Свойства конденсатора и их влияние на его применение


Надежность конденсаторов в самодельной и промышленной радиоаппаратуре определяется воздействием факторов, которые можно разделить на следующие группы:
  • электрические нагрузки (напряжение, ток, реактивная мощность, частота переменного тока);
  • климатические нагрузки (температура и влажность окружающей среды, атмосферное давление, биологические факторы и т. д.);
  • механические нагрузки (вибрация, удары, постоянно действующее ускорение, акустические шумы);
  • радиационные воздействия (поток нейтронов, гамма-лучи, солнечная радиация).

Под воздействием указанных факторов происходит изменение параметров конденсаторов. В зависимости от вида и длительности нагрузки уходы параметров складываются из временного и необратимого изменений. Обратимые изменения параметров вызываются кратковременным воздействием нагрузок, не приводящих к изменению свойств конструкционных материалов и проявляющихся лишь в условиях воздействия нагрузок. После снятия нагрузки параметры конденсаторов принимают значения, близкие к начальным.

Климатические нагрузки. Температура и влажность окружающей среды являются важнейшими факторами, влияющими на надежность, долговечность и сохраняемость конденсаторов. Длительное воздействие повышенной температуры вызывает старение диэлектрика, в результате чего параметры конденсаторов претерпевают необратимые изменения. Предельно допустимая температура для конденсаторов ограничивается заданием максимальной положительной температуры окружающей среды и величиной электрической нагрузки.

Применение конденсаторов в условиях, превышающих эти ограничения, недопустимо, так как может вызвать резкое ухудшение параметров (снижение сопротивления изоляции и электрической прочности, уменьшение емкости, увеличение тока и тангенса угла потерь), нарушение герметичности спаев, ухудшение изоляционных и защитных свойств органических покрытий и заливочных материалов, а в ряде случаев может привести к полной потере работоспособности конденсаторов.

Кроме внешней температуры на конденсаторы может дополнительно воздействовать теплота, выделяемая другими сильно нагревающимися при работе аппаратуры изделиями. Тепловое воздействие на конденсаторы может быть как непрерывным, так и периодически изменяющимся. Резкое изменение температуры может вызвать механические напряжения в разнородных материалах, нарушение герметичности паяных соединений, появление трещин, зазоров в деталях конденсаторов.

Для многих типов конденсаторов в условиях низких температур характерно снижение емкости, особенно у оксидных и керамических конденсаторов. У оксидных конденсаторов при низких температурах увеличивается тангенс угла потерь. Все типы оксидных конденсаторов с жидким или пастообразным электролитом при температурах ниже 60° С практически неработоспособны из-за резкого снижения емкости и увеличения тангенса угла потерь. С ростом температуры окружающей среды напряжение на конденсаторе должно снижаться. Типичная зависимость номинального напряжения от температуры приведена на рисунке.

В условиях повышенной влажности на электрические характеристики конденсаторов влияет как пленка воды, образующаяся на поверхности, так и внутреннее поглощение влаги диэлектриком. Для герметизированных конденсаторов характерны только адсорбционные процессы. У конденсаторов, не имеющих вакуумноплотной герметизации, возможно также внутреннее проникновение влаги.

Длительное воздействие повышенной влажности наиболее сильно сказывается на изменении параметров не герметизированных конденсаторов. Наименьшую влагостойкость имеют негерметизированные бумажные и металлобумажные, а также слюдяные спрессованные конденсаторы. Проникновение влаги внутрь конденсаторов снижает сопротивление изоляции и электрическую прочность, увеличивает тангенс угла потерь и емкость. Особенно опасно для негерметизированных конденсаторов одновременное длительное воздействие повышенной влажности и электрической нагрузки. Кроме непосредственного влияния на электрические характеристики конденсаторов влага вызывает коррозию металлических деталей и контактной арматуры конденсаторов, облегчает условия развития различных плесневых грибков. Появление плесени может вызвать обесцвечивание и разрушение защитных покрытий и маркировки, ухудшение изоляционных свойств органических материалов, способствует образованию слоя влаги на конденсаторах.

В морских районах вредное влияние влаги усиливается за счет присутствия в атмосфере солей, входящих в состав морской воды, что увеличивает электропроводность увлажненных поверхностей, изоляционных материалов, облегчает условия электролиза и коррозии металлов.

В промышленных районах конденсируемая на поверхности конденсаторов влага может содержать растворы сернистых и других агрессивных соединений, усиливающих вредное действие влаги.

При снижении внешней температуры внутри блоков аппаратуры могут создаваться условия, благоприятные для образования инея и выпадения росы. Воздействие инея и росы практически не сказывается на работоспособности низковольтных конденсаторов. Однако наличие влаги на поверхности конденсаторов при выпадении росы может увеличить поверхностную проводимость и привести к снижению сопротивления изоляции, а у высоковольтных конденсаторов — к снижению электрической прочности. После испарения росы электрические характеристики конденсаторов восстанавливаются. Время восстановления зависит от габаритов, конструкции, теплоемкости и других характеристик изделия. Полностью сохраняют работоспособность при воздействии инея и росы конденсаторы с оксидным диэлектриком.

