Реле-регулятор напряжения генератора: схема, принцип действия


Генераторная установка предназначена для обеспечения питанием потребителей, входящих в систему электрооборудования, и зарядки аккумуляторной батареи при работающем двигателе автомобиля. Выходные параметры генератора должны быть таковы, чтобы в любых режимах движения автомобиля не происходил прогрессивный разряд аккумуляторной батареи. Кроме того, напряжение в бортовой сети автомобиля, питаемой генераторной установкой, должно быть стабильно в широком диапазоне изменения частоты вращения и нагрузок.

Генераторная установка — достаточно надежное устройство, способное выдержать повышенные вибрации двигателя, высокую подкапотную температуру, воздействие влажной среды, грязи и других факторов.

Основные процессы автоматического регулирования

Совершенно неважно, какой тип генераторной установки используется в автомобиле. В любом случае он имеет в своей конструкции регулятор. Система автоматического регулирования напряжения позволяет поддерживать определенное значение параметра, независимо от того, с какой частотой вращается ротор генератора. На рисунке представлен реле-регулятор напряжения генератора, схема его и внешний вид.

Анализируя физические основы, с использованием которых работает генераторная установка, можно прийти к выводу, что напряжение на выходе увеличивается, если скорость вращения ротора становится выше. Также можно сделать вывод о том, что регулирование напряжения осуществляется путем уменьшения силы тока, подаваемого на обмотку ротора, при повышении скорости вращения.

Проверка работоспособности

Рабочее состояние устройства можно установить путем осмотра щеток, длина которых должна составлять не менее 5 мм. А диагностирование состояние регулятора производится путем использования источника постоянного напряжения, на котором можно изменять исходный параметр. Для этих целей достаточно иметь аккумулятор, пару пальчиковых батареек и обычную лампу накаливания на 12 Вольт или вольтметр.

Сначала нужно «+» от питания подключить к соответствующему разъему реле-регулятора, а «-» — к общей пластине устройства. Далее лампа или вольтметр подсоединяется к щеткам, на которые в это время подается напряжение 12 Вольт. Важно понимать, что при подаче на регулятор свыше 15 Вольт между щетками будет отсутствовать напряжение. Именно это и свидетельствует о рабочем состоянии устройства. Узел будет диагностироваться как неисправный в случаях, когда контрольная лампа не загорается или горит при любом значении напряжения.

Что такое генератор

Любой автомобильный генератор состоит из нескольких частей:

1. Ротор с обмоткой возбуждения, вокруг которой при работе создается электромагнитное поле.

2. Статор с тремя обмотками, соединенными по схеме «звезда» (с них снимается переменное напряжение в интервале от 12 до 30 Вольт).

3. Кроме того, в конструкции присутствует трехфазный выпрямитель, состоящий из шести полупроводниковых диодов. Стоит заметить, что реле-регулятор напряжения генератора ВАЗ 2107 (инжектор или карбюратор в системе впрыска) одинаков.

Но работать генератор без устройства регулирования напряжения не сможет. Причина тому — изменение напряжения в очень большом диапазоне. Поэтому необходимо использовать систему автоматического регулирования. Она состоит из устройства сравнения, управления, исполнительного, задающего и специального датчика. Основной элемент — это орган регулирования. Он может быть как электрическим, так и механическим.

Принцип работы регулятора напряжения

Для повышения надежности работы регуляторы выполняют по упрощенным схемам. Включает несколько устройств: сравнение сигнала, орган управления, задающий и специальный датчики.

Готовая схема состоит из двух основных элементов:

  • Регулятор. Устройство, которое позволяет настраивать и контролировать напряжение. Изготавливается в двух исполнениях – аналоговом (механическом) и цифровом (электронном).
  • Графитовые щетки, которые подключаются к полупроводниковым элементам. Предназначены для сообщения напряжения на ротор автомобильного генератора.

Современные устройства имеют микропроцессорную базу.

