Машины переменного тока: устройство, принцип работы, применение


Общие сведения об МПТ

Сегмент МПТ или электромеханических преобразователей можно условно разделить на однофазные и трехфазные системы. Также на базовом уровне выделяют асинхронные, синхронные и коллекторные устройства, при этом общий принцип действия и конструкционное исполнение у них имеет много схожего. Данная классификация машин переменного тока носит условный характер, поскольку современные станции электромеханического преобразования частично задействуют рабочие процессы от каждой группы устройств.

Как правило, в основе МПТ находится статор и ротор, между которыми предусматривается воздушный зазор. Опять же, независимо от типа машины, рабочий цикл строится на вращении магнитного поля. Но если в синхронной установке движение ротора соответствует направлению силового поля, то в асинхронной машине ротор может двигаться в другом направлении и с разными частотами. Это различие обуславливает и особенности применения машин. Так, если синхронные могут выступать и в качестве генератора, и как электромеханический двигатель, то асинхронные в основном используют как двигатели.

Что касается количества фаз, то выделяют одно- и многофазные системы. Причем, с точки зрения практического использования, заслуживают внимание представители второй категории. Это по большей части трехфазные машины переменного тока, в которых функцию энергоносителя как раз выполняет магнитное поле. Однофазные же устройства ввиду эксплуатационной непрактичности и крупных размеров постепенно выходят из практики применения, хотя в некоторых сферах решающим фактором их выбора является низкая стоимость.

Назначение машин переменного тока.

Синхронные машины – это бесколлекторные машины переменного тока, имеющие синхронную частоту вращения ротора, т. е. у них частота вращения ротора равна частоте вращения магнитного поля статора. В промышленности и на железнодорожном транспорте синхронные машины используют в основном как генераторы; их устанавливают на мощных тепловых, гидравлических и атомных электростанциях, а также на тепловозах, автомобилях, самолётах. В первом случае мощностью до 1200 МВт, во втором – до 4400 кВт. В зависимости от типа привода различают турбогенераторы, гидрогенераторы и дизель-генераторы. Синхронные машины также используются и в качестве электродвигателей при мощности 100 кВт и выше для приводов насосов, компрессоров, вентиляторов и других механизмов.

Работа синхронной машины основана на явлении электромагнитной индукции и заключается в преобразовании механической энергии в электрическую энергию переменного тока (генераторы) или электрической энергии переменного тока в механическую (двигатели), т. е. синхронная машина обладает обратимостью.

Синхронная машина состоит из неподвижной части – статора, в пазах которого расположена многофазная (как правило, трёхфазная) обмотка и вращающейся части – ротора с обмоткой возбуждения, питаемой от источника постоянного тока (возбудителя) через контактные кольца и щётки. Синхронная машина может работать автономно в качестве генератора, питающего подключенную к ней нагрузку, или параллельно с сетью, к которой присоединены другие генераторы. При работе параллельно с сетью она может отдавать или потреблять электрическую энергию, т. е. работать генератором или двигателем. При подключении обмотки статора к сети с напряжением U1 и частотой f1 проходящий по обмотке ток создаёт вращающееся магнитное поле, частота вращения которого

n1 = 60×f1/p.

В результате взаимодействия этого поля с током возбуждения Iв, проходящим по обмотке ротора, создаётся электромагнитный момент М, который при работе машины в двигательном режиме является вращающим, а при работе в генераторном режиме – тормозным. В установившемся режиме ротор неподвижен относительно магнитного поля и вращается с частотой вращения n1 = n2, где n2 — частота вращения ротора. Таким образом, в установившемся режиме ротор машины постоянного тока вращается с постоянной частотой, равной частоте вращающегося магнитного поля.

Сердечник статора, собранный из листовой электротехнической стали, 2 — трехфазная обмотка статора, включаемая в сеть переменного тока, 3 — сердечник ротора, 4 — фазная обмотка ротора, 5 — контактные кольца для соединения с пусковым или регулировочным реостатом, 6 — короткозамкнутая обмотка ротора.

МДС обмоток синхронных машин переменного тока.

Магнитодвижущая сила (МДС) всех обмоток переменного тока, расположенных на статоре или роторе электрической машины, должна создавать в ее воздушном зазоре вращающееся магнитное поле. Для этого каждая из обмоток, питающаяся от синусоидально изменяющегося напряжения, должна иметь МДС, синусоидально распределенную в пространстве, т. е. по расточке статора или по окружности ротора. Несоблюдение этих условий, т. е. питание от несинусоидального напряжения или несинусоидальное распределение МДС приводит к появлению высших гармонических в кривой распределения магнитного потока, что ведет к ухудшению энергетических показателей машины.

Будем считать, что обмотки получают питание от источника напряжения чисто синусоидальной формы. Выясним, как должна быть выполнена обмотка переменного тока, чтобы распределение ее МДС было синусоидальным.

МДС сосредоточенной обмотки. Для установления величины и характера распределения МДС обмотки сначала рассмотрим двухполюсную машину с простейшей сосредоточенной обмоткой у которой все витки, включенные в фазу АХ, находятся в пазах, расположенных в диаметральной плоскости. При прохождении тока от начала фазы А к ее концу X возникает двухполюсный магнитный поток, силовые линии которого направлены, как показано на рисунке. Каждая силовая линия этого потока сцеплена со всеми витками w катушки данной фазы, поэтому создаваемая катушкой МДС Fк =∑i = iw. При максимальном значении тока в катушке эта МДС также имеет максимальное значение: Fкm=Imw= = √2Iw.

Отличия от машин постоянного тока

Принципиальная конструкционная разница заключается в расположении обмотки. В системах переменного тока она охватывает статор, а в машинах постоянного тока – ротор. В обеих группах электродвигатели различаются по типу возбуждения тока – смешанные, параллельные и последовательные. Сегодня машины переменного и постоянного тока используются в промышленности, сельском хозяйстве и в бытовой сфере, однако первый вариант более привлекателен по своим эксплуатационным качествам. Генераторы и двигатели переменного тока выигрывают за счет более технологичной конструкции, надежности и высокой энергетической отдачи.