При эксплуатации и транспортировании аппаратуры конденсаторы подвергаются воздействию различного вида механических нагрузок: вибрации, одиночным и многократным ударам, линейному ускорению, акустическим нагрузкам. Наиболее опасными являются вибрационные и ударные нагрузки. Воздействие механических нагрузок, превышающих допустимые нормы, может вызвать обрывы выводов и внутренних соединений, увеличение тока утечки у оксидных конденсаторов, появление трещин в керамических корпусах и изоляторах, снижение электрической прочности, изменение установленной емкости у подстроечныч конденсаторов. Высокие уровни разрушающих усилий могут возникать при воздействии ударных нагрузок, если составляющие спектра ударного импульса совпадают с собственными резонансными частотами конденсатора.

Радиационные воздействия. Развитие атомной энергетики и освоение космоса выдвигает требование по устойчивости конденсаторов к воздействию ионизирующих излучений, глубокого вакуума и сверхнизких температур. Воздействие ионизирующих излучений может как непосредственно вызвать изменение электрических и эксплуатационных характеристик конденсаторов, так и способствовать ускоренному старению конструкционных материалов при последующем воздействии других факторов. Характер и скорость изменения параметров зависят от дозы, интенсивности и энергетического спектра излучения и в значительной мере определяются видом рабочего диэлектрика и конструкцией конденсатора.

Процессы, протекающие в конденсаторах в условиях воздействия ионизирующих излучений, коренным образом отличаются от процессов старения в обычных условиях эксплуатации. В результате воздействия ионизирующих излучений в конденсаторах также могуг возникать явления, приводящие к обратимым или остаточным изменениям их электрических параметров. Обратимые изменения связаны с процессами ионизации диэлектрических материалов и воздуха и сопровождаются в основном резким снижением сопротивления изоляции и увеличением тока утечки вследствие образования поверхностных и внутренних объемно-распределенных зарядов. Увеличивается также тангенс угла потерь, особенно на низких частотах. После прекращения облучения сопротивление изоляции (ток утечки оксидных конденсаторов) в большинстве случаев восстанавливается. Время восстановления зависит от типа диэлектрика, дозы и мощности излучения.

Остаточные изменения параметров связаны в основном с устойчивыми нарушениями структуры рабочего диэлектрика, а также защитных и заливочных материалов. При воздействии ионизирующих излучений наиболее сильно изменяются структура и механические свойства полимерных материалов, применяемых в пленочных и комбинированных конденсаторах. Структурные изменения сопровождаются, как правило, интенсивным газовыделением. Сравнительно быстрым изменениям подвергаются пропитывающие составы и целлюлоза, являющаяся основным компонентом конденсаторной бумаги. Поэтому конденсаторы с органическим диэлектриком более чувствительны к воздействиям излучения, чем конденсаторы с неорганическим диэлектриком. Наиболее устойчивы к воздействию ионизирующих излучений керамические конденсаторы типа 1 (об основных типах читайте в предыдущей статье). Радиационные нарушения структуры материалов могут приводить и к ухудшению основных эксплуатационных характеристик конденсаторов — срока службы, механической и электрической прочности, влагостойкости.

Электрические нагрузки. Наибольшие необратимые изменения параметров вызываются длительным воздействием электрической нагрузки, при которой происходят процессы старения, ухудшающие электрическую прочность. Это необходимо учитывать, выбирая значение рабочего напряжения, особенно при длительной эксплуатации конденсаторов. При постоянном напряжении основной причиной старения являются электрохимические процессы, возникающие в диэлектрике под действием постоянного поля и усиливающиеся с повышением температуры и влажности окружающей среды. Степень их влияния на параметры конденсаторов определяется видом диэлектрика и конструктивным исполнением конденсатора. При этом суммарное изменение параметров конденсаторов не превышает значений, гарантируемых на период минимальной наработки, приведенных в справочных данных.

При переменном напряжении и импульсных режимах основной причиной старения являются ионизационные процессы, возникающие внутри диэлектрика или у краев обкладок, преимущественно в местах газовых включений. Данное явление характерно в основном для высоковольтных конденсаторов. Ионизация разрушает органические диэлектрики в результате бомбардировки их возникающими ионами и электронами, а также за счет агрессивного действия на диэлектрик образовавшихся озона и окислов азота. Для керамических материалов ионизация в закрытой поре вызывает сильный местный разогрев, в результате которого появляются механические напряжения, сопровождающиеся растрескиванием керамики и пробоем по трещине.

Несмотря на то что допускаемое значение напряженности электрического поля в диэлектрике конденсатора при его испытаниях выбирается с некоторым запасом, эксплуатация под электрической нагрузкой, превышающей номинальное напряжение, резко снижает надежность конденсаторов. Превышение допустимой переменной составляющей напряжения может вызвать нарушения теплового равновесия в конденсаторе, приводящего к термическому разрушению диэлектрика. Это обусловлено тем, что активная проводимость диэлектрика возрастет с повышением температуры.