Работа генератора

Когда начинается вращение ротора, на выходе генератора появляется некоторое напряжение. А подается оно на обмотку возбуждения посредством органа регулировки. Стоит также отметить, что выход генераторной установки соединен напрямую с аккумуляторной батареей. Поэтому на обмотке возбуждения напряжение присутствует постоянно. Когда увеличивается скорость ротора, начинает изменяться напряжение на выходе генераторной установки. Подключается реле-регулятор напряжения генератора Valeo или любого другого производителя к выходу генератора.

При этом датчик улавливает изменение, подает сигнал на сравнивающее устройство, которое анализирует его, сопоставляя с заданным параметром. Далее сигнал идет к устройству управления, от которого производится подача на исполнительный механизм. Регулирующий орган способен уменьшить значение силы тока, который поступает к обмотке ротора. Вследствие этого на выходе генераторной установки производится уменьшение напряжения. Аналогичным образом производится повышение упомянутого параметра в случае снижения скорости ротора.

Общие понятия

Важно понимать из каких конструктивных частей состоит автомобильный генератор.

Ротор создает электромагнитное поле на своей обмотке возбуждения.

Статор, снимающий переменное напряжение в диапазоне от 12-30 Вольт, имеет три обмотки, которые соединены согласно схеме «звезда».

Трехфазный выпрямитель, который состоит из шести диодных полупроводников.

Так как изменение уровня напряжения в генераторе может происходить в достаточно большом диапазоне, то его нормальная работа в первую очередь связана с устройством автоматической регулировки. Следует отметить, например, что реле-регулятор на автомобилях ВАЗ 2107 независимо от технического исполнения системы впрыска топлива (инжектор или карбюратор) имеет одинаковую конструкцию. Он состоит из следующих устройств: сравнивающего, управляющего, задающего и исполнительного, а также специального датчика. Основным элементом данной конструкции является орган регулирования, который бывает механическим и электрическим.

При вращении ротора в генераторной установке автомобиля на его выходе появляется электрическое напряжение, уровень которого на обмотке возбуждения управляется органом регулировки. Кроме того, генератор напрямую соединен с аккумуляторной батареей, из-за чего на обмотку возбуждения постоянно подается напряжение. При изменении скорости вращения ротора происходит и вариация напряжения на выходе генератора, которая регулируется подключенным к нему реле-регулятором.

Повышение и понижение уровня напряжения на выходе генераторной установки автомобиля производится следующим образом. Сначала датчик фиксирует его изменение и подает соответствующий сигнал на сравнивающее устройство, которое в свою очередь сопоставляет его с положенным уровнем. Потом этот сигнал поступает на устройство управления, где осуществляется его преобразование и подача на исполнительный механизм. А уже регулирующее устройство занимается изменением силы тока, поступающего на обмотку ротора, вследствие чего на выходе генератора происходит уменьшение или увеличение величины напряжения.

Двухуровневые регуляторы

Двухуровневая система автоматического регулирования состоит из генератора, выпрямительного элемента, аккумуляторной батареи. В основе лежит электрический магнит, его обмотка соединена с датчиком. Задающие устройства в таких типах механизмов очень простые. Это обычные пружины. В качестве сравнивающего устройства применяется небольшой рычаг. Он подвижен и производит коммутацию. Исполнительным устройством является контактная группа. Орган регулировки — это постоянное сопротивление. Такой реле-регулятор напряжения генератора, схема которого приведена в статье, очень часто используется в технике, хоть и является морально устаревшим.

Работа двухуровневого регулятора

При работе генератора на выходе появляется напряжение, которое поступает на обмотку электромагнитного реле. При этом возникает магнитное поле, с его помощью притягивается плечо рычага. На последний действует пружина, она используется как сравнивающее устройство. Если напряжение становится выше, чем положено, контакты электромагнитного реле размыкаются. При этом в цепь включается постоянное сопротивление. На обмотку возбуждения подается меньший ток. По подобному принципу работает реле-регулятор напряжения генератора ВАЗ 21099 и других автомобилей отечественного и импортного производства. Если же на выходе уменьшается напряжение, то производится замыкание контактов, при этом изменяется сила тока в большую сторону.