Применение устройств, работающих на постоянном токе, распространено в сферах, где на первый план выходят требования к точности регулирования рабочих параметров. Это могут быть тяговые механизмы транспорта, обрабатывающие станки и сложные измерительные приборы. В плане производительности машины постоянного и переменного тока имеют высокий КПД, но с разными возможностями технико-конструкционной подстройки под конкретные условия применения. Работа с постоянным током дает больше возможностей для управления частотой вращения, что важно при обслуживании серводвигателей и шаговых моторов.

Универсальный коллекторный двигатель

В общем, понятие коллекторного двигателя подразумевает под собой электродвигатель, способный не только преобразовать электрическую энергию в механическую, но и наоборот. В таком типе двигателя переменного тока хотя бы одна обмотка должна быть соединена с коллектором.

В коллекторных двигателях коллекторы выполняют сразу две функции:

  • переключатель обмоток;
  • датчик, с помощью которого определяют положение ротора.

Различают два вида коллекторных двигателей. Их классификация происходит в зависимости от типа питания:

  1. Питание от постоянного тока. У таких двигателей высокий пусковой момент, частота вращения имеет плавное управление, а конструкция самого привода достаточно простая.
  2. Универсальные же двигатели могут работать при питании переменной и постоянной электроэнергией. Размеры машины относительно компактные, управлять ей просто.

В рамках темы нас интересует коллекторный двигатель универсального типа.

Рисунок ниже изображает машину такого вида и ее основные детали. Схожим образом выглядят и все остальные КД.

Возбуждение у таких двигателей может быть последовательное и параллельное. Машины второго типа уже устарели и сняты с производства, поэтому на нем мы останавливаться не будет. А схема подключения двигателя с коллектором представлена на рисунке ниже.

Принцип работы коллекторного двигателя от переменного тока заключается в следующем: во время смены полярности ток в обмотках статора и ротора изменяется и направление. Это не дает изменить свое направление вращательному моменту.

Применение УКД

В прошлом веке универсальные КД использовали при конструировании бытовой техники, однако сегодня все современные производители предпочитают использовать бесколлекторные двигатели.

Вот главные недостатки таких приводов:

  • коэффициент полезного действия снижен;
  • щеточно-коллекторный узлы характеризуются повышенным образованием искр, это влияет на быструю скорость износа прибора, он также может быть опасен.

Оба типа двигателей, постоянного и переменного тока, предназначены для выполнения одинаковой функции – превращения электроэнергии в механическую. Тем не менее их сравнение имеет смысл, они в корне отличаются друг от друга по нескольким пунктам:

  • тип питания;
  • процесс создания;
  • система управления.

Первый пункт, питание, является самым главным отличием, что ясно даже из названия машин. Понятно, что электроприводы переменного тока питают источники переменного тока, а двигатели постоянного тока – источники постоянного тока (например, это могут батареи или преобразователи питания).

Электроприводы с полем постоянного тока содержат в своей конструкции щетки и коммутаторы, что усложняет их обслуживание и сокращает сроки эксплуатации относительно, скажем, асинхронных агрегатов, чего не скажешь о последних. Они, наоборот, отличаются своей прочностью и долговечностью.

Еще одно коренное отличие двигателей заключается в контроле скорости.

В машинах постоянного тока скорость работы можно регулировать с помощью изменения тока в обмотках ротора. В электромоторах переменного – с помощью регулировки частоты вращения.

Реверс в работе с двигателем – процесс изменения вращения якоря на супротивный в машинах постоянного тока, асинхронных и универсальных коллекторных двигателях. Работу двигателя практически невозможно представить без такой функции. Без изменения направления вращения ротора не будет работать тельфер, кран-балка, лебедка, лифты и все остальные механизмы для подъема грузов.

Как осуществить реверс в двигателе переменного тока рассмотрим ниже.

Устройство асинхронной МПТ

Для технической основы данного устройства в виде ротора и статора используется листовая сталь, которую перед сборкой покрывают изоляционным масляно-канифольным слоем с обеих сторон. В машинах малой мощности сердечник может выполняться из электрической стали без дополнительного покрытия, поскольку изолятором в данном случае выступает естественный оксидный слой на металлической поверхности. Статор фиксируется в корпусе, а ротор на валу. В асинхронных машинах переменного тока большой мощности сердечник ротора может крепиться и на ободе корпуса втулкой, насаженной на вал. Непосредственно вал должен вращаться на подшипниковых щитах, которые также фиксируются к основе корпуса.

Внешние поверхности ротора и внутренние поверхности статора изначально обеспечиваются пазами для размещения проводников обмотки. У статора машин переменного тока обмотка чаще выполняется трехфазной и подключается к соответствующей сети на 380 В. Ее также называют первичной. Аналогично выполняется и обмотка ротора, окончания которой обычно формируют соединение в конфигурации звезды. Предусматриваются и контактные кольца, через которые дополнительно может подключаться реостат для регулировки или трехфазный пусковой элемент.

Важно отметить и параметры воздушного зазора, который выполняет функцию демпферной зоны, снижающей шум, вибрации и нагрев при работе устройства. Чем габаритнее машина, тем больше должен быть зазор. Его величина может варьироваться от одного до нескольких миллиметров. Если конструкционно невозможно оставить достаточно места для воздушной зоны, то предусматривается система дополнительного охлаждения установки.

Особенности

По способу взаимодействия ротора и вращающегося магнитного поля, устройства делятся на два вида – синхронные и асинхронные. В первом случае скорости вращения поля и ротора совпадают, во втором – отличаются.

Синхронная электрическая

Вращение обусловлено взаимодействием вращающегося магнитного поля статора и собственного поля ротора. Первое увлекает за собой второе, заставляя подвижный элемент вращаться с той же скоростью (режим двигателя). Если же вращать ротор сторонней механической силой, на выводах обмотки статора получится 3-фазное напряжение (режим генератора).

Асинхронная электрическая

Данное устройство в основном используется как двигатель. В сравнении с синхронной имеет более простую конструкцию, чем и объясняется широкое распространение. Ротор собственных магнитных полюсов не имеет, поскольку его магнитное поле является наведенным (у синхронных — собственное).

  • коллекторные;
  • бесколлекторные.

Первые более разнообразны по характеристикам, но из-за наличия такого дорогого и малонадежного узла, коим является коллектор, сфера их использования ограничена.

Бесколлекторные устройства наиболее распространены, они делятся на два вида:

  • с короткозамкнутым ротором;
  • с фазным ротором.

Обмотка первого представляет собой обойму из медных или алюминиевых стержней в форме беличьего колеса, тогда как тело самого элемента изготовлено из ферромагнитной стали и представляет собой сердечник.