Наиболее устойчивы к воздействию электрических эксплуатационных нагрузок и стабильны защищенные керамические конденсаторы типа 1. Среди оксидных конденсаторов наиболее стабильны оксидно-полупроводниковые герметизированные конденсаторы. Низкая стабильность электролитических оксидных конденсаторов объясняется наличием в них жидкого или пастообразного электролита, сопротивление которого в большей степени зависит от температуры окружающей среды, чем у оксидно-полупроводниковых конденсаторов. Длительное воздействие электрической нагрузки, особенно при повышенных температурах, вызывает испарение летучих фракций электролита, что еще больше повышает сопротивление электролита и резко ухудшает температурную и частотную зависимости емкости и тангенса угла потерь. Наиболее интенсивно этот процесс протекает у алюминиевых конденсаторов малых габаритов с электролитом на основе диметилформамида.

При длительной эксплуатации под электрической нагрузкой некоторых типов танталовых электролитических конденсаторов возможно снижение емкости за счет пассивации катода, а также возникновение отказов, связанных с разрушением серебряного корпуса и вытеканием вследствие этого электролита. Повышение амплитуды переменной составляющей напряжения ускоряет этот процесс. Новые типы конденсаторов с танталовым корпусом лишены этого недостатка и имеют повышенную стабильность параметров и более высокую долговечность,

ЧАСТОТНЫЕ СВОЙСТВА КОНДЕНСАТОРОВ

При выборе конденсаторов для работы в цепях переменного или пульсирующего тока необходимо учитывать их частотные свойства, определяемые рядом конструктивных факторов: типом диэлектрика, значениями индуктивности и эквивалентного последовательного сопротивления, конструкцией. Работоспособность конденсаторов при переменном напряжении ограничивают в основном следующие факторы:

  • тепловыделение, пропорциональное средней мощности, которое может резко возрастать при превышении допустимых режимов эксплуатации и создавать условия для теплового пробоя конденсатора;
  • напряженность электрического поля, воздействующего на диэлектрик конденсатора и вызывающего его электрическое старение;
  • ток, протекающий через конденсатор, при большой плотности которого возможны локальный перегрев и разрушение контактных узлов, выгорание металлизированных обкладок;
  • температура окружающей среды.

Наиболее высокими частотными свойствами обладают керамические конденсаторы типа 1, слюдяные и конденсаторы из неполярных пленок (полистирольные, полипропиленовые и др.).В связи с тем что с повышением частоты растут потери энергии в конденсаторе, для сохранения теплового баланса в конденсаторе и исключения возможности возникновения пробоя с повышением частоты необходимо снижать амплитуду переменной составляющей. У ряда групп конденсаторов с повышением частоты может заметно снижаться эффективная емкость. Уменьшение емкости с ростом частоты происходит как за счет снижения диэлектрической проницаемости диэлектрика, так и за счет увеличения эквивалентного последовательного сопротивления (ЭПС). Влияние ЭПС на значение эффективной емкости определяется зависимостью:

ЭПС обусловлено потерями в конденсаторе — в диэлектрике, в металлических частях, в переходных контактных сопротивлениях, в электролите у оксидных конденсаторов. В обычных конденсаторах ЭПС достаточно мало (доли ома) и снижение емкости с частотой можно заметить лишь в области высоких частот. Наиболее сильная зависимость емкости от частоты имеет место у оксидных конденсаторов (особенно с жидким электролитом) из-за большого удельного сопротивления электролита и его зависимости от частоты. Для этих конденсаторов снижение емкости с частотой наблюдается, начиная с сотен герц.

Эти загадочные конденсаторы

  • Высокоскоростных цифровых устройствах (фильтрация собственных и внешних помех);
  • Высокочастотных устройствах (фильтрация, ВЧ согласование, обработка ВЧ-сигнала и пр.);
  • Любых других устройствах для фильтрации внешних высокочастотных помех, которые могут поступать как через цепи питания, так и по воздуху от устройств и систем беспроводной связи, радиостанций, устройств силовой электроники и пр.

При производстве таких конденсаторов используются специальные диэлектрики, которые называются NPO
или
COG
. Эти диэлектрики известны тем, что обеспечивают слабую зависимость емкости конденсатора от температуры окружающей среды и приложенного напряжения. Чаще всего для уменьшения габаритов керамические конденсаторы выполняются в виде многослойных керамических конденсаторов —
MLCC, Multilayer Ceramic Capacitor
, структура которых показана на следующей картинке:

Одним из мировых лидеров в производстве высокочастотных керамических конденсаторов является компания Johanson Technology

, материалы которой и послужили основой для этой статьи.

Что происходит с конденсаторами при увеличении частоты?