  • Currently 2.60/5

Рейтинг 2.6/5 (122 голосов)

Регулятор напряжения поддерживает напряжение бортовой сети в заданных пределах во всех режимах работы при изменении частоты вращения ротора генератора, электрической нагрузки, температуры окружающей среды. Кроме того, он может выполнять дополнительные функции — защищать элементы генераторной установки от аварийных режимов и перегрузки, автоматически включать в бортовую сеть цепь обмотки возбуждения или систему сигнализации аварийной работы генераторной установки.

Все регуляторы напряжения работают по единому принципу. Напряжение генератора определяется тремя факторами — частотой вращения ротора, силой тока, отдаваемой генератором в нагрузку, и величиной магнитного потока, создаваемой током обмотки возбуждения. Чем выше частота вращения ротора и меньше нагрузка на генератор, тем выше напряжение генератора. Увеличение силы тока в обмотке возбуждения увеличивает магнитный поток и с ним напряжение генератора, снижение тока возбуждения уменьшает напряжение.

Все регуляторы напряжения, отечественные и зарубежные, стабилизируют напряжение изменением тока возбуждения. Если напряжение возрастает или уменьшается, регулятор соответственно уменьшает или увеличивает ток возбуждения и вводит напряжение в нужные пределы.

Блок-схема регулятора напряжения представлена на рис. 1.

Регулятор 1 содержит измерительный элемент 5, элемент сравнения 3 и регулирующий

элемент 4. Измерительный элемент воспринимает напряжение генератора 2 Ud и преобразует его в сигнал Uизм., который в элементе сравнения сравнивается с эталонным значением Uэт.

Если величина Uизм. отличается от эталонной величины Uэт, на выходе измерительного элемента появляется сигнал Uo, который активизирует регулирующий элемент, изменяющий ток в обмотке возбуждения так, чтобы напряжение генератора вернулось в заданные пределы.

Таким образом, к регулятору напряжения обязательно должно быть подведено напряжение генератора или напряжение из другого места бортовой сети, где необходима его стабилизация, например, от аккумуляторной батареи, а также подсоединена обмотка возбуждения генератора. Если функции регулятора расширены, то и число подсоединений его в схему растет.

Чувствительным элементом электронных регуляторов напряжения является входной делитель напряжения. С входного делителя напряжение поступает на элемент сравнения, где роль эталонной величины играет обычно напряжение стабилизации стабилитрона. Стабилитрон не пропускает через себя ток при напряжении ниже напряжения стабилизации и пробивается, т.е. начинает пропускать через себя ток, если напряжение на нем превысит напряжение стабилизации. Напряжение же на стабилитроне остается при этом практически неизменным.

Ток через стабилитрон включает электронное реле, которое коммутирует цепь возбуждения таким образом, что ток в обмотке возбуждения изменяется в нужную сторону. В вибрационных и контактно-транзисторных регуляторах чувствительный элемент представлен в виде обмотки электромагнитного реле, напряжение к которой, впрочем, тоже может подводиться через входной делитель, а эталонная величина — это сила натяжения пружины, противодействующей силе притяжения электромагнита.

Коммутацию в цепи обмотки возбуждения осуществляют контакты реле или, в контактно-транзисторном регуляторе, полупроводниковая схема, управляемая этими контактами.

Особенностью автомобильных регуляторов напряжения является то, что они осуществляют дискретное регулирование напряжения путем включения и выключения в цепь питания обмотки возбуждения (в транзисторных регуляторах) или последовательно с обмоткой дополнительного резистора (в вибрационных и контактно- транзисторных регуляторах), при этом меняется относительная продолжительность включения обмотки или дополнительного резистора.

Поскольку вибрационные и контактно-транзисторные регуляторы представляют лишь исторический интерес, а в отечественных и зарубежных генераторных установках в настоящее время применяются электронные транзисторные регуляторы, удобно рассмотреть принцип работы регулятора напряжения на примере простейшей схемы, близкой к отечественному регулятору напряжения Я112А1 и регулятору EE14V3 фирмы BOSCH (рис. 2).

Регулятор 2 на схеме работает в комплекте с генератором 1, имеющим дополнительный

выпрямитель обмотки возбуждения. Чтобы понять работу схемы, следует вспомнить, что, как было показано выше, стабилитрон не пропускает через себя ток при напряжениях ниже величины напряжения стабилизации. При достижении напряжением этой величины стабилитрон пробивается, и по нему начинает протекать ток.