Вместе сердечники ротора и статора образуют магнитопровод, а имеющиеся на них обмотки работают подобно трансформаторным:

  1. в обмотках статора при подключении его клемм к 3-фазному напряжению формируется вращающееся магнитное поле, как было описано выше;
  2. для ротора движущееся относительно него вращающееся магнитное поле является переменным, отчего в его обмотке, согласно закону электромагнитной индукции, наводится ЭДС и возникает ток;
  3. он создает в обмотке ротора магнитное поле, которое взаимодействует с полем статора. Иными словами, возникает действующая на стержни ротора амперова сила. Он начинает вращаться вслед за полем статора.

Очевидно, что скорость вращения ротора V не может быть равна аналогичному параметру поля статора V0, поскольку при таких условиях последнее уже не будет переменным для роторной обмотки.

Потому данный двигатель и называют асинхронным. Если при вращении ротор обгоняет поле статора, машина переходит в режим генератора. Разность V и V0 характеризуется коэффициентом скольжения S = (V0 – V) / V0.

У двигателей с короткозамкнутым ротором есть три недостатка, ограничивающих сферу применения:

  • небольшой пусковой момент: при активации полюсы наведенного в роторе магнитного поля находятся под полюсами вращающегося поля статора;
  • высокий пусковой ток: в 5-15 раз выше рабочего;
  • в случае приложения нагрузки на вал более максимального момента двигатель останавливается.

Обмотка фазного ротора устроена подобно статорной. В момент пуска к ней подключается внешнее сопротивление, отчего взаимное расположение магнитных полей подвижного и неподвижного элементов меняется — полюса одного выводятся из-под полюсов другого. Возникает высокий момент трогания (или пусковой).

Принцип работы асинхронной МПТ

Трехфазную обмотку в данном случае подключают к симметричной сети с трехфазным напряжением, в результате чего в воздушном зазоре формируется магнитное поле. Относительно обмотки якоря принимаются специальные меры для достижения гармонического пространственного распределения поля для демпферного зазора, что образует систему вращающихся магнитных полюсов. Согласно принципу действия машины переменного тока, на каждом полюсе формируется магнитный поток, который пересекает контуры обмотки, тем самым провоцируя генерацию электродвижущей силы. В трехфазной обмотке индуцируется трехфазный ток, обеспечивающий вращающий момент двигателя. На фоне взаимодействия тока ротора с магнитными потоками происходит формирование электромагнитной силы на проводниках.

Если ротор под действием внешней силы приводится в движение, направление которого соответствует направлению потоков магнитного поля машины переменного тока, то ротор начнет обгонять темпы вращения поля. Это происходит в тех случаях, когда частота вращения статора превосходит номинальную синхронную частоту. В то же время будет изменено направление движения электромагнитных сил. Таким образом формируется тормозящий момент с обратным действием. Данный принцип работы позволяет использовать машину и в качестве генератора, работающего в режиме отдачи активной мощности в сеть.

Основная информация, сфера применения

Электродвигатели переменного тока делятся на синхронные и асинхронные.

Синхронные электродвигатели — это двигатели, частота вращения которых постоянна по отношению к частоте сети; у асинхронных двигателей соотношение не является постоянным. Частота вращения асинхронных двигателей изменяется в зависимости от нагрузки.

Асинхронные двигатели могут иметь преобразовательное устройство в виде коллектора (коллекторные машины) или быть без коллектора (без коллектора).

Функционирование электродвигателей определяется основными энергетическими процессами, происходящими в них (двигатель, генератор, тормоз и преобразователь), и функционирование должно быть количественно определено. Количественный режим работы характеризуется целым рядом электрических и механических переменных: токов, напряжения, мощности, скорости и других. Электродвигатель предназначен для работы при определенных внешних условиях с определенными значениями параметров (токи, напряжение, мощность и т.д.), работая в течение определенного и достаточно длительного времени.

Указанные значения различных значений, определяющих режим работы двигателя, называются номинальными значениями, а режим — номинальным.

Основные номинальные значения указаны на специальной панели электродвигателя.

Если двигатель работает в режиме, аналогичном номинальному, со значением, отличным от номинального режима, но не приводящим к снижению надежности двигателя, то это нормальная работа, в противном случае это ненормальная работа.

Все допустимые нормальные и нестандартные режимы работы четко определены в ГОСТе, технических условиях и инструкции по эксплуатации.

Среди электродвигателей переменного тока наиболее распространены асинхронные электродвигатели с трехфазной симметричной обмоткой на статоре, которые питаются от сети переменного тока, и с трехфазной или многофазной обмоткой на роторе. Асинхронные двигатели используются в основном в качестве двигателей, в то время как синхронные двигатели используются в основном в качестве генераторов, так как электрический двигатель может работать как в моторном, так и в генераторном режиме.

Асинхронные двигатели с малой мощностью часто являются однофазными, поэтому их можно использовать в устройствах, питающихся по двухпроводной сети. Эти двигатели широко используются в бытовой технике. В промышленности широко используются трехфазные электродвигатели, которые работают по промышленной трехпроводной сети.

В большинстве асинхронных двигателей используется ротор с короткозамкнутым ротором. Короткозамкнутый ротор наматывается в виде цилиндрического сепаратора из медных или алюминиевых шин, который вставляется в сердечник ротора без изоляции.

Асинхронные электродвигатели производятся отечественной промышленностью как единая серия, охватывающая все необходимые мощности и скорости. В основном двигатели для электроснабжения производятся от сети с частотой 50 Гц. Двигатели общего назначения имеют прочную шкалу производительности на всех скоростях.

Буквенные обозначения всех серий асинхронных двигателей содержат букву A (асинхронный), а следующие буквы означают конструкцию двигателя.

С 1978 года асинхронные двигатели мощностью от 0,06 до 400 кВт при 500-3000 об/мин выпускаются в основном в виде серии 4А, которая пришла на смену серии А2 в этом диапазоне мощностей. Двигатели 4А полностью соответствуют рекомендациям МЭК (Международной электротехнической комиссии) по габаритам и установочным и присоединительным размерам, что обеспечивает взаимозаменяемость отечественных электродвигателей с электродвигателями иностранного производства.

Асинхронные электродвигатели с короткозамкнутым ротором в основном производятся для общепромышленного использования в умеренных климатических условиях.

