Принцип работы и схема генератора переменного тока

Приветствую всех на нашем сайте. Сегодня мы поговорим об устройстве генератора тока. Попробуем максимально охватить данную тему и рассмотреть устройство генераторов постоянного и переменного токов.

На самом деле, не совсем верно называть это устройство генератором именно переменного или постоянного тока, поскольку, ток возникает только в замкнутом контуре. В общем, в обмотках генератора возникает ЭДС, а не ток. Ток начинает протекать только тогда, когда к обмоткам подключается какой-либо потребитель. Однако, в этой статье мы будем пользоваться устоявшимися понятиями.

Какие бы ни были электрические генераторы основной их принцип – выработка электрической энергии за счёт вращения обмотки в магнитном поле. Это значит, что можно выделить два схематических вида генераторов: либо мы вращаем магнитное поле в неподвижном проводнике, либо вращаем проводник в неподвижном магнитном поле.

Устройство и принцип работы

Устройство

Любой генератор переменного тока состоит из:

  1. Постоянного тока или электромагнита, который создает магнитное поле. С целью получения мощного магнитного потока, в генераторах устанавливают специальные магнитные системы из двух сердечников, которые изготавливаются из электротехнической стали.
  2. Обмотки, в которой возникает переменная ЭДС. Обмотки, создающие магнитное поле, размещают в специальных пазах одного сердечника, а обмотки, в которых возникает ЭДС – в пазах другого.
  3. Для подвода питающего напряжения и съема полученного переменного тока, используются контактные кольца и щетки. Эти детали изготавливаются из токопроводящих материалов. Сила тока в обмотках электромагнита, создающего магнитное поле значительно меньше той, которую генератор отдает во внешнюю цепь, поэтому генерируемое напряжение удобнее снимать с неподвижных обмоток, а через скользящие контакты подводить маломощное питающее напряжение.

В маломощных устройствах щетки и кольца используются значительно реже, так как в их конструкциях можно использовать вращающиеся постоянные магниты, которым подвод питающего напряжения не нужен.

Как правило:

  1. Внутренний сердечник (ротор) вместе с обмоткой вращается вокруг своей оси.
  2. Внешний сердечник (статор) неподвижен.
  3. Зазор между ротором и статором должен быть минимальным – только тогда мощность потока магнитной индукции максимальна. При этом, магнитное поле создает неподвижный магнит, а обмотки, в которых создается ЭДС, вращаются.

Однако, в больших промышленных генераторах, внешний сердечник, создающий магнитное поле, вращается вокруг внутреннего, а обмотки, в которых индуцируется ЭДС, остаются неподвижными.

Во время работы, в обмотке ротора возникает ЭДС, амплитуда которой пропорциональна количеству витков. Кроме того, она пропорциональна и амплитуде переменного магнитного потока (через виток).

Принцип работы синхронного генератора:

Ротор

Ротором (от англ. rotation — вращение) называется подвижная часть автогенератора. Она представляет собой вал с расположенной на ней обмоткой возбуждения, находящейся между двумя полюсными половинками. Последние изготавливаются штамповкой, на каждой из них имеется шесть выступов в форме клюва, расположенных сверху обмотки. Эти половинки образуют систему полюсов и контактные кольца. Задача колец заключается в подаче электротока на обмотку через ее выводы.

Обмотка возбуждения предназначена для создания магнитного поля. Для решения этой задачи на нее должен быть подан слабый электроток. До запуска силового агрегата подачу тока для образования магнитного поля осуществляет АКБ. Когда ДВС заработает, и число оборотов достигнет нужной величины, подача тока на обмотку возбуждения будет производиться генератором

На роторе, кроме того, размещены:

  • Приводной шкив.
  • Подшипники качения.
  • Охлаждающее устройство (вентилятор).

Ротор располагается внутри статора, зажатого между крышками корпусной части. Крышки снабжены посадочными местами, в которых помещаются роторные подшипники. Кроме того, в крышке, расположенной со стороны приводного шкива, имеются отверстия для вентиляции.

Статор

Этот элемент, в отличие от вышеописанного, неподвижен (статичен), из-за чего и получил свое название. Его задача заключается в получении электротока переменной величины, возникающего под влиянием магнитного поля ротора. Статор состоит из обмоток и сердечника. Последний изготавливается из листовой стали и имеет пазы для укладки трех обмоток (по количеству фаз). Обмотки могут укладываться одним из двух способов: петлевым или волновым. Схема их соединения также может быть разной – в форме звезды или треугольника.

1 — сердечник; 2 — обмотка; 3 — пазовый клин; 4 — паз; 5 — вывод для соединения с выпрямителем.

При подключении по схеме «звезда» все обмотки соединяются вместе одним из концов в общей точке. Их вторые концы выполняют роль выводов. Схема «треугольник» предусматривает соединение обмоток по другому принципу: 1-я со 2-й, 2-я – с 3-ей, а 3-я, в свою очередь – с 1-й. В этом случае функцию выводов выполняют точки соединения. Наглядно обе схемы показаны на рисунке.

Блок щеток

Задача этой составляющей генератора заключается в передаче электричества на обмотку возбуждения. Конструктивно блок представляет собой корпус с расположенной в нем парой подпружиненных графитных щеток. Последние прижимаются с помощью пружин к контактным кольцам, но жестко с ними не скреплены.