Транзисторы же пропускают ток между коллектором и эмиттером, Т.е. открыты, если в цепи база-эмиттер ток протекает, и не пропускают этого тока, т.е. закрыты, если базовый ток прерывается.

Напряжение к стабилитрону VD1 подводится от выхода генератора Д через делитель напряжения на резисторах R1, R2. Пока напряжение генератора невелико, и на стабилитроне оно ниже напряжения стабилизации, стабилитрон закрыт, ток через него, а, следовательно, и в базовой цепи транзистора VT1 не протекает, транзистор VT1 закрыт. В этом случае ток через резистор R6 от вывода Д поступает в базовую цепь транзистора VT2, он открывается, через его переход эмиттер-коллектор начинает протекать ток в базе транзистора VT3, который открывается тоже. При этом обмотка возбуждения генератора оказывается через переход эмиттер-коллектор VT3 подключена к цепи питания.

Соединение транзисторов VT2, VT3, при котором их коллекторные выводы объединены, а питание базовой цепи одного транзистора производится от эмиттера другого, называется схемой Дарлингтона. При таком соединении оба транзистора могут рассматриваться как один составной транзистор с большим коэффициентом усиления. Обычно такой транзистор и выполняется на одном кристалле кремния.

Если напряжение генератора возросло, например, из-за увеличения частоты вращения его ротора, то возрастает и напряжение на стабилитроне VD1. При достижении этим напряжением величины напряжения стабилизации стабилитрон VD1 пробивается, ток через него начинает поступать в базовую цепь транзистора VT1, который открывается и своим переходом эмиттер-коллектор закорачивает вывод базы составного транзистора VT2, VТЗ на «массу». Составной транзистор закрывается, разрывая цепь питания обмотки возбуждения. Ток возбуждения спадает, уменьшается напряжение генератора, закрываются стабилитрон VD2, транзистор VT1, открывается составной транзистор VT2, VТЗ, обмотка возбуждения вновь включается в цепь питания, напряжение генератора возрастает и т.д., процесс повторяется.

Таким образом регулировка напряжения генератора регулятором осуществляется дискретно через изменение относительного времени включения обмотки возбуждения цепи питания. При этом ток в обмотке возбуждения изменяется так, как показано на рис. 3.

Если частота вращения генератора возросла или нагрузка его уменьшилась, время включения обмотки уменьшается, если частота вращения уменьшилась или нагрузка возросла — увеличивается.

В схеме регулятора по рис. 2имеются элементы, характерные для схем всех применяющихся на автомобилях регуляторов напряжения. Диод VD2 при закрытии составного транзистора VT2, VT3 предотвращает опасные всплески напряжения, возникающие из-за обрыва цепи обмотки возбуждения со значительной индуктивностью. В этом случае ток обмотки возбуждения может замыкаться через этот диод, и опасных всплесков напряжения не происходит. Поэтому диод VD2 называется гасящим.

Сопротивление R3 является сопротивлением жесткой обратной связи. При открытии составного транзистора VT2, VT3 оно оказывается подключенным параллельно сопротивлению R2 делителя напряжения. При этом напряжение на стабилитроне VD2 резко уменьшается, что ускоряет переключение схемы регулятора и повышает частоту этого переключения. Это благотворно сказывается на качестве напряжения генераторной установки.

Конденсатор С1 является своеобразным фильтром, защищающим регулятор от влияния импульсов напряжения на его входе. Вообще конденсаторы в схеме регулятора либо предотвращают переход этой схемы в колебательный режим и возможность влияния посторонних высокочастотных помех на работу регулятора, либо ускоряют переключения транзисторов. В последнем случае конденсатор, заряжаясь в один момент времени, разряжается на базовую цепь транзистора в другой момент, ускоряя броском разрядного тока переключение транзистора и, следовательно, снижая потери мощности в нем и его нагрев.