Номинальные значения климатических факторов определяются по действующим ГОСТам, но высота над уровнем моря не должна превышать 1000 м, запыленность воздушной среды не должна превышаться: 2 мг на кубометр для двигателей в защищенном исполнении и 10 мг на кубометр для двигателей в закрытом обдувочном исполнении (среда не является взрывоопасной и не содержит агрессивных газов и паров, разрушающих металлы и изоляцию и токопроводящие элементы).

Номинальные данные двигателя относятся к непрерывной работе при подключении к сети с частотой 50 Гц.

С целью защиты окружающей среды двигатели выпускаются в двух версиях: защищенные (1П23) и закрытые (1П44).

Двигатели имеют стандартную шкалу мощности, которая применяется при всех скоростях: 0,06; 0,09; 0,12; 0,18; 0,25; 0,37; 0,55; 0,75; 1,1; 1,5; 2,2; 3,0; 4,0; 5,5; 7,5; 11,0; 15,0; 18,5; 22; 30; 37; 45; 55; 75; 90; 110; 132; 160; 200; 250; 315; 400 кВт.

Шкала высоты осей вращения (над опорной плитой) соответствует рекомендациям МЭК: 50; 56; 63; 71; 80; 90; 100; 112; 132; 160; 180; 200; 225; 250; 280; 315; 355 мм.

При маркировке двигателей заводской номер серии обозначается номером, за которым следует номер двигателя, например A (асинхронный); затем указывается вариант исполнения двигателя (например): H — защищенное исполнение); затем указать материал, из которого изготовлена рама и панели двигателя (A — рама и панели из алюминия, X — рама из алюминия и чугунных панелей); затем 50-355 — высота оси вращения; S,L,M — крепежные размеры по длине рамы; A,B — указана длина магнитного сердечника (A — первая длина, вторая длина — B).

Также указывается количество полюсов мотора: 2, 4, 6, 8, 10, 12; климатическое исполнение, учитывающее возможность перегрева мотора во время эксплуатации и повреждение его изоляции (U — умеренный климат, C — северный, T — тропический), тогда категория размещения обозначается номером согласно стандарту (например — 3).

Например: 4AA56A2U3 — электродвигатель серии 4, асинхронный, закрытого исполнения, рамы и панели из алюминия, с высотой 56 мм от оси вращения, магнитный провод первой длины, биполярный, для районов с умеренным климатом, 3 категории размещения.

Двигатели мощностью 0,12 … 0,37 кВт работают на напряжении 220 … 380 V, 0,55 … 110 кВт — на напряжение 220 … 380 и 380… 680 В, мощность 132 … 400 кВт при напряжении 380 … 680 V.

В дополнение к базовой версии, серия имеет ряд электрических модификаций и несколько специальных версий: химически стойкие, влагостойкие при 60 Гц и другие. Типоразмеры всех модифицированных и специализированных версий соответствуют типоразмерам соответствующих двигателей базового исполнения. Сегмент серии имеет сплошную шкалу мощности: 200; 250; 320; 400; 500; 630; 800; 1000; 1250 кВт.

Для каждого из размеров существует 2-3 варианта исполнения двигателей в зависимости от длины магнитного провода.

В соответствии с методом защиты от воздействия окружающей среды, двигатели имеют два варианта: брызгозащита (обеспечивает защиту от падения под углом 60 градусов к вертикали (двигатели имеют обозначение А2); двигатели в закрытом корпусе — обеспечивают защиту от твердых тел диаметром не менее 1 мм и брызг воды в любом направлении (двигатели имеют обозначение АО2).

Синхронные двигатели — это электрические машины с двумя обмотками, одна обмотка которых подключена к сети с постоянной скоростью, а две обмотки возбуждаются постоянным током, при этом частота вращения ротора не зависит от нагрузки.

Используются в качестве двигателей в крупных установках (привод поршневого компрессора, воздушный трубопровод и т.д.), в основном используются в качестве генераторов.

Номинальные значения для синхронных двигателей: механическая мощность на валу двигателя кВт; коэффициент мощности; КПД; фазовая диаграмма обмотки статора; напряжение сети статора V; частота вращения статора (об/мин); частота тока статора Гц; ток сети статора А; напряжение возбуждения и ток обмотки.

Каждый двигатель отмечен. На корпусе каждого двигателя, на табличке которого указаны: торговая марка предприятия — изготовителя; тип двигателя с указанием климатических характеристик и категории; серийный номер двигателя; номинальный режим работы; номинальная мощность, кВт; давление, В; электрическая мощность, А; частота вращения, об/мин; система возбуждения; напряжение параллельной обмотки, В; масса; год выпуска; норматив.

Для двигателей во взрывозащищенном исполнении символ взрывозащиты (EPG) должен быть размещен на видном месте, а маркировка заземления — рядом с клеммами заземления.

Двигатели переменного тока нашли самое широкое применение в промышленности, они используются для привода высокоскоростных механизмов, для привода насосов, вентиляторов, прокатных станов и др. Электродвигатели используются во многих отраслях промышленности.

Устройство и принцип действия синхронных МПТ

В части исполнения и расположения статора синхронная машина похожа на асинхронную. Обмотка называется якорем и выполняется с тем же количеством полюсов, как и в предыдущем случае. У ротора предусматривается обмотка возбуждения, энергетическое снабжение которой обеспечивают контактные кольца и щетки, подключенные к источнику постоянного тока. Под источником подразумевается маломощный генератор-возбудитель, устанавливаемый на одном валу. В синхронной машине переменного тока обмотка выполняет функцию генератора первичного магнитного поля. В процессе проектирования конструкторы стремятся создавать условия для того, чтобы индукционное распределение поля возбуждения на поверхностях статора было как можно ближе к синусоидальному.

При повышенных нагрузках обмотка статора формирует магнитное поле с вращением в направлении ротора с аналогичной частотой. Таким образом образуется единое поле вращения, при котором поле статора будет оказывать воздействие на ротор. Данное устройство машин переменного тока позволяет их использовать как электродвигатели, если изначально обеспечивается подводка трехфазного тока к синхронной обмотке. Такие системы создают условия для координированного вращения ротора с частотой, соответствующей полю статора.

