повышенным напряжением.

Это может привести к пробою отключающей катушки, подгоранию контактов и даже выходу из строя всей защиты. Фактически вы окажетесь безоружны перед возникшим КЗ.

Поэтому устанавливать УЗИП после автомата, гораздо хуже, чем после предохранителей.

Есть конечно специальные автоматические выключатели без катушек индуктивности, имеющие в своей конструкции только терморасцепители. Например Tmax XT или Formula A.

Однако рассматривать такой вариант для коттеджей не совсем рационально. Гораздо проще найти и купить модульные предохранители. При этом можно сделать выбор в пользу типа GG.

Они способны защищать во всем диапазоне сверхтоков относительно номинального. То есть, если ток вырос незначительно, GG его все равно отключит в заданный интервал времени.

Есть конечно и минус схемы с автоматом или ПК непосредственно перед УЗИП. Все мы знаем, что гроза и молния это продолжительное, а не разовое явление. И все последующие удары, могут оказаться небезопасными для вашего дома.

Защита ведь уже сработала в первый раз и автомат выбил. А вы об этом и догадываться не будете, потому как электроснабжение ваше не прерывалось.

Поэтому некоторые предпочитают ставить УЗИП сразу после вводного автомата. Чтобы при срабатывании отключалось напряжение во всем доме.

Однако и здесь есть свои подводные камни и правила. Защитный автоматический выключатель не может быть любого номинала, а выбирается согласно марки применяемого УЗИП. Вот таблица рекомендаций по выбору автоматов монтируемых перед устройствами защиты от импульсных перенапряжений:

Если вы думаете, что чем меньше по номиналу автомат будет установлен, тем надежнее будет защита, вы ошибаетесь. Импульсный ток и скачок напряжения могут быть такой величины, что они приведут к срабатыванию выключателя, еще до момента, когда УЗИП отработает.

И соответственно вы опять останетесь без защиты. Поэтому выбирайте всю защитную аппаратуру с умом и по правилам. УЗИП это тихая, но весьма своевременная защита от опасного электричества, которое включается в работу мгновенно.

УЗИП — устройство защиты от импульсных перенапряжений

В закладки

  1. Назначение УЗИП

Устройство защиты от импульсных перенапряжений (УЗИП) — устройство предназначенное для защиты электрической сети и электрооборудования от перенапряжений которые могут быть вызваны прямым или косвенным грозовым воздействием, а так же переходными процессами в самой электросети.

Другими словами УЗИПы выполняют следующие функции:

Защита от удара молнии электрической сети и оборудования, т.е. защита от перенапряжений вызванных прямыми или косвенными грозовыми воздействиями

Защита от импульсных перенапряжений вызванных коммутационными переходными процессами в сети, связанных с включением или отключением электрооборудования с большой индуктивной нагрузкой, например силовых или сварочных трансформаторов, мощных электродвигателей и т.д.

Защита от удаленного короткого замыкания (т.е. от перенапряжения возникшего в результате произошедшего короткого замыкания)

[Реклама] Компания Приборэнерго производит качественные УЗИП с упором на надежность.

УЗИПы имеют различные названия: ограничитель перенапряжений сети — ОПС (ОПН), ограничитель импульсных напряжений — ОИН, но все они имеют одинаковые функции и принцип работы.

[Реклама] Купить УЗИП высокой надежности и качества вы можете на сайте etirussia.ru

Внешний вид УЗИП:

  1. Принцип работы и устройство защиты УЗИП

Принцип работы УЗИПа основан на применении нелинейных элементов, в качестве которых, как правило, выступают варисторы.

Варистор — это полупроводниковый резистор сопротивление которого имеет нелинейную зависимость от приложенного напряжения.

Ниже представлен график зависимости сопротивления варистора от приложенного к нему напряжения:

Из графика видно, что при повышении напряжения выше определенного значения сопротивление варистора резко снижается.

Как это работает на практике разберем на примере следующей схемы:

На схеме упрощенно представлена однофазная электрическая цепь, в которой через автоматический выключатель подключена нагрузка в виде лампочки, в цепь так же включен УЗИП, с одной стороны он подключен к фазному проводу после автоматического выключателя, с другой — к заземлению.

В нормальном режиме работы напряжение цепи составляет 220 Вольт, при таком напряжении варистор УЗИПа обладает высоким сопротивлением измеряющимся тысячами МегаОм, настолько высокое сопротивление варистора препятствует протеканию тока через УЗИП.

Что же происходит при возникновении в цепи импульса высокого напряжения, например, в результате удара молнии (грозового воздействия).