Из рис. 2 хорошо видна роль лампы контроля работоспособного состояния генераторной установки НL. При неработающем двигателе внутреннего сгорания замыкание контактов выключателя зажигания SA позволяет току от аккумуляторной батареи GA через эту лампу поступать в обмотку возбуждения генератора. Этим обеспечивается первоначальное возбуждение генератора. Лампа при этом горит, сигнализируя, что в цепи обмотки возбуждения нет обрыва.

После запуска двигателя, на выводах генератора Д и «+» появляется практически одинаковое напряжение и лампа гаснет. Если генераторная установка при работающем двигателе автомобиля не развивает напряжения, то лампа HL продолжает гореть и в этом режиме, что является сигналом об отказе генераторной установки или обрыве приводного ремня.

Введение резистора R в генераторную установку способствует расширению диагностических способностей лампы HL. При наличии этого резистора, если при работающем двигателе автомобиля произойдет обрыв цепи обмотки возбуждения, то лампа HL загорится.

Аккумуляторная батарея для своей надежной работы требует, чтобы с понижением температуры электролита напряжение, подводимое к батарее от генераторной установки, несколько повышалось, а с повышением температуры — понижалось.

Для автоматизации процессов изменения уровня поддерживаемого напряжения применяется датчик, помещенный в электролит аккумуляторной батареи и включаемый в схему регулятора напряжения. В простейшем случае термокомпенсация в регуляторе подобрана таким образом, что в зависимости от температуры поступающего в генератор охлаждающего воздуха напряжение генераторной установки изменяется в заданных пределах.

В рассмотренной схеме регулятора напряжения, как и во всех регуляторах аналогичного типа, частота переключений в цепи обмотки возбуждения изменяется по мере изменения режима работы генератора. Нижний предел этой частоты составляет 25-50 Гц. Однако имеется и другая разновидность схем электронных регуляторов, в которых частота переключения строго задана. Регуляторы такого типа оборудованы широтно-импульсным модулятором (ШИМ), который и обеспечивает заданную частоту переключения.

Применение ШИМ снижает влияние на работу регулятора внешних воздействий, например, уровня пульсаций выпрямленного напряжения и т.п.

В настоящее время все больше зарубежных фирм переходит на выпуск генераторных установок без дополнительного выпрямителя. Для автоматического предотвращения разряда аккумуляторной батареи при неработающем двигателе автомобиля в регулятор такого типа заводится фаза генератора.

Регуляторы, как правило, оборудованы ШИМ, который, например, при неработающем двигателе переводит выходной транзистор в колебательный режим, при котором ток в обмотке возбуждения невелик и составляет доли ампера.

После запуска двигателя сигнал с вывода фазы генератора переводит схему регулятора в нормальный режим работы. Схема регулятора осуществляет в этом случае и управление лампой контроля работоспособного состояния генераторной установки.

Related items

  • Диапазоны изменения напряжения автомобильных генераторных установок отечественного производства

Электронный регулятор

У двухуровневых механических регуляторов напряжения имеется большой недостаток — чрезмерный износ элементов. По этой причине вместо электромагнитного реле стали использовать полупроводниковые элементы, работающие в ключевом режиме. Принцип работы аналогичен, только механические элементы заменены электронными. Чувствительный элемент выполнен на делителе напряжения, который состоит из постоянных резисторов. В качестве задающего устройства используется стабилитрон.

Современный реле-регулятор напряжения генератора ВАЗ 21099 является более совершенным устройством, надежным и долговечным. На транзисторах функционирует исполнительная часть устройства управления. По мере того как изменяется напряжение на выходе генератора, электронный ключ замыкает или размыкает цепь, при необходимости подключают добавочное сопротивление. Стоит отметить, что двухуровневые регуляторы являются несовершенными устройствами. Вместо них лучше использовать более современные разработки.

Какие виды устройств часто встречаются

Наиболее простым в конструктивном исполнении считается двухуровневый регулятор. Он состоит генератора, выпрямителя и аккумулятора. Обмотка электрического магнита, лежащего в основе регулирующего устройства, соединяется в данном случае с датчиком. В качестве задающего устройства здесь используется обыкновенная пружина, а роль сравнивающего устройства (коммутации) играет рычаг небольших размеров. Контактная группа работает как исполнительный механизм. Постоянное сопротивление является органом регулировки. Несмотря на устаревшую схему данного реле-регулятора, такая конструкция до сих пор встречается достаточно часто.