Устройство, принцип работы и подключения электродвигателей переменного тока

Электродвигатели переменного тока являются электротехническими устройствами, которые преобразовывают электрическую энергию в механическую. Электромоторы нашли широкое применение во многих отраслях промышленности для привода всевозможных станков и механизмов. Без такого оборудования невозможна работа стиральных машин, холодильников, соковыжималок, кухонных комбайнов, вентиляторов и других бытовых приборов.

По принципу работы электродвигатели переменного тока делятся на синхронные и асинхронные. Асинхронные электромоторы переменного тока наиболее часто применяются в промышленности.

Стоит рассмотреть устройство электродвигателя переменного тока асинхронного.

Данный вид электромоторов состоит из главных частей — статора и ротора. В современных асинхронных электромоторах статор имеет неявно выраженные полюсы.

Для того чтобы максимально снизить потери от вихревых токов, сердечник статора изготавливают из соответствующей толщины листов электротехнической стали, подвергшихся штамповке. В пазы статора впрессовывается обмотка из медного провода. Фазовые обмотки статора устройства могут соединяться «звездой» или «треугольником». При этом все начала и концы впрессованных обмоток электромотора выводятся на корпус — в клеммную коробку. Подобное устройство статора электродвигателя оправданно, так как дает возможность включать его обмотки на различные стандартные напряжения. Сердечник статора запрессовывается в чугунный или алюминиевый корпус.

Ротор асинхронного мотора также состоит из подвергшихся штамповке листов электротехнической стали, и во все его пазы закладывается обмотка.

Учитывая конструкцию ротора, асинхронные электродвигатели подразделяются на устройства с короткозамкнутым ротором и фазным ротором.

Обмотку короткозамкнутого ротора, сделанную из медных стержней, закладывают в пазы ротора. При этом все торцы стержней соединяют при помощи медного кольца. Данный вариант обмотки считается обмоткой типа «беличья клетка». Стоит отметить, что медные стержни в пазах ротора не изолируются. Во многих асинхронных электромоторах «беличью клетку» сменяют литым ротором. Ротор напрессовывается на вал двигателя и является с ним одним целым.

Синхронные электродвигатели устанавливаются в различных электроинструментах, пылесосах, стиральных машинах. На корпусе синхронного электромотора переменного тока имеется сердечник полюса, в котором расположены обмотки. Обмотки возбуждения намотаны и на якорь. Их выводы припаяны ко всем секторам токосъемного коллектора, на которые при использовании графитовых щеток подается напряжение.

Принцип действия электродвигателя переменного тока основан на применении закона электромагнитной индукции. При взаимодействии переменного электрического тока в проводнике и магните может возникнуть непрерывное вращение.

В синхронном электродвигателе якорь вращается синхронно с электромагнитным полем полюса, а у асинхронного электромотора ротор вращается с отставанием от вращающегося магнитного поля статора.

Для работы асинхронного электромотора необходимо, чтобы ротор устройства вращался в более медленном темпе, чем электромагнитное поле статора. При подаче тока на обмотку статора между сердечником статора и ротора возникает электромагнитное поле, которое наводит ЭДС в роторе. Возникает вращающийся момент, и вал электродвигателя начинает вращаться. Из-за трения подшипников или определенной нагрузки на вал, ротор асинхронного двигателя всегда вращается в более медленном темпе.

Принцип работы электродвигателя переменного тока асинхронного заключается в том, что магнитные полюса устройства постоянно вращаются в обмотках электромотора и направление тока в роторе постоянно меняется.

Скорость вращения ротора электромотора асинхронного зависит от общего количества полюсов. Для того чтобы понизить скорость вращения ротора в таком двигателе, требуется увеличить общее количество полюсов в статоре.

В синхронных электродвигателях вращающий момент в устройстве создается при взаимодействии между током в обмотке якоря и магнитным потоком в обмотке возбуждения. При изменении направления переменного тока одновременно меняется направление магнитного потока в корпусе и якоре. При таком варианте вращение якоря всегда будет в одну сторону. Примечательно, что плавная регулировка скорости вращения таких электромоторов регулируется величиной подаваемого напряжения, при помощи реостата или переменного сопротивления.

В зависимости от напряжения сети фазные обмотки статора асинхронного электромотора могут подсоединяться в «звезду» или «треугольник». Схема электродвигателя переменного тока при подключении его в сеть с напряжением 220 Вольт обмотки соединяются в треугольник, а при подключении в сеть 380 Вольт — схема обмоток имеет вид звезды. Для оформления заказа позвоните менеджерам компании Кабель.РФ® по телефону или пришлите заявку на электронную почту с указанием требуемой модели электродвигателя, целей и условий эксплуатации. Менеджер поможет Вам подобрать нужную марку с учетом Ваших пожеланий и потребностей.

Явнополюсные и неявнополюсные синхронные машины

Главным отличием явнополюсных систем является присутствие в конструкции выступающих полюсов, которые крепятся к специальным выступам вала. В типовых механизмах фиксация выполняется с помощью Т-образных хвостовых крепежей к ободу крестовины или валу через втулку. В устройстве машин переменного тока малой мощности эта же задача может решаться болтовыми соединениями. В качестве материала обмотки используется полосовая медь, которую наматывают на ребро, изолируя специальными прокладками. В наконечниках с полюсами в пазах размещаются стержни обмотки для пуска. В этом случае применяется материал с высоким удельным сопротивлением наподобие латуни. Контуры обмотки по торцам приваривают к короткозамыкающим элементам, образуя общие кольца для короткого замыкания. Явнополюсные машины с силовым потенциалом на 10-12 кВт могут выполняться в так называемой обращенной конструкции, когда якорь вращается, а полюса индуктора сохраняют неподвижное состояние.

У неявнополюсных машин конструкция базируется на цилиндрическом роторе, выполняемом из стальной поковки. В роторе присутствуют пазы для формирования обмотки возбуждения, полюса которой рассчитываются на высокие частоты вращения. Однако применение такой обмотки в электрических машинах с переменным током большой мощности невозможно из-за высокой степени износа ротора в жестких условиях эксплуатации. По этой причине даже в установках средней мощности для роторов применяют высокопрочные компоненты из цельных поковок на основе хромоникельмолибденовых или хромоникелевых сталей. В соответствии с техническими требованиями к прочности, максимальный диаметр рабочей части у ротора неявнополюсной синхронной машины не может быть выше 125 см. Это объясняет необычный форм-фактор ротора с удлиненным корпусом, хотя и по данному параметру есть ограничения, связанные с увеличением вибраций у слишком длинных элементов. Предельная длина ротора составляет 8,5 м. К неявнополюсным агрегатам, которые используются в промышленности, можно отнести различные турбогенераторы. С их помощью, в частности, связывают рабочие моменты паровых турбин с тепловыми энергостанциями.