При увеличении рабочей частоты первой «особенной» частотой, с которой сталкиваются исследователи, является частота последовательного резонанса – SRF, Series Resonant Frequency
. Как известно из курса физики, это частота, при которой реактивное сопротивление идеального конденсатора компенсируется реактивным сопротивлением последовательно включенной идеальной катушки индуктивности таким образом, что общее сопротивление цепи становится равным нулю. В случае керамического конденсатора явление последовательного резонанса объясняется наличием паразитной индуктивности выводов и обкладок конденсатора. И примечательна SRF в нашем случае следующим:

  1. На частоте последовательного резонанса (SRF) конденсатор обладает наименьшим сопротивлением, называемым эквивалентным последовательным сопротивлением – ESR, Equivalent Series Resistance
    . Этот факт позволяет вместо конденсатора получить узкополосный фильтр, который может использоваться для фильтрации помех.
  2. На частотах выше, чем SRF, конденсатор ведет себя подобно индуктивности! Поэтому иногда говорят, что на частотах выше частоты последовательного резонанса конденсатор представляет собой индуктивность, не пропускающую постоянный ток — DC blocking inductor
    .

При дальнейшем увеличении частоты можно наблюдать целый ряд частот, на которых многослойный конденсатор обладает относительно высоким сопротивлением. Такие частоты называют частотами параллельного резонанса – PRF, Parallel Resonant Frequency
. Наличие серии параллельных резонансов объясняют наличием паразитных емкостей, включенных параллельно с «DC blocking inductor».

Интересно отметить, что в общем случае, согласно экспериментальным данным, получить грубую оценку частоты первого параллельного резонанса можно, удвоив значение частоты последовательного резонанса.

Другим интересным фактом является то, что можно избавиться от всех нечетных частот параллельного резонанса, включая первую, просто расположив пластины внутренних обкладок многослойного конденсатора не параллельно поверхности печатной платы, а перпендикулярно!

Посмотрите на пример зависимости вносимого ослабления от частоты при двух вариантах расположения обкладок, который приводит Johanson:

Предполагается, что исчезновение нечетных частот PRF связано с уменьшением паразитных емкостей между обкладками керамического конденсатора и печатной платой. Но почему при этом исчезают нечетные резонансы и остаются четные? Если у вас есть какие-нибудь мысли по этому поводу – добро пожаловать в комментарии!

Так как частоты SRF и PRF керамических конденсаторов могут лежать в очень широком диапазоне, информация о них становится жизненно необходимой при проектировании электронных устройств. В своей документации Johanson Technology приводит значения этих частот, причем частота PRF соответствует частоте первого параллельного резонанса (обкладки конденсатора расположены параллельно поверхности платы).

Вот типичные значения резонансных частот для конденсаторов Johanson Technology размера 0402:

И типичные значения резонансных частот для конденсаторов Johanson Technology размера 0603:

Как видим, резонансные частоты перемещаются в область более низких частот при увеличении емкости и уменьшении размеров конденсаторов. А это приводит к сужению диапазона рабочих частот в случае, когда необходимо, чтобы этот конденсатор вел себя подобно… конденсатору!

Практические рекомендации

  • Внимательно изучайте документацию на используемые конденсаторы, чтобы исключить ситуацию, когда «правильная» схема работает неправильно.
  • Не используйте для фильтрации высокочастотных помех низкочастотные керамические конденсаторы, конденсаторы с неизвестными характеристиками (и тем более — электролитические конденсаторы).
  • Определите частотные диапазоны помех и подбирайте фильтрующие конденсаторы, исходя из этих диапазонов. Учитывайте при этом индуктивность проводников, сопоставимую с паразитной индуктивностью высокочастотных конденсаторов. Для расчета индуктивности проводника можно воспользоваться формулой: где L — индуктивность, нГн, x — длина проводника, см, w — ширина проводника, см, h — высота проводника, см.
  • Следуйте рекомендациям производителей электронных компонентов относительно правил разводки высокочастотных печатных плат.
  • Для расширения рабочего диапазона керамический конденсатор может быть установлен на бок (исключение первого параллельного резонанса).
  • В высокочастотных цепях частоты последовательного резонанса используемых конденсаторов должны быть существенно выше рабочего частотного диапазона. Для закрепления этой мысли специалисты Johanson Technology приводят пример из собственного опыта, когда при приближении рабочей частоты к частоте последовательного резонанса конденсатор емкостью 10 пФ вел себя подобно конденсатору, обладающему ёмкостью 1000 пф!
    Если в устройстве используется модуль беспроводной связи Bluetooth, Wi-Fi, GSM, GPS и пр. с внешней антенной, то обычно рекомендуется предусмотреть в антенной цепи места для установки согласующих элементов (placeholders). Это позволяет при необходимости произвести безболезненную настройку высокочастотной части плат. Для упрощения этой задачи Johanson Technology предлагает использовать специальные кассы высокочастотных компонентов, которые делают процесс согласования ВЧ цепей менее трудоемким.

ИМПУЛЬСНЫЙ РЕЖИМ

В импульсных режимах могут быть использованы конденсаторы, специально сконструированные для этих целей и общего применения. Однако в любом случае при выборе конденсаторов должны быть учтены особенности их работы при импульсных нагрузках. При оценке возможности работы конденсаторов в импульсном режиме необходимо учитывать, что при малых длительностях формируемых импульсов даже малая собственная индуктивность конденсатора представляет большое индуктивное сопротивление, что сказывается на форме импульса.