Работа двухуровневого регулятора происходит следующим образом. Появившееся на выходе генератора напряжение поступает на обмотку реле. Возникшее электромагнитное поле притягивает плечо рычага, на который воздействует пружина сравнивающего устройства. При создании напряжения, превышающего заданные параметры, контакты реле размыкаются, и в электрическую цепь поступает постоянный ток, уровень которого значительно меньше. Соответственно при уменьшении напряжения происходит замыкание контактов реле, из-за чего сила тока начинает увеличиваться.

Так как вышеприведенные двухуровневые регуляторы отличаются чрезмерным износом механических элементов, современные регуляторы напряжения стали применять вместо электромагнитного реле такого вида полупроводники, работающие в качестве ключей. В данном случае сам принцип действия реле-регуляторов не изменился, однако замена механических деталей на радиоэлектронные сопровождается тем, что чувствительность делителя напряжения, выполненного на постоянных резисторах, существенно увеличилась. Кроме того, в качестве задающего устройства здесь используется стабилитрон.

Современные регуляторы напряжения генератора, используемые, например, в отечественных автомобилях являются достаточно надежными и долговечными устройствами. В них исполнительная часть работает на полупроводниковых транзисторах. Кроме того, на выходе генератора после электронного ключа, выполняющего роль коммутатора, при необходимости может подключаться еще и добавочное сопротивление.

Следует отметить, что эффективность работы трехуровневых конструкций регулирования напряжения заметно повышается. Несмотря на их общее принципиальное сходство с механическими двухуровневыми реле-регуляторами, все-таки имеются и отличия. В них обработка информации об уровне напряжения на выходе генератора подается через делитель на специальную схему. Такими регуляторами может оснащаться любой автомобиль. В данном случае важно лишь разобраться с его устройством и схемой подключения.

В трехуровневых реле-регуляторах напряжения генераторов осуществляется сравнение его текущего показателя с экстремальными (min и max) значениями. В данном случае при отклонении уровня напряжения от заданных параметров происходит формирование сигнала рассогласования, который влияет на регулирование силы тока на обмотке возбуждения ротора. Кроме того, схема такого регулятора подразумевает наличие нескольких добавочных сопротивлений, находящихся после электронного ключа.

Следует знать, что современные системы регулирования напряжения на дорогих автомобилях используют более совершенные многоуровневые устройства, которые содержат от трех и более добавочных сопротивлений в своих схемах. Помимо этого в них могут применяться следящие системы регулирования. А в некоторых моделях автомобилей вместо добавочных сопротивлений используются принцип увеличения частоты срабатывания ключа. Последние разработки многоуровневых систем управления основаны на частотной модуляции. В них добавочные сопротивления управляют логическими элементами конструкции.

Трехуровневая система регулирования

Качество регулирования у таких конструкций намного выше, нежели у рассмотренных ранее. Ранее использовались механические конструкции, но сегодня чаще встречаются бесконтактные устройства. Все элементы, используемые в данной системе, такие же, как и у рассмотренных выше. Но отличается немного принцип работы. Сначала подается напряжение посредством делителя на специальную схему, в которой происходит обработка информации. Установить такой реле-регулятор напряжения генератора («Форд Сиерра» также может оснащаться подобным оборудованием) допустимо на любой автомобиль, если знать устройство и схему подключения.

Здесь происходит сравнение действительного значения с минимальным и максимальным. Если напряжение отклоняется от того значения, которое задано, то появляется определенный сигнал. Называется он сигналом рассогласования. С его помощью производится регулирование силы тока, поступающего на обмотку возбуждения. Отличие от двухуровневой системы в том, что имеется несколько добавочных сопротивлений.

Современные системы регулирования напряжения

Если реле-регулятор напряжения генератора китайского скутера двухуровневый, то на дорогих автомобилях используются более совершенные устройства. Многоуровневые системы управления могут содержать 3, 4, 5 и более добавочных сопротивлений. Существуют также следящие системы автоматического регулирования. В некоторых конструкциях можно отказаться от использования добавочных сопротивлений.