Электрические машины. В помощь студенту

  • Обслуживание электродвигателей. В процессе эксплуатации электрической машины необходимо контролировать ее состояние. 1. Контроль за температурой нагрева электродвигателя состоит в периодическом измерении температуры отдельных его частей. Температура нагрева обмоток не должна превышать значений, допустимых для класса нагревостойкости изоляции, примененной в электродвигателе. Большое значение при этом имеет отклонение напряжения питания от номинального значения. Работа электродвигателя с номинальной нагрузкой не допускается, если напряжение в сети снизилось более чем на 5 % или повысилось более чем на 10 % относительно номинального значения. Перегрузка электродвигателя сверхноминальной возможна, если в каталоге на данный электродвигатель имеется информация, что такая перегрузка допустима с указанием ее продолжительности. Нагрузка на электродвигатель должна быть снижена, если температура окружающей среды превысила допустимое значение (для машин общего назначения это 40 °С). При измерении температуры могут применяться пирометры, ртутные и спиртовые термометры, прикладываемые к наиболее доступным местам электродвигателя, возможен метод определения температуры измерением электрического сопротивления обмоток или же применением температурных датчиков, заложенных в обмотку или другие части электродвигателя. 2. Подшипники качения, применяемые обычно в электрических машинах мощностью до 500 кВт, в процессе работы машины также нагреваются. Предельно допустимая температура их нагрева 100 °С. Если подшипник нагревается свыше указанной температуры, то электродвигатель следует остановить, выяснить причину перегрева подшипника и устранить ее. При необходимости подшипник следует заменить. Вид смазки подшипника и периодичность ее замены или пополнения должны соответствовать инструкции по эксплуатации данного электродвигателя. При пополнении или замене смазки подшипник следует внимательно осмотреть и в случае обнаружения его чрезмерного износа или повреждения заменить. 3. Подшипники скольжения, применяемые в электродвигателях мощностью 500 кВт и более, залиты баббитом, поэтому при длительной работе его температура не должна превышать 80 °С. В этих подшипниках возможно применение принудительной системы смазки: либо масло подается в подшипник под напором, либо оно подается на шейку вала посредством свободно вращающихся колец (одного или нескольких), нижняя часть которых помещена в ванну (картер) с постоянным объемом масла. Уровень масла в этой ванне должен поддерживаться на отметке указателя уровня, а если же отметка отсутствует, то уровень следует поддерживать на середине маслоуказательной стеклянной трубки. При завышенном уровне масла в подшипнике возникает опасность попадания масла на обмотку машины, что может привести к повреждению изоляции обмотки и выходу двигателя из строя. При нормальной работе подшипника доливку масла делают обычно один раз в месяц, а замену — не реже одного раза в год. Признаком недостаточного уровня масла в ванне подшипника скольжения является чрезмерно быстрое вращение колец, сопровождаемое легким позваниванием. 4. Коллектор и щетки в электродвигателях постоянного тока нуждаются в контроле их состояния. При работе электродвигателя с номинальной нагрузкой на коллекторе не должно превышать допустимую степень искрения.
    Степень искрения (класс коммутации) электрических машин постоянного тока
    Степень искрения (класс коммутации) Характеристика степени искренияСостояние коллектора и щеток
    1 Отсутствие искрения (темная коммутация)Отсутствие почернения на коллекторе и нагара на щетках
    Слабое точечное искрение под небольшой частью щеткиТо же
    Слабое искрение под большой частью щеткиПоявление следов почернения на коллекторе, легко устраняемых протиранием поверхности коллектора бензином, а также следов нагара на щетках
    2 Искрение под всем краем щетки. Допускается только при кратковременных толчках нагрузки и перегрузкиПоявление следов почернения на коллекторе, не устраняемых протиранием поверхности коллектора бензином, а также следов нагара на щетках
    3 Значительное искрение под всем краем щетки с наличием вылетающих искр. Допускается только для моментов прямого (без реостатных ступений) включения или реверсирования машин, если при этом коллектор и щетки остаются в состоянии, пригодном для дальнейшей работыЗначительное почернение на коллекторе, не устраняемое протиранием поверхности коллектора бензином, а также подгар и разрушение щеток

    Примечание. При номинальном режиме работы машины искрение не должно превышать степень . Причины, вызывающие искрение на коллекторе, весьма разнообразны, поэтому если искрение выходит за пределы допустимого. Необходимо следить, чтобы щетки равномерно перекрывали поверхность коллектора, что способствует равномерному износу коллектора. Поверхность щеток должна быть блестящей и всей поверхностью прилегать к коллектору. Сколы щеток недопустимы. Все пластины коллектора должны иметь одинаковый цвет. Если же некоторые пластины имеют более светлый оттенок, то это свидетельствует об их более интенсивном износе. Искрение щеток машины постоянного тока рассмотрено здесь. 5. Необходимо, чтобы при пуске трехфазных асинхронных двигателей с короткозамкнутым ротором прямым включением в сеть падение напряжения в питающей сети не превышало допустимых значений. С этой целью при определении максимально допустимой мощности двигателя целесообразно воспользоваться данными таблицы:

    Максимально допустимая мощность асинхронного двигателя с короткозамкнутым ротором при его пуске прямым включением в сеть
    Источник питанияМаксимальная мощность электродвигателя
    Трансформатор, питающий силовую сеть20 % мощности трансформатора при частых пусках, 30% — при редких
    Трансформатор, питающий силовую и осветительную сети4 % мощности трансформатора при частых пусках, 8 % — при редких
    Электростанция малой мощности12 % мощности электростанции
    Блок «трансформатор—двигатель»До 80 % мощности трансформатора
    Высоковольтная сетьНе более 3 % мощности трехфазного короткого замыкания в точке присоединения электродвигателя
  • Особенности вертикальных гидрогенераторов

    Отдельный класс явнополюсных синхронных МПТ, обеспеченных вертикальным валом. Такие установки подключаются к гидравлическим турбинам и подбираются под мощности обслуживаемых потоков по частоте вращения. Большинство машин переменного тока данного типа являются тихоходными, но при этом имеют большое количество полюсов. Среди ответственных рабочих компонентов вертикального гидрогенератора можно отметить упорный подшипник и подпятник, на который приходится нагрузка от вращающихся частей движка. На подпятник, в частности, накладывается и давление от потоков воды, которая действует на турбинные лопасти. Кроме того, для остановки вращения предусматривается тормоз, а в рабочей структуре также присутствуют направляющие подшипники, воспринимающие радиальные усилия.