Влияние на форму импульса, а также на коэффициент полезного действия устройства, в котором установлен конденсатор, могут оказывать потери энергии в диэлектрике и арматуре конденсатора. Поэтому при выборе конденсаторов для импульсных режимов следует учитывать их температурно-частотные зависимости емкости, тангенса угла потерь и полного сопротивления. Для решения вопроса о том, не является ли данный импульсный режим разрушающим для конденсаторов, необходимо учитывать явления, связанные с нагревом конденсатора за счет импульсных токов, с ионизационным старением диэлектриков и пр. Указанные явления могут привести к нарушению электрической прочности конденсатора и выходу его из строя. Поэтому допустимая импульсная нагрузка на конденсаторе определяется исходя из следующих параметров импульсного режима: значений положительных и отрицательных пиков напряжения и тока, размаха переменного напряжения на конденсаторе, длительности нарастания и спада напряжения, периода и частоты следования импульсов, наличия постоянной составляющей.

При применении полярных конденсаторов с оксидным диэлектриком в импульсных режимах и при пульсирующем напряжении необходимо учитывать, что постоянная составляющая напряжения должна иметь значение, исключающее возможность появления на конденсаторе напряжения обратной полярности, а сумма постоянного и амплитуды переменного или импульсного напряжения не должна превышать номинального напряжения.

Цепь переменного тока с емкостью

Автор: Евгений Живоглядов. Дата публикации: 31 марта 2015. Категория: Статьи.

Если в цепь постоянного тока включить конденсатор (идеальный – без потерь), то в течение короткого времени после включения по цепи потечет зарядный ток. После того как конденсатор зарядится до напряжения, соответствующего напряжению источника, кратковременный ток в цепи прекратится. Следовательно, для постоянного тока конденсатор представляет собой разрыв цепи или бесконечно большое сопротивление.

Если же конденсатор включить в цепь переменного тока, то он будет заряжаться попеременно то в одном, то в другом направлении.

При этом в цепи будет проходить переменный ток. Рассмотрим это явление подробнее.

В момент включения напряжение на конденсаторе равно нулю. Если включить конденсатор к переменному напряжению сети, то в течение первой четверти периода, когда напряжение сети будет возрастать (рисунок 1), конденсатор будет заряжаться.

Рисунок 1. Графики и векторная диаграмма для цепи переменного тока, содержащей емкость

По мере накопления зарядов на обкладках конденсатора напряжение конденсатора увеличивается. Когда напряжение сети к концу первой четверти периода достигнет максимума, заряд конденсатора прекращается и ток в цепи становится равным нулю.

Ток в цепи конденсатора можно определить по формуле:

где q – количество электричества, протекающее по цепи.

Из электростатики известно:

q = C × uC = C × u ,

где C – емкость конденсатора; u – напряжение сети; uC – напряжение на обкладках конденсатора.

Окончательно для тока имеем:

Из последнего выражения видно, что, когда максимально (положения а, в, д), i также максимально. Когда

(положения б, г на рисунке 1), то i также равно нулю.

Во вторую четверть периода напряжение сети будет уменьшаться, и конденсатор начнет разряжаться. Ток в цепи меняет свое направление на обратное. В следующую половину периода напряжение сети меняет свое направление и наступает перезаряд конденсатора и затем снова его разряд. Из рисунка 1 видно, что ток в цепи с емкостью в своих изменениях опережает по фазе на 90°

напряжение на обкладках конденсатора.

Сравнивая векторные диаграммы цепей с индуктивностью и емкостью, мы видим, что индуктивность и емкость на фазу тока влияют прямо противоположно.

Поскольку мы отметили выше, что скорость изменения тока пропорциональна угловой частоте ω, из формулы

получаем аналогично, что скорость изменения напряжения также пропорциональна угловой частоте ω и для действующего значения тока имеем

I = 2 × π × f × C × U .

Обозначая

, где xC называется
емкостным сопротивлением, или реактивным сопротивлением емкости. Итак мы получили формулу емкостного сопротивления при включении емкости в цепи переменного тока. Отсюда, на основании выражения закона Ома, мы можем получить ток для цепи переменного тока, содержащей емкость:
Напряжение на обкладках конденсатора

UC = IC × xC .

Та часть напряжения сети, которая имеется на конденсаторе, называется емкостным падением напряжения, или реактивной слагающей напряжения, и обозначается UC.

Емкостное сопротивление xC, так же как индуктивное сопротивление xL, зависит от частоты переменного тока.

Но если с увеличением частоты индуктивное сопротивление увеличивается, то емкостное сопротивление, наоборот, будет уменьшаться.

Пример 1. Определить емкостное реактивное сопротивление конденсатора емкостью 5 мкФ при разных частотах сетевого напряжения. Расчет емкостного сопротивления произведем при частоте 50 и 40 Гц:

при частоте 50 Гц:

при частоте 400 Гц:

Применим формулу средней или активной мощности для рассматриваемой цепи:

P = U × I × cos φ .

Так как в цепи с емкостью ток опережает напряжение на 90°, то

φ = 90°; cos φ = 0 .

Поэтому активная мощность также равна нулю, то есть в такой цепи, как и в цепи с индуктивностью, расхода мощности нет.