Вместо них увеличивается частота срабатывания электронного ключа. Использовать схемы с электромагнитным реле попросту невозможно в следящих системах управления. Одна из последних разработок — это многоуровневая система управления, которая использует частотную модуляцию. В таких конструкциях необходимы добавочные сопротивления, которые служат для управления логическими элементами.

Как снимать реле-регулятор

Снять реле-регулятор напряжения генератора («Ланос» или отечественная «девятка» у вас — не суть важно) довольно просто. Стоит заметить, что при замене регулятора напряжения потребуется всего один инструмент — плоская или крестовая отвертка. Снимать генератор или ремень и его привод не нужно. Большинство устройств находится на задней крышке генератора, причем объединены в единый узел с щеточным механизмом. Наиболее частые поломки происходят в нескольких случаях.

Во-первых, при полном стирании графитовых щёток. Во-вторых, при пробое полупроводникового элемента. О том, как провести проверку регулятора, будет рассказано ниже. При снятии вам потребуется отключить аккумуляторную батарею. Отсоедините провод, который соединяет регулятор напряжения с выходом генератора. Выкрутив оба крепежных болта, можно вытянуть корпус устройства. А вот реле-регулятор напряжения генератора ВАЗ 2101 имеет устаревшую конструкцию — он монтируется в подкапотном пространстве, отдельно от щеточного узла.

Снятие регулятора напряжения

Принцип работы синхронного генератора

Для того чтобы убрать регулятор с задней крышки автомобильного генератора, необходима отвертка (крестовидная или плоская). Сам автогенератор и ремень снимать не нужно.

Снимать конструкцию можно только после отсоединения аккумуляторной батареи. Далее необходимо отсоединить провод от автомобильного генератора, открутив крепежные болты.

Главные причины неисправностей автогенератора:

  • стирание угольных щеток;
  • пробой изоляции полупроводниковых элементов.

Проверка устройства

Проверяется реле-регулятор напряжения генератора ВАЗ 2106, «копеек», иномарок одинаково. Как только произведете снятие, посмотрите на щетки — у них должна быть длина более 5 миллиметров. В том случае, если этот параметр отличается, нужно проводить замену устройства. Чтобы осуществить диагностику, потребуется источник постоянного напряжения. Желательно, чтобы можно было изменить выходную характеристику. В качестве источника питания можно использовать аккумулятор и пару пальчиковых батареек. Еще вам необходима лампа, она должна работать от 12 Вольт. Вместо нее можно использовать вольтметр. Подключаете плюс от питания к разъему регулятора напряжения.

Соответственно, минусовой контакт соединяете с общей пластиной устройства. Лампочку или вольтметр соединяете со щетками. В таком состоянии между щетками должно присутствовать напряжение, если на вход подается 12-13 Вольт. Но если вы будете подавать на вход больше, чем 15 Вольт, между щетками напряжения не должно быть. Это признак исправности устройства. И совершенно не имеет значения, диагностируется реле-регулятор напряжения генератора ВАЗ 2107 или другого автомобиля. Если же контрольная лампа горит при любом значении напряжения или вовсе не загорается, значит, присутствует неисправность узла.

Диагностика автомобильного реле-регулятора

Для начала стоит определиться с тем, нужна ли вообще проверка реле. В первую очередь обращают внимание на некорректную зарядку аккумуляторной батареи:

  • Наблюдается перезаряд. Электролит начинает выкипать, причем раствор кислоты может попадать на детали кузова;
  • Наблюдается недозаряд. Заряд аккумуляторной батареи постоянно имеет малое значение, вследствие чего двигатель может не запускаться, а оптика гореть в пол накала.

Если наблюдается что-то из вышеописанное, нужно обзавестись тестером и начать проверку реле-регулятора. Коротко говоря, любое отклонение напряжения от максимума (14,5, в редких авто целых 14,8 Вольт) или минимума (12,8 Вольт) на соответствующих оборотах свидетельствует о необходимости замены реле-регулятора. Перед диагностикой стоит провести замер напряжения на клеммах автомобильного аккумулятора – в норме оно равняется 12,8 Вольтам.