Регулятор напряжения

Регулятор нужен для того, чтобы поддерживать величину напряжения на выходе в установленных пределах. Это необходимо, поскольку количество тока, как и его параметры, зависит от числа оборотов двигателя, а долговечность аккумулятора напрямую связана с подаваемой разностью потенциалов. Недостаточное напряжение приведет к «хроническому» недозаряду АКБ, а избыточное – к перезаряду. Как в первом, так и во втором случае срок службы батареи заметно снизится. Современные автомобили комплектуются электронными полупроводниковыми регуляторами.

Токосъемный узел

В щеточном генераторе устройство токосъемного узла следующее:

  • щетки скользят по коллекторным кольцам;
  • по ним передается постоянный ток на обмотку возбуждения.

Электрографитные щетки изнашиваются меньше меднографитных модификаций, но на коллекторных полукольцах наблюдается падение напряжения. Для снижения электрохимического окисления колец их могут изготавливать из нержавейки и латуни.

Поскольку работа токосъемного узла сопровождается интенсивным трением, щетки и кольца коллекторные изнашиваются чаще прочих деталей, считаются расходниками. Поэтому к ним обеспечивается быстрый доступ для периодической замены.

Выпрямитель

Поскольку в статоре электроприбора вырабатывается переменное напряжение, а для бортовой сети нужен постоянный ток, в конструкцию добавлен выпрямитель, к которому и подключаются обмотки статора. В зависимости от характеристики генератора выпрямительный узел имеет различную конструкцию:

  • диодный мостик распаян или впрессован в подковообразные пластины-теплоотводы;
  • выпрямитель собран на плате, теплоотводы с мощным оребрением припаиваются к диодам.

Основной выпрямитель может дублироваться дополнительным диодным мостиком:

  • герметичный компактный блок;
  • диды-горошины или цилиндрической формы;
  • включение в общую схему небольшими шинами.

Выпрямитель является «слабым звеном» генератора, так как любое инородное тело, проводящее ток, попавшее случайно между теплоотводами диодов, автоматически приводит к короткому замыканию.

Диодный мост (выпрямительный блок)

Задача этого элемента заключается в том, чтобы преобразовывать переменный ток, поступающий на него, в постоянный, необходимый для питания бортовой сети. Конструктивно он состоит из теплоотводящих пластин, в которые вмонтированы диоды в количестве 6 штук – по 2 на каждую статорную обмотку (на «+» и на «-») .

Крыльчатка

Детали трения внутри генератора охлаждаются принудительным воздушным способом. Для этого на вал надевается одна или две крыльчатки, засасывающих воздух через специальные щели/отверстия в корпусе изделия.

Существует три типа воздушного охлаждения автомобильных генераторов:

  • при наличии узла щетки/коллекторные кольца и вынесения выпрямителя, регулятора напряжения из корпуса наружу эти узлы защищаются кожухом, поэтому воздухозаборные отверстия создаются в нем (позиция а) нижней схемы;
  • если компоновка механизмов под капотом плотная, а окружающий их воздух слишком нагрет, чтобы нормально охладить внутреннее пространство генератора, используется защитный кожух специальной конструкции (позиция б) нижнего рисунка;
  • в генераторах малогабаритных щели для забора воздуха создаются в обеих крышках корпуса (позиция в) на

Советуем к прочтению: Для чего используется гальваническая развязка
Перегрев обмоток и подшипников резко снижает характеристики генератора, и может привести к заклиниванию, короткому замыканию и, даже пожару.

Корпус

Традиционно для большинства электроприборов корпус генератора имеет защитную функцию для всех расположенных внутри него узлов. В отличие от стартера машины, генератор не имеет натяжного устройства, провисание ремня передачи регулируется за счет смещения корпуса самого генератора. Для этого кроме монтажных лапок на корпусе имеется регулировочная проушина.

Корпус изготавливается из алюминиевого сплава, состоит из двух крышек:

  • внутри передней крышки спрятан статор и якорь;
  • внутри задней крышки размещен выпрямитель и реле регулятора напряжения.

От этой детали зависит корректная работа генератора, так как внутрь одной крышки впрессован подшипник ротора, а ремень натягивается в проушине корпуса.

Подшипники

Передним считается подшипник со стороны шкива, его корпус впрессовывается в крышку, а на валу используется скользящая посадка. Задний подшипник расположен возле коллекторных колец, его, наоборот, сажают на вал с натягом, в корпусе использована скользящая посадка.

В последнем случае могут применяться подшипники роликовые, передний подшипник всегда радиальный шариковый с одноразовой смазкой, закладываемой на заводе, которой хватает на весь эксплуатационный ресурс.

Чем выше мощность генератора, тем большие нагрузки испытывает обойма подшипника, чаще требуется замена обоих расходных деталей.

Что такое генератор случайных чисел и как он использует случайные физические процессы?

Скорость получения случайных чисел, достаточную для прикладных задач, не могут обеспечить устройства, которые основаны на макроскопических случайных процессах. Источник шума, из которого происходит извлечение случайных битов, поэтому лежит в основе современных АГСЧ. Источники шума бывают двух видов: те, которые имеют квантовую природу и квантовые явления не использующие.

Некоторые природные явления, такие как радиоактивный распад атомов — абсолютно случайны и в принципе не могут быть предсказаны (опыт Дэвиссона — Джермера можно считать одним из первых опытов, которые доказывают вероятностную природу некоторых явлений), этот факт является следствием законов квантовой физики. А из статистической механики следует, что каждая система в своих параметрах имеет случайные флуктуации, если температура — не равняется абсолютному нулю.