На рисунке 2 показана кривая мгновенной мощности в цепи с емкостью. Из чертежа видно, что в первую четверть периода цепь с емкостью забирает из сети энергию, которая запасается в электрическом поле конденсатора.

Рисунок 2. Кривая мгновенной мощности в цепи с емкостью

Энергию, запасаемую конденсатором к моменту прохождения напряжения на нем через максимум, можно определить по формуле:

В следующую четверть периода конденсатор разряжается на сеть, отдавая ей ранее запасенную в нем энергию.

За вторую половину периода явление колебаний энергии повторяется. Таким образом, в цепи с емкостью происходит лишь обмен энергией между сетью и конденсатором без потерь.

Источник: Кузнецов М. И., «Основы электротехники» — 9-е издание, исправленное — Москва: Высшая школа, 1964 — 560 с.

СОВЕТЫ ПО ВЫБОРУ И ИСПОЛЬЗОВАНИЮ КОНДЕНСАТОРОВ

Эксплуатационная надежность конденсаторов во многом определяется правильным выбором типов конденсаторов при проектировании аппаратуры использовании их в режимах, не превышающих допустимые. Для правильного выбора конденсаторов необходимо на основе анализа требований к аппаратуре определить:

  • значения номинальных параметров и допустимые их изменения в процессе эксплуатации (емкость, напряжение, сопротивление изоляции и др.);
  • допустимые режимы и рабочие электрические нагрузки (диапазон рабочих частот, амплитуда и частота переменной составляющей напряжения, реактивная мощность, параметры импульсного режима);
  • эксплуатационные факторы (интервал рабочих температур, величины механических нагрузок и относительной влажности окружающей среды);
  • показатели надежности, долговечности и сохраняемости конденсаторов;
  • конструкцию конденсаторов, способы монтажа, габариты и массу.

В целях повышения надежности и долговечности конденсаторов во всех возможных случаях следует использовать их при менее жестких нагрузках и в облегченных режимах по сравнению с допустимыми.

Монтаж и крепление конденсаторов. Применяемые способы монтажа и крепления конденсаторов должны обеспечивать необходимую механическую прочность, надежный электрическим контакт и исключение резонансных явлений во время воздействии вибрационных нагрузок. В зависимости от конструкции крепление конденсаторов к шасси, панелям и платам аппаратуры производится за крепежные устройства (фланцы, резьбовые соединения), с помощью скоб, хомутов, заклепок или приклейкой, заливкой и пайкой за выводы. Крепежные приспособления не должны повреждать корпус и защитные покрытия конденсаторов. Устройства для крепления не должны ухудшать условий отвода теплоты от конденсаторов. Не разрешается использовать лепестковые выводы конденсаторов для припайки к ним других деталей.

Крепления вакуумных конденсаторов, являющиеся одновременно контактными устройствами, должны выполняться из материалов с высокой теплопроводностью и обеспечивать хороший тепловой и электрический контакт с выводами конденсаторов. Поверхности креплений, сопрягаемые с выводами конденсаторов, должны быть посеребрены. Крепить конденсаторы при установке в аппаратуру следует без перекосов, так как наличие последних создает механические напряжения в баллоне и может привести к потере герметичности и выходу конденсатора из строя. Выводы наружных электродов конденсаторов следует подсоединять к низкопотенциальной точке устройства или заземлять. У конденсаторов переменной емкости рекомендуется заземлять вывод подвижного электрода. При сопряжении регулировочного винта конденсатора переменной емкости с выводом привода следует обращать внимание на обеспечение соосности указанных элементов или предусматривать гибкое их соединение.

Контактирование выводов конденсаторов с другими элементами производится обычно пайкой или сваркой. Пайку следует производить бескислотными флюсами; при этом не должно происходить опасного перегрева выводных узлов конденсатора. Допускается пайка выводов на расстояниях от корпуса меньших, чем указано в нормашиной документации, при защите контактного узла от перегрева и повреждений с помощью термоэкранов и теплоотводов, а также одноразовый изгиб проволочных и лепестковых выводов конденсаторов при условии защиты контактного узла от повреждений в момент изгиба. Радиус изгиба выводов должен быть не менее полуторного диаметра проволочного вывода или полуторной толщины ленточного вывода. При монтаже неполярных конденсаторов с оксидным диэлектриком необходимо обеспечить изоляцию их корпусов от других элементов, шасси и друг от друга.

Electronov.net | Библиотека

Тангенс угла диэлектрических потерь:

Так как реальные среды анизотропные и неоднородные, диэлектрическая проницаемость будет иметь комплексный вид:
Тангенс угла диэлектрических потерь выражается отношением мнимой и вещественной части комплексной диэлектрической проницаемости:

где:

γ – проводимость среды;

ω – частота колебаний;

εа – абсолютная диэлектрическая проницаемость.

Очевидно, что у идеального диэлектрика проводимость γ→0, следовательно, тангенс угла потерь показывает степень отличия реального диэлектрика от идеального.

Электрическое сопротивление изоляции диэлектрика конденсатора Rd, ток утечки и саморазряд:

Сопротивление изоляции — это сопротивление конденсатора постоянному току, определяемое соотношением , где: U — напряжение, приложенное к конденсатору, Ileak. — ток утечки.