Если в транспортном средстве используется встроенное реле, нужно проделать следующее:

  1. Извлечь щеточный узел и случае нужды подобрать новые щетки. Короткими считаются щетки менее 5 миллиметров;
  2. Взять источник питания. Подойдет блок питания или же зарядное устройство, позволяющим регулировать напряжение хотя бы до 16 Вольт. «Минусовой» провод источника замкнуть на соответствующую клемму регулятора;
  3. «Плюсовой» провод источника питания подключаться к соответствующей клемме реле-регулятора;
  4. Подключить 10-Ваттную контрольную лампу к щеткам. При ее отсутствии подойдет и светодиод;
  5. Подавать питание от источника к реле, постепенно повышая напряжения. Как только оно превысит отметку в 14,5 или 14,8 Вольт (исключительный случай), лампа/светодиод должны погаснуть.

Если реле-регулятор не прошло проверку (контрольный прибор не погас), его однозначно стоит менять. При игнорировании проблемы аккумулятор будет перезаряжаться на постоянной основе, что в конце концов приведет к его поломке. В случае встроенного реле проверка станет еще проще:

  1. Подключить щупы тестера к клеммам реле;
  2. На мультиметре выставить значение в 20 Вольт;
  3. Запустить двигатель и проверить показатель напряжения – он должен быть минимальным (порядка 12,8 Вольт);
  4. Увеличить обороты двигателя. Показатели напряжения должны плавно расти;
  5. Когда двигатель будет иметь 3500 об/мин, проследить за изменениями показателей напряжения. Они обязательно должны попасть в диапазон 14-14,5 Вольт. В некоторых автомобилях максимум составляет 14,8 Вольт.

В том случае, если вы наблюдали серьезные отклонения или, напротив, постоянство напряжения вне зависимости от оборотов, реле-регулятор однозначно является неисправным. Мы категорически рекомендуем даже после этих проверок лишний раз проверить клеммы регулятора – окислы и налеты могут помешать проведению правильной диагностики устройства. После очистки диагностику стоит повторить.

Выводы

В системе электрооборудования автомобиля реле-регулятор напряжения генератора «Бош» (как, впрочем, и любой иной фирмы) играет очень большую роль. Как можно чаще следите за его состоянием, проверяйте на наличие повреждений и дефектов. Случаи выхода из строя такого устройства нередки. При этом в лучшем случае разрядится аккумуляторная батарея. А в худшем может повыситься напряжение питания в бортовой сети. Это приведет к выходу из строя большей части потребителей электроэнергии. Кроме того, может выйти из строя и сам генератор. А его ремонт обойдется в кругленькую сумму, а если учесть, что АКБ очень быстро выйдет из строя, расходы и вовсе космические. Стоит также отметить, что реле-регулятор напряжения генератора Bosch является одним из лидеров по продажам. У него высокая надежность и долговечность, а характеристики максимально стабильны.

Замена реле регулятора генератора

Замена реле необходима в следующих случаях:

  1. Износ щеток, при котором контакт с реле-регулятором пропадает и генератор не работает.
  2. Пробой в схеме устройства, который вызывает в системе увеличение напряжения.
  3. Поломка креплений или корпуса, которое может привести к замыканию.

Процесс замены устройства рассмотрен на примере генератора Лада-Калина. Замена реле-регулятора связан с демонтажем генератора, и осуществляется в следующем порядке:

  1. Снятие с генератора клеммы «минус».
  2. Демонтаж генератора.

3. Отщелкивание на крышке генератора пластиковых фиксаторов и ее снятие.

4. Отключение разъема диодного моста.

5. Откручивание гайки и демонтаж втулки контактной группы.

6. Выкручивание пары винтов, удерживающих реле-регулятор.

Как известно, в любом транспортном средстве генератор является одним из основных узлов, выход из строя которого не позволит осуществить запуск двигателя. Такое устройство состоит из множества компонентов, но одним из самых основных является трехуровневый регулятор. Что представляет собой это устройство напряжения, каково его назначение, какие бывают виды, как произвести диагностику — читайте ниже.

Рейтинг
( 2 оценки, среднее 5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]