Сложный генератор случайных чисел.

Для АГСЧ «золотым стандартом» являются некоторые из квантово-механических процессов, поскольку они абсолютно случайны. Использующие в генераторах случайных чисел явления включают:

  • Дробовой шум — это тот шум, который в электрических цепях вызывается дискретностью носителей электрического заряда и этим термином также называется шум, вызванный в оптических приборах дискретностью переносчика света.
  • Спонтанное параметрическое рассеяние, использовано также может быть в генераторах случайных чисел.
  • Радиоактивный распад — имеет случайность каждого из отдельных актов распада, поэтому он используется в качестве источника шума. Разное количество частиц на различных промежутках времени, в результате попадает на приемник (это может быть счетчик Гейгера или же сцинтилляционный счетчик).

Детектировать гораздо проще неквантовые явления, но основанные на них генераторы случайных чисел, тогда будут иметь сильную зависимость от температуры (например, величина теплового шума будет пропорциональна температуре окружающей среды). Можно отметить такие процессы, среди использующихся в АГСЧ:

  • Тепловой шум в резисторе, после усиления из которого получается генератор случайных напряжений. На этом явлении в частности, был основан генератор чисел в компьютере Ferranti Mark 1.
  • Атмосферный шум, который измерен радиоприемником, также сюда можно отнести и прием прилетающих из космоса на Землю частиц, регистрирующихся приемником, а их количество будет случайно, в разные промежутки времени.
  • Разница в скорости хода часов — это явление, которое заключается в том, что абсолютно не будет совпадать ход разных часов.

Чтобы из физического случайного процесса получить последовательность случайных битов, то для этого существует несколько подходов. Заключается один из них в том, что усиливается полученный сигнал-шум, затем фильтруется и подается на вход быстродействующего компаратора напряжений, для получения логического сигнала. Будет случайной длительность состояний компаратора и это позволяет создавать последовательность случайных чисел, проводя измерения этих состояний.

Второй подход состоит в том, что подается случайный сигнал на вход аналого-цифрового преобразователя (могут применяться как специальные устройства, так и аудиовход компьютера), представлять собой последовательность из случайных чисел, в результате которой будет оцифрованный сигнал и при этом она может быть программно обработана.

Закон работы электрогенератора

В основу работы агрегатов, преобразующих энергию, положен закон Фарадея об электродвижущей силе (ЭДС). Учёный открыл закон, который объяснил природу появления тока в металлическом контуре (рамке), вращающемуся в однородном магнитном поле (явление индукции). Ток возникает также при вращении постоянных магнитов вокруг металлического контура.

Простейшая схема генератора представляется в виде вращающейся металлической рамки между двумя разно полюсными магнитами. На оси рамки помещают токосъёмные кольца, которые получают заряд электрического тока и передают его дальше по проводникам.

В действительности статор (неподвижная часть прибора) состоит из электромагнитов, а ротором служит группа рамных проводников. Устройство представляет обратный электромотор. Электродвигатель поглощает электрический ток и заставляет вращаться ротор. Электрический генератор, преобразовывающий кинематическую энергию механического вращения в ЭДС, называют индукционным генератором.

Бестопливные генераторы своими руками

  • аппарат Хендершота;
  • генераторы Романова, Тариеля Канападзе и Адамса;
  • устройства Смита и Бедини.

Самостоятельную сборку такого генератора удобнее всего рассмотреть на примере макета Адамса.

Подготовительные операции

  • магниты;
  • медные проводники;
  • две катушки;
  • листовая сталь (как средство для изготовления корпуса устройства);
  • болты, шайбы и шурупы.

Магниты выбираются равными по величине и по возможности больших размеров. В этом случае индукционное поле получается мощнее, а энергии будет вырабатываться намного больше.

Плюсовой полюс одного магнита при сборе генератора устанавливается строго напротив другого тоже плюсового.

Медные проводники подбираются таким образом, чтобы их сечение составляло порядка 1,25 мм. На их основе наматываются две катушки, которые иногда берутся от старых двигателей подходящего размера. При самостоятельной намотке внимательно следят за тем, чтобы витки ложились ровно в ряд впритирку один к другому. Вспомогательные детали потребуются для крепежа отдельных элементов сборного устройства.

Виды автомобильных генераторов

Для транспортных средств разработаны генераторы, выдающие постоянный и переменный ток. Первыми транспортные средства комплектовались до 1960 года. На данный момент они полностью заменены более современными, надежными, дающими постоянный ток благодаря полупроводниковым выпрямителям.

Генератор постоянного тока

Эти агрегаты соответствовали требованиям, предъявляемым к транспортным средствам до начала шестидесятых. Электромагниты в них неподвижные, ЭДС (электродвижущая сила) в роторе, напряжение на щетках одной полярности, ток снимается с заизолированных друг от друга полуколец.

Существует 3 вида этих электрогенераторов:

  • с обмоткой, соединенной с аккумуляторной батареей;
  • с параллельным возбуждением (шунтовой схемой);
  • с последовательной схемой для подключения статора, обмоток якоря.

Благодаря возможности работать как двигатель, если ток подается на якорь, современные электрогенераторы постоянного тока устанавливаются на гибридные автомобили.

Прогресс производства машин с двигателями внутреннего сгорания потребовал более высоких мощностей, оптимизации технических характеристик, уменьшения габаритов, длительного срока службы.