Из-за тока утечки, протекающего через слой диэлектрика между обкладками и по поверхности диэлектрика, предварительно заряженный конденсатор с течением времени теряет заряд (саморазряд конденсатора). Часто, в спецификациях на конденсаторы, сопротивление утечки определяют через постоянную времени τ саморазряда конденсатора, которая численно равна произведению емкости на сопротивление утечки:

τ — это время, за которое начальное напряжение на конденсаторе, неподключенном к внешней цепи уменьшится в e раз.

Хорошие конденсаторы с полимерными и керамическими диэлектриками имеют постоянные времени саморазряда достигающие многих сотен тысяч часов.

Диэлектрическая абсорбция:

Если заряженный конденсатор быстро разрядить до нулевого напряжения путем подключения низкоомной нагрузки, а затем снять нагрузку и наблюдать за напряжением на выводах конденсатора, то можно увидеть, что напряжение на обкладках снова появится, как если бы конденсатор разрядили не до нуля. Это явление получило название диэлектрическая абсорбция (диэлектрическое поглощение). Конденсатор ведет себя так, словно параллельно ему подключено множество последовательных RC-цепочек с различной постоянной времени. Интенсивность проявления этого эффекта зависит в основном от свойств диэлектрика конденсатора.

Подобный эффект можно наблюдать практически на всех типах диэлектриков. В электролитических конденсаторах он особенно ярок и является следствием химических реакций между электролитом и обкладками. У конденсаторов с твердым диэлектриком (например, керамических и слюдяных) эффект связан с остаточной поляризацией диэлектрика. Наименьшим диэлектрическим поглощением обладают конденсаторы с неполярными диэлектриками: тефлон (фторопласт), полистирол, полипропилен и т. п.

Эффект зависит от времени зарядки конденсатора, времени закорочения, иногда от температуры. Количественное значение абсорбции принято характеризовать коэффициентом абсорбции, который определяется в стандартных условиях.

Паразитный пьезоэффект:

Многие керамические материалы, используемые в качестве диэлектрика в конденсаторах (например, титанат бария, обладающий очень высокой диэлектрической проницаемостью в не слишком сильных электрических полях) проявляют пьезоэффект — способность генерировать напряжение на обкладках при механических деформациях. Это характерно для конденсаторов с пьезоэлектрическими диэлектриками. Пьезоэффект ведет к возникновению электрических помех, в устройствах, где использованы такие конденсаторы при воздействии акустического шума или вибрации на конденсатор. Это нежелательное явление иногда называют («микрофонным эффектом»).

Также, подобные диэлектрики проявляют и обратный пьезоэффект — при работе в цепи переменного напряжения происходит знакопеременная деформация диэлектрика, генерирующая акустические колебания, порождающие дополнительные электрические потери в конденсаторе.

Самовосстановление:

Конденсаторы с металлизированным электродом (бумажный и пленочный диэлектрик) обладают важным свойством самовосстановления (англ. self-healing, cleaning) электрической прочности после пробоя диэлектрика. Механизм самовосстановления заключается в отгорании металлизации электрода после локального пробоя диэлектрика посредством микродугового электрического разряда.

На главную

§ 55. Емкость в цепи переменного тока

В главе I, § 10 был объяснен процесс заряда и разряда конденсатора, включенного в цепь постоянного тока. Рассмотрим теперь цепь переменного тока (рис. 58, а), в которую включена электрическая емкость (конденсатор). Активным сопротивлением этой цепи пренебрегаем (r

= 0).

Полярность зажимов генератора переменного тока, включенного в цепь с емкостью, меняется с частотой ω = 2πf

. В первую четверть периода (рис. 58, в) конденсатор заряжается и на его пластинах появляются противоположные по знаку электрические заряды (на левой пластине плюс, на правой — минус). При заряде конденсатора по проводам, соединяющим генератор с пластинами, перемещаются электрические заряды, следовательно, протекает зарядный ток, измеряемый миллиамперметром. Через диэлектрик конденсатора ток не проходит. Как видно на волновой диаграмме, в первую четверть периода во время заряда конденсатора напряжение на пластинах конденсатора возрастает от нуля до максимального значения, сила тока, наоборот, в начале заряда будет максимальной, а в конце заряда, когда напряжение на конденсаторе (
Uc
) окажется равным напряжению генератора (

), она станет равной нулю. За вторую четверть периода напряжение генератора постепенно убывает и становится равным нулю. В это время конденсатор разряжается. При этом разрядный ток, протекающий по проводам, имеет направление, противоположное направлению тока заряда. За третью четверть периода полярность на зажимах генератора изменится и напряжение возрастет от нуля до наибольшего значения. В это время конденсатор вновь зарядится, но полярность на его пластинах изменится. На левой пластине будет отрицательный заряд, на правой пластине — положительный заряд. По проводам пройдет зарядный ток, сила которого к концу заряда конденсатора, когда
Uc
=