На схеме видно что при возникновении импульса в цепи резко возрастает напряжение, что в свою очередь вызывает мгновенное, многократное уменьшение сопротивления УЗИПа (сопротивление варистора УЗИПа стремится к нулю), уменьшение сопротивление приводит к тому, что УЗИП начинает проводить электрически ток, закорачивая электрическую цепь на землю, т.е. создавая короткое замыкание которое приводит к срабатыванию автоматического выключателя и отключению цепи. Таким образом ограничитель импульсных перенапряжений защищает электрооборудование от протекания через него импульса высокого напряжения.

  1. Классификация УЗИП

Согласно ГОСТ Р 51992-2011 разработанного на основе международного стандарта МЭК 61643-1-2005 есть следующие классы УЗИП:

УЗИП 1 класс — (так же обозначается как класс B) применяются для защиты от непосредственного грозового воздействия (удара молнии в систему), атмосферных и коммутационных перенапряжений. Устанавливаются на вводе в здание во вводно-распределительном устройстве (ВРУ) или главном распределительном щите (ГРЩ). Обязательно должен устанавливаться для отдельно стоящих зданий на открытой местности, зданий подключаемых к воздушной линии, а так же зданий имеющих молниеотвод или находящихся рядом с высокими деревьями, т.е. зданиях с высоким риском оказаться под прямым или косвенным грозовым воздействием. Нормируются импульсным с формой волны 10/350 мкс. Номинальный разрядный ток составляет 30-60 кА.

УЗИП 2 класс — (так же обозначается как класс С) применяются для защиты сети от остатков атмосферных и коммутационных перенапряжений прошедших через УЗИП 1-го класса. Устанавливаются в местных распределительных щитках, например во вводном щитке квартиры или офиса. Нормируются импульсным током с формой волны 8/20 мкс Номинальный разрядный ток составляет 20-40 кА.

УЗИП 3 класс — (так же обозначается как класс D) применяются для защиты электронной аппаратуры от остатков атмосферных и коммутационных перенапряжений, а так же высокочастотных помех прошедших через УЗИП 2-го класса. Устанавливаются в разветвительные коробки, розетки, либо встраивается непосредственно в само оборудование. Примером использования УЗИПа 3-го класса служат сетевые фильтры применяемые для подключения персональных компьютеров. Нормируются импульсным током с формой волны 8/20 мкс. Номинальный разрядный ток составляет 5-10 кА.

  1. Маркировка УЗИП — характеристики

Характеристики УЗИП:

  • Номинальное и максимальное напряжение — максимальное рабочее напряжение сети на работу под которым рассчитан УЗИП.
  • Частота тока — рабочая частота тока сети на работу при которой рассчитан УЗИП.
  • Номинальный разрядный ток (в скобках указана форма волны тока) — импульс тока с формой волны 8/20 микросекунд в килоАмперах (кА), который УЗИП способен пропустить многократно.
  • Максимальный разрядный ток (в скобках указана форма волны тока) — максимальный импульс тока с формой волны 8/20 микросекунд в килоАмперах (кА) который УЗИП способен пропустить один раз не выйдя при этом из строя.
  • Уровень напряжения защиты — максимальное значение падения напряжения в килоВольтах (кВ) на УЗИПе при протекании через него импульса тока. Данный параметр характеризует способность УЗИПа ограничивать перенапряжение.
  1. Схема подключения УЗИП

Общим условием при подключении УЗИП являетя наличие со стороны питающей сети предохранителя или автоматического выключателя соответствующего нагрузке сети, поэтому все представленные ниже схемы будут включать в себя автоматические выключатели (схему подключения УЗИП в электрощитке смотрите здесь):

Схемы подключения УЗИП (ОПС, ОИН) в однофазную сеть 220В (двухпроводную и трехпроводную):

Схемы подключения УЗИП (ОПС, ОИН) в трехфазную сеть 3800В

Принципиальные схемы подключения УЗИП выглядят следующим образом:

При устройстве многоступенчатой защиты от перенапряжения, т.е. установки УЗИПов 1-го класса в ВРУ здания совместно с УЗИПами 2-го класса в распределительных щитах здания и с УЗИПами 3-го класса, например, в розетках, необходимо соблюдать расстояние между УЗИПами по кабелю не менее 10 метров:

Была ли Вам полезна данная статья? Или может быть у Вас остались вопросы? Пишите в комментариях!

Не нашли на сайте статьи на интересующую Вас тему касающуюся электрики? Напишите нам здесь. Мы обязательно Вам ответим.

↑ Наверх

10

https://elektroshkola.ru/apparaty-zashhity/uzip/

Рейтинг
( 2 оценки, среднее 5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]