У оборудования постоянного тока оказалось много недостатков:

  • небольшая мощность;
  • низкий КПД;
  • неудобная схема для подключения;
  • большие габариты и вес;
  • частое техобслуживание;
  • необходимость в постоянном контроле

Дольше всего оборудование постоянного тока использовалось на железной дороге, однако со временем было заменено трехфазным переменным агрегатами.

Генератор переменного тока

Для разработки компактных, мощных, долговечных электрогенераторов для машин было потрачено немало времени. Новое оборудование сравнительно легкое, снижена стартовая частота вращений, увеличена надежность, срок эксплуатации более длительный, меньше затраты на техобслуживание.

Виды генераторов переменного тока

Есть несколько типов классификации генераторов. Наиболее распространенный — по мощности. Они бывают маломощными и высокомощными. Для решения бытовых задач применяются компактная и маломощная электроустановки, которые обычно используется в качестве резервного источника питания.

В последнее время популярность обрели сварочные генераторы. С бензиновыми моделями следует быть осторожным, так как они должны использоваться только по своему прямому назначению. В противном случае их срок эксплуатации истечет намного раньше положенного. Диагностика и ремонт таких приборов — достаточно дорогостоящие, и чаще проще купить новый аппарат.

Еще одно разделение — асинхронные и синхронные генераторы. Они отличаются конструкцией ротора. В синхронном приборе катушка находится на роторе, а в асинхронном на валу есть специальные углубления, которые предназначены для вставки обмотки. Подробнее о них далее.

Асинхронные генераторы

Асинхронные двигатели — это приборы, которые работают в тормозящем режиме. В данной ситуации ротор выполняет вращения только в одном направлении, совпадающем с движением магнитного поля, но немного опережает его.

Обратите внимание! Такие установки практически не подвержены коротким замыканиям и обладают повышенной защитой от воздействия внешних факторов.

Синхронные генераторы

Синхронный двигатель — это электромеханизм, который работает в режиме генерации электрической энергии. Его особенность в том, что частота вращения стартера, а точнее его магнитного поля, равна частоте вращения ротора.

К сведению! Синхронные обладают роторами, которые выполнены в виде постоянных или электрических магнитах. Полюсов у них может быть и 2, и 4, и 6. Главное, чтобы это число было кратным двум.

Инверторные генераторы

Инверторный генератор FUBAG Ti 3200
Инверторный электрогенератор — это обычный асинхронный генератор, на выходе которого установлен дополнительный стабилизатор выходных параметров.

Работает он следующим образом: вырабатываемое асинхронным генератором напряжение поступает в инвертор, где сначала выпрямляется, а затем из полученного постоянного напряжения формируются импульсы заданной частоты и скважности. На выходе устройства эти импульсы преобразуются в синусоидальное напряжение с почти идеальными техническими характеристиками.

Электромеханические индукционные генераторы

Электромеханический генера́тор

— это электрическая машина, в которой механическая работа преобразуется в электрическую энергию.
E=−dΦdt{\displaystyle E=-{\frac {d\Phi }{dt}}} — устанавливает связь между ЭДС и скоростью изменения магнитного потока Φ{\displaystyle \Phi } пронизывающего обмотку генератора.

Классификация электромеханических генераторов

  • По типу первичного двигателя: Турбогенератор — электрический генератор, приводимый в движение паровой турбиной или газотурбинным двигателем;
  • Гидрогенератор — электрический генератор, приводимый в движение гидравлической турбиной;
  • Дизель-генератор — электрический генератор, приводимый в движение дизельным двигателем;
  • Ветрогенератор — электрический генератор, преобразующий в электричество кинетическую энергию ветра;
  • По виду выходного электрического тока:
      Трёхфазный
  • Однофазный
  • Вид соединения обмоток:
      С включением обмоток звездой
  • С включением обмоток треугольником
  • По способу возбуждения
      С возбуждением постоянными магнитами
  • С внешним возбуждением
  • С самовозбуждением С последовательным возбуждением
  • С параллельным возбуждением
  • Со смешанным возбуждением
  • Основные рабочие части и их подключение

    Если вы прочли предыдущий материал, то наверняка помните, что рамка в простейшей схеме была соединена с коллектором, разделенным на изолированные контактные пластины, а тот, в свою очередь, был связан со щетками, скользящими по нему, через которые и была подключена внешняя цепь.

    За счет того, что пластины коллектора постоянно меняются щетками, не происходит смены направления тока – он просто пульсирует, двигаясь в одном направлении, то есть коллектор является выпрямителем.

    Устройство и принцип действия генератора переменного тока

    • Для переменного тока такого приспособления не нужно, поэтому его заменяют контактные кольца, к которым привязаны концы рамки. Вся конструкция вместе вращается вокруг центральной оси. К кольцам примыкают щетки, которые также по ним скользят, обеспечивая постоянный контакт.
    • Как и в случае с постоянным током, ЭДС, возникающие в разных частях рамки, будут суммироваться, образуя результирующее значение этого параметра. При этом во внешней цепи, подключенной через щетки (если подсоединить к ней резистор нагрузки RH), будет протекать электрический ток.
    • В рассмотренном выше примере «Т» равняется полному обороту рамки. Отсюда можно сделать логичный вывод, что частота тока, вырабатываемая генератором, напрямую зависит от скорости вращения якоря (рамки), или другими словами ротора, в секунду. Однако это касается только такого простейшего генератора.