    В верхней части машины наряду с гидрогенератором могут размещаться вспомогательные агрегаты – например, возбудитель генератора и регулятор. К слову, последний представляет собой самостоятельную машину переменного тока с обмоткой и полюсами на постоянных магнитов. Данная установка обеспечивает питание двигателя для обеспечения функции автоматического регулятора. В больших вертикальных гидрогенераторах возбудитель может заменяться синхронным генератором, который вместе с возбудительными узлами и ртутными выпрямителями обеспечивает энергоснабжение силовых устройств, обслуживающих рабочий процесс основного гидрогенератора. Конфигурация машины с вертикальным валом также используется в качестве приводного механизма мощных гидравлических насосов.

    Коллекторные МПТ

    Наличие коллекторного узла в конструкции МПТ зачастую обуславливается необходимостью выполнения функции преобразования частоты вращения в электрической связи разночастотных цепей на обмотках ротора и статора. Это решение позволяет наделять устройство дополнительными эксплуатационными свойствами, в числе которых автоматическая регуляция рабочих параметров. Коллекторные машины переменного тока, которые подключаются к трехфазным сетям, получают по три щеточных пальца в каждом сегменте двойного полюсного деления. Соединение щеток между собой выполняется по параллельной схеме перемычками. В этом смысле коллекторные МПТ похожи на электродвигатели с постоянным током, но отличаются от них количеством применяемых щеток на полюсах. Помимо этого, статор в данной системе может иметь несколько дополнительных обмоток.

    Замкнутая обмотка якоря при использовании коллектора с трехфазными щетками будет представлять собой трехфазную комплексную обмотку с соединением в виде треугольника. В процессе вращения якоря каждая фаза обмотки сохраняет неизменную позицию, однако секции поочередно переходят от одной фазы к другой. Если в коллекторной машине переменного тока используется шестифазный комплект щеток со сдвигом на 60° относительно друг друга, то формируется шестифазная обмотка с соединением по схеме многоугольника. На щетках многофазной машины с коллекторной группой частота тока определяется вращением магнитного потока по отношению к неподвижным щеткам. Направление вращения ротора может быть как встречным, так и согласованным.

    Постоянного тока

    Двигатели постоянного тока появились еще в конце 19 века. С некоторыми изменениями они используются и сегодня и притом они популярны. Например, вибрирование в современном смартфоне обеспечивает именно двигатель постоянного тока, очень маленький и мощностью в милли ватты, но все же. В большей части игрушек тоже стоят такие движки. Но это не значит, что их не используют в серьёзной технике, ещё как используют. Самые мощные стоят в качестве тяговых на электровозах. У них мощность исчисляется сотнями киловатт (больше 800), а питаются они от напряжения 1,5 кВ.

    Типы электромоторов постоянного тока

    Коллекторные

    Коллекторный двигатель постоянного тока, как и все другие, состоит из неподвижной (статор) и подвижной (якорь) части. На статоре установлены магнитные полюса. Для маломощных моделей ставят постоянные магниты, для мощных добавляют обмотки (называются обмотками возбуждения), которые усиливают магнитное поле.

    Ротор представляет собой магнитопровод из металлических пластин, в пазы которого уложены витки медного провода – роторные обмотки. Концы роторных обмоток выведены на коллектор, который представляет собой медные пластины в виде секторов цилиндра. Пластины изолированы друг от друга и от вала, на котором закреплены. Концы обмоток выводятся на коллекторные пластины. Вторая часть коллекторного узла – графитовые щётки со щеткодержателем. Щётки прижимаются к коллекторным пластинам, но не мешают вращению якоря.

    Устройство двигателя постоянного тока коллекторного типа

    На щетки подаётся напряжение. В определённый момент времени они имеют контакт с какой-то парой пластин на коллекторе (редко щеток бывает четыре). Эта пара пластин подключена к роторным обмоткам, то есть, через щетки на обмотку подаётся питание. Вокруг якоря возникает магнитное поле, которое взаимодействует с магнитным полем статора. Результирующий вектор этого взаимодействия «толкает» якорь, заставляя его вращаться.

    Вал прокручивается, щетки контактируют с другой парой пластин, передавая потенциал на другие обмотки, которое проталкивают якорь дальше. Так и работает коллекторный двигатель постоянного тока, а более подробно в предыдущей статье.

    Универсальный

    В большей части бытовой техники, которая работает от сети, стоит универсальный коллекторный двигатель. Его отличия от описанного выше незначительны. Как может одна и та же конструкция работать и на постоянном и на переменном напряжении? Всё из-за того, что в этой машине взаимодействуют магнитные поля полюсов и роторных обмоток. Все знают, что поменять направление вращения якоря просто: надо изменить полярность на полюсах или на роторе. А что получится, если их поменять сразу и там, и там? Ничего. Якорь продолжит движение в прежнем направлении. На этом и основана работа коллекторного электродвигателя на переменном токе.

    Универсальный коллекторный двигатель в разрезе

    Обмотки возбуждения и якоря соединяются последовательно, так, что полярность питания на них меняется практически в одно и то же время. Единственное, что пришлось изменить в универсальном двигателе – сделать сердечник якоря шихтованным. Это необходимо чтобы стабилизировать взаимодействие магнитных полей якоря и полюсов (с обмотками возбуждения).

    Достоинства, недостатки, область применения

    Почему коллекторные двигатели ставят в большей части бытовой и строительной техники? На то есть несколько причин. Первая: они могут разгоняться до высоких скоростей – до 10 тыс.об/мин. По сравнению с 3 тыс. об/мин, которые развивают асинхронные их ближайшие конкуренты, а это очень неплохо. Вторая причина популярности – ими легко управлять. Частота вращения напрямую зависит от приложенного напряжения, а момент от тока якоря. До появления полупроводников и создания частотных преобразователей, это был единственный тип электродвигателей, который позволял легко и достаточно точно управлять скоростью. Третья причина широкого применения, несложная конструкция и относительно небольшая цена. Четвёртая – они могут иметь хороший крутящий момент даже на небольших оборотах.