, станет равной нулю. В четвертую часть периода напряжение генератора убывает и становится равным нулю. Конденсатор в это время вторично разряжается, и по проводам, соединяющим генератор с пластинами конденсатора, вновь протекает разрядный ток. Из сказанного следует, что за один период изменения переменного напряжения дважды происходит процесс заряда и разряда конденсатора и при этом в его цепи протекает переменный ток. Кроме того, при заряде и разряде конденсатора ток в цепи и напряжение не совпадают по фазе. Ток опережает по фазе напряжение на четверть периода, т. е. на 90°. Построим векторную диаграмму для цепи переменного тока с емкостью (рис. 58, б). Для этого отложим вектор тока
I
в выбранном масштабе по горизонтали. Чтобы на векторной диаграмме показать, что напряжение отстает от тока на угол φ = 90°, откладываем вектор напряжения
Uc
вниз под углом 90°. Выясним, от чего зависит сила тока в цепи с емкостью. Обозначим сопротивление цепи
Xc
и назовем его емкостным сопротивлением. Тогда закон Ома для цепи с емкостью можно выразить так:

где U

— напряжение генератора,
в
;
Xc
— емкостное сопротивление,
ом
;
I
— сила тока,
а
. Известно, что сила тока в цепи определяется количеством электрических зарядов, проходящих через поперечное сечение проводника в единицу времени:

Если в единицу времени по проводам протекает большое количество зарядов, то сила тока будет большой, и наоборот, когда по проводам в каждую секунду протекает малое количество зарядов, то сила тока оказывается незначительной. Допустим, что частота переменного тока, вырабатываемого генератором, большая. В этом случае в каждую секунду конденсатор много раз (часто) заряжается и разряжается. В проводах, идущих от генератора к пластинам конденсатора, будет перемещаться в каждую секунду большое количество электрических зарядов. Поэтому можно сказать, что в рассматриваемой цепи возникает большая сила тока и в данном случае, согласно закону Ома, емкостное сопротивление цепи Xc

оказывается малой величиной. Если же частота переменного тока генератора будет мала, то конденсатор в каждую секунду зарядится и разрядится меньшее количество раз. В связи с этим по проводам цепи в каждую секунду пройдет незначительное количество зарядов и сила тока будет мала, а следовательно, емкостное сопротивление цепи, наоборот, будет большим. Из сказанного можно сделать вывод, что емкостное сопротивление обратно пропорционально частоте переменного тока. Емкостное сопротивление зависит не только от частоты переменного тока, но и от величины емкости, включенной в цепь. Допустим, что в цепь включен конденсатор большой емкости. Количество электричества, которое накапливает конденсатор при заряде и отдает при разряде, прямо пропорционально его емкости:

q = C U

.

Чем больше емкость конденсатора, включенного в цепь переменного тока, тем большее количество электричества переместится при заряде и разряде по проводам, идущим от генератора к его пластинам. Поэтому в проводах возникает ток большой силы и в данном случае, согласно закону Ома, емкостное сопротивление цепи Xc

будет мало. Если же включенная в цепь емкость мала, то при заряде и разряде по проводам пройдет меньшее количество электрических зарядов и сила тока будет незначительной, следовательно, емкостное сопротивление цепи, наоборот, будет большим. Из сказанного можно сделать вывод, что емкостное сопротивление обратно пропорционально емкости. Таким образом, емкостное сопротивление:

где Xc

— емкостное сопротивление,
ом
; ω — угловая частота переменного тока,
рад/сек
;
С
— емкость,
ф
. Известно, что угловая частота ω = 2π
f
. Поэтому емкостное сопротивление можно определить так:

где f

— частота переменного тока,
гц
. Если включенная емкость измеряется в микрофарадах, то емкостное сопротивление

Если емкость измеряется в пикофарадах, то

Следует подчеркнуть, что имеется существенное различие между емкостным и активным сопротивлениями. Как известно, активная нагрузка безвозвратно потребляет энергию генератора переменного тока. Если же к источнику переменного тока присоединена емкость, то, как было рассмотрено выше, энергия генератора расходуется при заряде конденсатора на создание электрического поля между пластинами и возвращается обратно генератору при разряде конденсатора. Следовательно, емкостная нагрузка не потребляет энергию генератора, а в цепи с емкостью происходит «перекачивание» энергии из генератора в конденсатор и обратно. По этой причине емкостное сопротивление, как и индуктивное, называется реактивным.

Пример.

Конденсатор емкостью
С
= 2
мкф
включен в цепь переменного тока, частота которого 50
гц
. Определить: 1) его емкостное сопротивление при частоте
f
= 50
гц
; 2) емкостное сопротивление этого конденсатора переменному току, частота которого 500
гц
. Решение. Емкостное сопротивление конденсатора переменному току при частоте
f
= 50
гц
При частоте f

= 500
гц
Из приведенного примера видно, что емкостное сопротивление конденсатора уменьшается с повышением частоты, а с уменьшением частоты переменного тока емкостное сопротивление возрастает. Для постоянного тока, когда напряжение на зажимах цепи не изменяется, конденсатор практически обладает бесконечно большим сопротивлением и поэтому он постоянного тока не пропускает.
предыдущая страница

оглавлениеследующая страница
Рейтинг
( 2 оценки, среднее 5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]