    Если увеличить число пар полюсов, то в генераторе пропорционально возрастет и число полных изменений тока за один оборот якоря, и частота его будет измерять иначе, по формуле: f = np, где f – это частота, n – число оборотов в секунду, p – количество пар магнитных полюсов устройства.

    • Как мы уже писали выше, течение переменного тока графически изображается синусоидой, поэтому такой ток еще называется и синусоидальным. Сразу можно выделить основные условия, задающие постоянство характеристик такого тока – это равномерность магнитного поля (постоянная его величина) и неизменная скорость вращения якоря, в котором он индуктируется.
    • Для того чтобы сделать устройство достаточно мощным, в нем применяются электрические магниты. Обмотка ротора, в которой индуцируется ЭДС, в действующих агрегатах тоже не является рамкой, как мы показывали в схемах выше. Применяется очень большое количество проводников, которые соединены друг с другом по определенной схеме

    Интересно знать! Образование ЭДС происходит не только тогда, когда проводник смещается относительно магнитного поля, но и наоборот, когда двигается само поле относительно проводника, чем активно и пользуются конструкторы электродвигателей и генераторов.

    • Данное свойство позволяет размещать обмотку, в которой индуктируется ЭДС, не только на вращающейся центральной части устройства, но и на неподвижной части. При этом в движение приводится магнит, то есть полюсы.

    • При таком строении внешняя обмотка генератора, то есть силовая цепь, не нуждается ни в каких подвижных частях (кольцах и щетках) – соединение выполняется жесткое, чаще болтовое.
    • Да, но можно резонно возразить, мол, эти же элементы потребуется установить на обмотке возбуждения. Так и есть, однако сила тока, протекающая здесь, будет намного меньше итоговой мощности генератора, что значительно упрощает организацию подвода тока. Элементы будут малы по размерам и массе и очень надежны, что делает именно такую конструкцию самой востребованной, особенно для мощных агрегатов, например, тяговых, устанавливаемых на тепловозах.
    • Если же речь идет о маломощных генераторах, где токосъем не представляет каких-то сложностей, поэтому часто применяется «классическая» схема, с вращающейся якорной обмоткой и неподвижным магнитом (индуктором).

    Совет! Кстати, неподвижная часть генератора переменного тока называется статором, так как она статична, а вращающаяся – ротором.

    Стандартный ассортимент

    Придя в любой магазин, можно обнаружить три базовых разновидности электрогенераторов. Представленные модели различаются типом потребляемого топлива, выходной мощностью и ценой. Давайте разберёмся в этом вопросе более подробно. Итак, виды электрогенераторов.

    Дизельные электрогенераторы для дома

    Верхняя планка мощности таких агрегатов составляет 40 кВт, при запасе рабочего ресурса до 40 000 мч. Изделия используются в качестве альтернативного или основного источника питания.

    Из преимуществ можно выделить экономичность в плане потребляемого топлива, и стабильную работу без скачков напряжения. К недостаткам относится высокий уровень шума и нестабильную работу в условиях минусовых температур.

    Бензиновые

    Это компактные, переносные аппараты, значительно уступающие по мощности предыдущей модели. Такие изделия дают на выходе до 10 кВт напряжения, работают практически бесшумно и обладают сравнительно невысокой стоимостью.

    Кроме того, бензиновые модели не рассчитаны на постоянную работу. Из достоинств: неприхотливость в обслуживании и невысокая цена изделия.

    Газовый генератор

    Такие модификации работают на сжиженном или сетевом газе (LPG и NG соответственно). В плане экономии потребляемого топлива, это наиболее оптимальный вариант. Однако стоят газовые электрогенераторы дороже предыдущих моделей.

    Кроме того, агрегаты не загрязняют окружающую среду вредными выбросами, способны работать в условиях низких температур

    Обратите внимание, что газовое оборудование взрывоопасно, поэтому необходимо соблюдать меры предосторожности

    Стоит отметить, что перечисленные генераторы подразделяются на модели синхронного и асинхронного действия. У асинхронных аппаратов отсутствует обмотка якоря, что снижает цену, но не даёт агрегату возможность справляться с пусковыми нагрузками.

    Газовый генератор

    То есть, вы не сможете использовать электрооборудование, которое даёт при запуске пиковую нагрузку на электросеть. К таким приборам относятся сварочные аппараты. Высокую мощность при запуске электрооборудования хорошо выдерживают асинхронные устройства.

    Но здесь на роторе присутствуют щётки, которые имеют свойство периодически выгорать. Рекомендуем учесть эти особенности при выборе электрогенератора.

    Применение генераторов переменного тока на практике

    Данные станции запитывают по проводам общественные сети, к которым подключается конечный потребитель, то есть все мы. Однако существует множество объектов, к которым невозможно доставить электрическую энергию таким способом, например, транспорт, стройплощадки вдали от линий электропередач, очень далекие поселки, вахты, буровые установки и прочее.

    Это означает только одно – требуется свой генератор и двигатель, приводящий его в движение. Давайте рассмотрим несколько небольших и часто встречающихся в нашей жизни устройств.

    Автомобильные генераторы

    Это устройство функционирует таким образом, что вне зависимости от скорости вращения вала, оно вырабатывает напряжение в 12В, что обеспечивается регулятором, через который идет питание обмотки возбуждения. Обмотка возбуждения стартует, запитываясь от автомобильного аккумулятора, ротор агрегата приводится в движение двигателем автомобиля через шкив, после чего начинает индуцироваться ЭДС.