    Один из популярных видов электродвижков — коллекторный двигатель

    Все эти свойства определили широкую область применения коллекторных двигателей постоянного тока. Они стоят на стиральных машинах, в дрелях, миксерах и т.д. Везде, где требуются высокие скорости, возможность плавной регулировки, хороший крутящий момент.

    Но наличие щеток, которые искрят и стираются, вносит свои коррективы. Этот узел требует постоянного ухода, часто щетки приходится заменять, коллектор чистить. Кроме того, он является причиной ещё двух неприятных моментов. Первая – шумная работа. Для строительной техники или промышленного оборудования это, возможно, и не очень критично, но для бытовой – существенный минус. Вторая неприятность – щетки перескакивают с одной пары на другую, так что потребление тока получается импульсным, что плохо влияет на параметры питания и создаёт радиопомехи. Это оказывает влияние на работающие рядом приборы с радиоуправлением. Это не только игрушки, но и разного рода пульты ДУ. Для сглаживания этих скачков на входе ставят конденсаторы, они сглаживают пульсации и убирают помехи.

    Вентильные электродвигатели

    Эти двигатели называют ещё вентильно-индукторными, безколлекторным или безщеточными. Бывают вентильные двигатели двух типов – «обычный» и с самовозбуждением. Причем отличаются и по устройству и по функциям.

    Вентильные двигатели независимо от типа предусматривают электронное управление

    Вентильно-индукторный двигатель

    Если сравнивать виды электродвигателей по размеру, вентильные будут самыми маленькими. Что характерно, работают они от постоянного тока, причём питаются им статорные обмотки, ротор обмоток не имеет, а сделан из постоянных магнитов. Причём и ротор, и статор имеют зубчатое строение. В «комплект» входит датчик холла, небольшой современный контроллер, который определяет положение ротора и в зависимости от его положения подаёт питание на ту или другую пару обмоток на статоре. То есть, вентильный двигатель управляется при помощи электронного прибора.

    Конструкция вентильного безколлекторного электродвигателя

    Принцип работы, наверное, уже понятен. Питание подаётся на одну пару обмоток, вокруг неё возникает магнитное поле. К этому полю притягивается ближайший полюс магнита. Далее, питание переключается на следующую пару обмоток, магнит притягивается туда. Так и получается вращение ротора. Чем быстрее переключается питание, тем быстрее скорость вращения ротора. Как видим, никаких щеток, только магнитная индукция. Это и есть основной плюс, а минус – в «пульсирующем» характере крутящего момента. Потому вентильно-индукционные двигатели не применяются в транспорте, мало кому понравиться, если колёса будут прокручиваться рывками. Тем не менее рассматривая эти виды электродвигателей, приходим к выводу, что этот имеет четыре существенных плюса: простота конструкции, хорошая управляемость скоростью, отсутствие коллектора и четвёртый – малые габариты. Всё это позволяет заменять ими асинхронные движки в некоторых случаях.

    С независимым возбуждением

    Этот вид электродвигателей стоит выделить отдельно, так как он значительно отличается как по устройству, так и по характеристикам и области применения. Начнём с того, что ротор состоит из двух отдельных магнитных пакетов, разнесённых на некотором расстоянии друг от друга. Полюса двух пакетов ориентированы так, чтобы результирующий момент был равен нулю (согласованное положение). Обмотка возбуждения крепится к статору хотя и обмотана вокруг ротора, но его она не касается. Магнитная система статора также собрана из металлических пластин. По характеру трёхфазная распределённая, три фазных обмотки со смещением друг относительно друга на 120°. Обмотка статора по размерам слегка больше либо равна собранному ротору (оба пакета охватывает магнитное поле).

    Вентильно-индукционный электродвигатель с самовозбуждением

    Питание подаётся на одну из обмоток статора. Поле, наводимое, в роторе поворачивает его так, чтобы оно совпало с полем статора. Причём поле одновременно наводится в двух пакетах, так что движение не такое скачкообразное, как у предыдущей модели. Питание переключается на следующую обмотку, вращение продолжается.

    Чем хорош этот вид электродвигателей? Плюсов много. Легко управлять скоростью вращения, как у синхронных машин с обмоткой возбуждения, доступно векторное управление. Можно увеличивать или уменьшать скорость, регулировать момент. В нём нет магнитов, которые стоят немало, да ещё могут размагнититься. И еще один плюс, нет коллектора и щеток. Минус, все-таки есть. Этот вид электродвигателей нельзя запитать напрямую от сети – требуется преобразователь. И ещё, он имеет более сложную конструкцию, чем описанный выше вариант. Зато крутящий момент более плавный и практически линейный.

    Применение МПТ

    Сегодня МПТ используются всюду, где в том или ином виде требуется генерация механической или электрической энергии. Крупные производительные агрегаты применяются в обслуживании инженерных систем, энергетических станций и подъемно-транспортных узлов, а маломощные – в обычной бытовой технике от вентиляторов до насосов. Но в обоих случаях назначение машин переменного тока сводится к выработке энергетического потенциала в достаточном объеме. Другое дело, что имеют принципиальное значение конструкционные отличия, реализация внутренней конфигурации статора и ротора, а также управляющая инфраструктура.

    Хотя общее устройство МПТ на протяжении длительного времени сохраняет один и тот же набор функциональных компонентов, повышающиеся требования к эксплуатации таких систем заставляют разработчиков вносить дополнительные органы контроля и управления. На современном этапе технологического развития особенно в контексте применения машин переменного тока в производственной сфере эксплуатацию подобных двигателей и генераторов сложно представить без высокоточных средств регуляции рабочих параметров. Для этого используются самые разные способы управления – импульсный, частотный, реостатный и т.д. Внедрение автоматики в регулирующую инфраструктуру также является характерной чертой современной эксплуатации МПТ. Управляющая электроника подключается к силовой установке с одной стороны, а с другой – к программным контроллерам, которые по заданному алгоритму дают команды на установку конкретных параметров работы механизма.

    Рейтинг
    ( 2 оценки, среднее 4.5 из 5 )
    Понравилась статья? Поделиться с друзьями:
    Для любых предложений по сайту: [email protected]