    Для выпрямления трехфазного тока используется несколько диодов.

    «Дитя света»

    Автомобильный генератор в современном понимании порожден любовью человечества к электрическому свету. Машины эпохи зари автомобилизма имели лишь простейший узел под названием «магнето» – миниатюрный генератор, совмещенный с прерывателем зажигания, интегрированный в корпус двигателя и выдающий исключительно высоковольтные импульсы для работы свечей. Ни лампу, ни какой-то иной потребитель электроэнергии к магнето подключить было нельзя, поэтому машины XIX века освещали дорогу карбидными лампами, в которых горел ацетилен – от двигателя внутреннего сгорания помощи ждать не приходилось…

    Однако достаточно скоро стало очевидно, что двигатель автомобиля должен порождать больше электричества: не только для собственной работы, но и для работы внешних потребителей – фар, клаксона, измерительных приборов передней панели, зарядки батареи и тому подобного. Поэтому рядом с высоковольтной «искровой» обмоткой магнето появилась дополнительная обмотка – низковольтная, дающая бортовое напряжение. МАГнето + ДИНамО-машина = магдино. Так стали называться первые генераторы.

    Но поскольку магнето и магдино традиционно встраиваются непосредственно в двигатель, мощность их ограничена небольшими габаритами. И как только стало ясно, что рост мощности генераторов неизбежен, «гена» стал внешним – он переехал на кронштейн на блоке цилиндров и вращение стал получать от внешней передачи – ременной, а иногда цепной или шестеренчатой.

    Первые генераторы вырабатывали постоянный ток, однако после развития в середине ХХ века полупроводниковой промышленности и появления мощных выпрямительных диодов генераторы стали производить переменный ток, который затем выпрямлялся до постоянного диодными мостами. Смена типа тока позволила скачкообразно в несколько раз и понизить габариты и массу генераторов, и поднять их мощность.

    Собственно, современный генератор практически идентичен тому, что стоял на машинах, разработанных и 10, и 20, и 30, и более лет тому назад. Двигатели и КПП год за годом усложняются, а едва ли не главный внешний электроагрегат остается практически неизменным. Его конструкция неидеальна, но являет собой золотой баланс свойств и стоимости. Появляются, правда, дополнительные узлы и усовершенствования – например, вместо элементарного шкива для ремня на генератор может устанавливаться обгонная муфта, как в стартерном бендиксе, или в обмотке статора увеличивается количество катушек и усложняется диодный мост, но большинство генераторов все же по-прежнему обходятся классической конструкцией.

    Советуем к прочтению: Как управлять шаговым двигателем без контроллера

    Основные неисправности

    Проявлением неисправностей становится выход напряжения в сети из заданных пределов, а также посторонние звуки из работающего генератора.

    Причины могут быть различными:

    • износ щёточного узла, он заменяется вместе с интегральным реле;
    • глубокий износ коллектора щётками, если его уже невозможно устранить шлифовкой, меняются контактные кольца или якорь в сборе;
    • выход из строя подшипников якоря, их несложно заменить после полной или частичной разборки генератора;
    • выгорание диодов выпрямителя, в настоящее время их не меняют поодиночке, замене подлежит весь диодный мост;
    • короткие межвитковые замыкания или обрывы в якоре или статоре, соответствующие детали меняются;
    • обгорание или коррозия контактов, их тоже можно заменить или очистить.

    Не относящейся непосредственно к генератору, но частой неисправностью является сильный свист при добавлении оборотов двигателя. Это свидетельствует о проскальзывании ремня на приводных шкивах, натяжение можно отрегулировать, но лучше такой ремень заменить.

    При снятии генератора для ремонта целесообразно сразу поменять диодный мост, подшипники и реле-регулятор со щётками. Так отремонтированный прибор обретёт максимально возможную надёжность, хотя полную гарантию может дать только новый генератор от солидного производителя.

    Правила эксплуатации генератора (по Остеру)

    И напоследок несколько “вредных” советов, как быстро и без проблем “сжечь” генератор:

    1. Самый лучший и быстрый способ – “Переплюсовка”. Поменяйте местами провода от клемм аккумуляторной батареи, при этом возможен не только оптический эффект (яркая вспышка внутри генератора, легкое дымовое облако), но также звуковой (от щелчка до хлопка и шипения), обонятельный (почувствуете непередаваемый аромат горящих проводов!), и, наконец, тактильный (ожог 1-3 степени – подбирается экспериментально!) После применения этого способа диодный мост выгорает с вероятностью 99%, статор – 60%, реле-регулятор – 20%, провода – 10%, автомобиль целиком – 0,01%! Способ очень эффективен при “прикуривании”. Возможны побочные эффекты – выгорание бортовых компьютеров, сигнализации, музыки и т.д. Большой плюс – не требует специальных навыков и знаний, легко осваивается начинающими.
    2. Способ “Мойка”. Помойте двигатель своей машины. Особенно тщательно помойте генератор, проследите, чтобы потоки воды прополоскали все внутренности агрегата. Ни в коем случае не продувайте генератор после мойки! Сразу же заводите машину и включите побольше нагрузок – весь свет, обогрев, музыку. Если эффект не произошел – повторите попытку. Эффект появится, поверьте!!! Плюс – сгоревший генератор будет чистым.
    3. “Дедовский” метод – сдёргивание плюсовой клеммы аккумулятора на работающем двигателе вроде бы для проверки зарядной системы. Процент сгоревших релюшек увеличивается до 50-70%. Способ требует определенной сноровки – главное, чтобы было побольше искр! Возникающие в цепях высоковольтные коммутационные процессы рано или поздно должны будут сжечь хоть что-нибудь в Вашем генераторе, или, в крайнем случае, в машине! Как всегда, рекомендуется включить побольше всяких там нагрузок – свет, печки, подогрев. Способ не очень эффективен на старых машинах, но главное – верить, что так и будет!
    4. “Лужа” – способ, которым пользуется множество автолюбителей, даже не подозревая об этом. При этом многие искренне уверены, что автомобиль и его агрегаты, включая генератор, по водонепроницаемости должен быть сродни подводной лодке. Дерзайте! Как много неисследованных глубин ждут своих первооткрывателей! И еще простой совет – лужу надо проезжать на возможно максимальной скорости, тщательно следя, чтобы брызги равномерно захлестывали подкапотное пространство. Отсутствие защитных кожухов и поддонов во многом облегчит Вашу непростую задачу. Очень большой плюс – способом можно пользоваться практически ежедневно, не выходя из машины!
    5. Способ “Меломан”. Для очень крутых! Поставьте в Вашу машинку супер магнитолку, парочку CD чейнджеров, пару-тройку ламповых усилителей ватт по 200-300, сабвуфер ватт на 500, ну колонок с десяток, лучше полтора. Вообще, чем больше – тем лучше! Баксов на 12-25 тысяч! (Это не враки – случай зафиксирован!) Включайте! Если через пару минут генератор все ещё работает, а характерного дыма и запаха все еще нет – значит Вы поставили слишком дешёвую аппаратуру!
    6. “Аккумуляторный” способ – наиболее коварный и таинственный из всех, поскольку его осознание требует понимания химических и физических процессов (ну хотя бы закон Ома, что уже не всем дано!) А если по-простому – используйте давно просроченный аккумулятор, не моложе трех-пяти лет. Чем старше – тем больше вероятность, что в аккумуляторе окажется короткозамкнутая банка. При этом аккумулятор может подавать признаки жизни – заводить машину, подзаряжаться от зарядного устройства и т.д., но при этом он становится мощной паразитной нагрузкой в цепи генератора. Возможно, что силы тока будет хватать на работу инжектора, но при включении дальнего света и обогрева генератор будет греться так, что его можно использовать для приготовления яичницы в походных условиях! Главное – не обращать на это внимания, и способ когда-нибудь сработает!

    Практическое применение

    Индукционные генераторы находят свое применение практически во всех областях жизнедеятельности человеческого общества.
    Причем в любом случае, для получения переменного тока используется энергия вращения вала генератора.

    Это касается:

    1. Крупных гидро-, тепло-, и атомных электростанций.
    2. Промышленных электрогенераторов.
    3. Бытовых электрогенераторов.

    Генераторы, устанавливаемые на электростанциях, вырабатывают большое количество электроэнергии, которая затем передается на огромные расстояния.

    Они разрабатываются под конкретные, узкоспециализированные задачи и представляют собой сложнейшие устройства, для установки которых необходимо строить отдельные здания и сооружения. Кроме того, их работа обеспечивается специально организованной инфраструктурой.

    Промышленные генераторы используются для обеспечения электроэнергией объектов, в работе которых не должно быть перебоев с подачей напряжения.

    Кроме того, их используют для обеспечения электроэнергией строительных площадок, вахтовых поселков, удаленных ферм и буровых установок, находящихся в местах, где подводка стационарных линий электропередач невозможна или экономически нецелесообразна.

    Как правило, для работы они используют дизельное топливо, вырабатывая при этом переменный ток большой мощности (220 или 380 В). Используются для этого синхронные генераторы, которые способны обеспечить работу промышленного оборудования большой мощности.

    В дизельных установках, вал генератора вращается с помощью двигателя внутреннего сгорания (ДВС).

    Электрогенератор на шасси

    Все комплектующие изделия, входящие в состав промышленного генератора, монтируются на высокопрочных стальных шасси, которое при необходимости устанавливается:

    1. Теплоизолированным контейнером.
    2. Передвижным шасси (колесное, на полозьях).

    Бытовые электрогенераторы приобрели большую популярность сравнительно недавно.

    Они используются для электрификации небольших коттеджей, загородных домов и дач, а также помогают решить ряд проблем, связанных с некорректной работой централизованной электросети и часто применяются в качестве аварийных источников переменного тока на ранее электрифицированных объектах подобного типа.

    В устройствах этого типа для вращения вала генератора используют как бензиновые, так и дизельные ДВС. Они вырабатывают переменный ток небольшой мощности (от 0,5 до 15 кВт) и отличаются:

    1. Экономичностью.
    2. Небольшими размерами.
    3. Низким уровнем шума.

    При выборе бытового генератора переменного тока, потенциальному потребителю необходимо обращать внимание на:

    1. Тип ДВС (бензиновый или дизельный).
    2. Заявленную в сопроводительной документации мощность.
    3. Тип генератора (синхронный или асинхронный).
    4. Фазность.
    5. Блок управления.
    6. Уровень шума.

    Критерии выбора

    Получить вполне определенное решение того, как выбрать бензогенератор для дома, можно только, если учесть следующий ряд критериев:

    • Необходимая мощность .

    Генераторная установка должна обеспечивать все подключаемые к сети первоочередной важности электроприборы. В расчет берется, что они должны работать одновременно. Также учитывается пусковая нагрузка, и к суммарному значению добавляются страховочные 15-20%.

    • Величина напряжения на выходе .

    В большинстве случаев потенциал генератора совпадает с аналогичным показателем бытовой сети и равняется 220 В. Однако в некоторых случает возникает необходимость в трехфазном выходе – 380 В.

    • Уровень качества тока .

    Параметр зависит от наличия чувствительных к перепадам электроприборов в схеме – телевизора, холодильника и т. д.

    • Периодичность использования .

    Для непродолжительного аварийного питания сети подойдет бензгенератор, для постоянного автономного – дизельный агрегат.

    • Шумовая нагрузка во время работы .

    Бензиновые установки шумят в рамках 74 дБ, дизельные – до 82 дБ. При наличии спецзащиты уровень рабочего звука снижается до 70 дБ.

    • Ресурс .

    Если планируется эксплуатировать электростанцию дольше 7 часов ежедневно, необходимо выбирать модель с большим моторесурсом. Как правило, это дизельные установки. Для резервного питания подойдут бензиновые аналоги со сроком службы не более 500 моточасов.

    • Вид топлива .

    В расчет берется доступность сырья, его стоимость, расход и эффективность для конкретной установки.

    • Разновидность альтернатора .

    Для работы строительно-ремонтного и иного мощного оборудования требуется асинхронный генератор, а для поддержки бытовых приборов – синхронный.

    • Объем топливного бака .

    Чем дольше требуется использовать генератор, тем больше должен быть запас бака для топлива. Маломощные модели оснащаются 5-литровыми емкостями, средние – до 30 л.

    • Режим запуска .

    Пуск станции может осуществляться вручную, кнопкой и автоматически.
    Обратите внимание!

    Признаки неисправности генератора

    В ходе эксплуатации автомобиля в генераторе могут возникнуть различные неполадки – механические либо электрические. К первой группе относятся износ и поломка компонентов устройства, вторую группу составляют различные проблемы с обмоткой, щетками, выход из строя выпрямителя напряжения, реле-регулятора и т.д.

    1. Затрудненный запуск мотора. Если генератор работает не в штатном режиме, то нередко нарушается эффективность подзарядки аккумулятора. В результате он получает недостаточный либо избыточный заряд, в результате чего завести двигатель становится очень проблематично.
    2. Тусклый либо мигающий свет. Если при езде в темное время суток становится заметно, что фары светят недостаточно ярко либо сила создаваемого ими света меняется в зависимости от уровня оборотов в двигателе, то это свидетельствует о том, что генератор не может обеспечить требуемого количества энергии и напряжения.
    3. На приборной панели загорелся индикатор «Аккумулятор». Этот значок всегда подсвечивается перед запуском двигателя, после чего он должен погаснуть. Однако если он продолжает гореть и при работающем двигателе, то это свидетельствует о том, что батарея не заряжается должным образом.
    4. Шумит ременной привод генератора. Многие автомобилисты слышали неприятный свист, идущий из двигателя, пока он еще не прогрелся. Он может свидетельствовать о слабом натяжении приводного ремня, который передает вращение от двигателя на ротор генератора. Эксплуатация автомобиля в таком режиме может привести у уменьшенной эффективности работы генератора.
    5. Звон или неприятный свист от корпуса генератора. Такие посторонние звуки свидетельствуют об износе подшипников. В результате ротор может начать подклинивать.

    Другие типы электрических генераторов

    Теперь вы знаете, какие бывают типы генераторов электрического тока, как они работают, и какими достоинствами отличаются. Стоит отметить менее популярные, но перспективные варианты электрогенераторов – термоэлектрические, ветровые, волновые и магнитогидродинамические. Наиболее перспективными для промышленного применения среди них являются ветровые электрогенераторы. Уже сегодня можно встретить эти электрические генераторы с мощностью до 5 мВт.

    На нашем сайте Вы можете купить бывшие в употреблении дизельные, газовые электрогенераторы, электрические генераторы на твердом топливе, а также комбинированные промышленные генераторы, совмещающие все виды топлива, мощностью от 1 МВт европейского производства. Б/у промышленные электрогенераторы могут быть использованы на электрических станциях и в производстве.

    Расчет мощности

    При расчете главных характеристик необходимо учесть и то, на какие приборы должен быть рассчитан генератор для дачи – как выбрать его по мощности. Для этого потребуется:

    • Установить, сколько и каких именно приборов будет питаться от станции.
    • Узнать мощность каждого из них, а также пусковой коэффициент.
    • На основании данных рассчитать необходимую мощность генератора.

    Коэффициент пуска показывает, насколько мощность прибора при запуске превышает ее номинальное значение. Это важнейший параметр, влияющий на генератор (выбора его по максимальной мощности). Он обязательно должен присутствовать в расчетной формуле. Например, если в доме будут одновременно запущенны телевизор, холодильник и микроволновка, то расчет будет выглядеть следующим образом:

    Холодильник 0,3 кВт*5 коэф. + телевизор 0,08 КВт*1 коэф. + микроволновка 1 кВт * 2 коэф. = 3,58 кВт.

    Однако на практике все эти приборы вряд ли будут включаться одновременно. Поэтому с задачей справится генератор на 3 кВт.
    Важно!

    Рейтинг
    ( 2 оценки, среднее 4 из 5 )
    Понравилась статья? Поделиться с друзьями:
    Для любых предложений по сайту: [email protected]