Энергия
Пойдем по принципу «чем проще – тем лучше». Среди всех определений энергии можно выделить одно:
Энергия – одно из основных свойств материи и мера способности совершать работу.
Энергия в классической механике измеряется в Джоулях и чаще всего обозначается буквой E.
И тут мы плавно подходим к работе. Конечно, работать мало кто любит, отдыхать гораздо приятнее. Но давайте и про работу почитаем.
Виды механической энергии
В механике различают энергию двух видов:
- Кинетическая. По данным термином подразумевается механическая энергия любого тела, которое движется. Ее измеряют работой, которую могло бы осуществить тело при торможении до состояния полной остановки.
- Потенциальная. Это объединенная механическая энергия целой системы тел, которая определяется их расположением и характером сил взаимодействия.
Соответственно, ответ на вопрос о том, как найти энергию механическую, теоретически очень прост. Необходимо: вначале вычислить кинетическую энергию, затем потенциальную и полученные результаты суммировать. Механическая энергия, характеризующая взаимодействие тел между собой, является функцией взаимного расположения и скоростей.
Работа
Работа – мера воздействия силы на тело или систему тел.
И работа, и энергия – скалярные физические величины. Как и энергия, работа в классической механике измеряется в Джоулях.
Допустим, мы взяли тележку c кирпичами (пусть она весит m килограмм), начали ее толкать с определенной силой F и переместили тем самым все это добро на расстояние s.
Тогда работа, которую мы совершили (а мы определенно совершили работу, пусть и бессмысленную), будет вычисляться по соответствующей формуле для работы в механике:
При этом пока мы толкали тележку, она приобрела какую-то скорость v, а значит, и энергию.
Кинетическая энергия (энергия движения) тележки вычисляется по формуле:
Если мы поднатужимся и закатим нашу телегу на горку высотой h, то она приобретет потенциальную энергию, которую тоже легко можно вычислить:
Кстати! Для всех наших читателей сейчас действует скидка 10% на любой вид работы.
Работа не совершается сама по себе. Работа совершается за счет изменения энергии. Какова связь между работой и энергией?
Например, работа силы тяжести по модулю равна изменению потенциальной энергии тела.
Существует теорема о кинетической энергии системы. Она гласит, что изменение кинетической энергии системы равно работе всех внутренних и внешних сил, действующих на тела системы.
Работа и мощность электрического тока
На одном из прошлых уроков мы с вами говорили о том, что заряженные тела взаимодействуют друг с другом посредством особого вида материи, которую называют электрическим полем. Примером такого взаимодействия может служить электрический ток, то есть упорядоченное движение заряженных частиц, которое создаётся электрическим полем. Следовательно, электрическое поле способно совершать работу, которую называют работой тока.
Давайте вспомним, что в общем случае под работой понимают скалярную физическую величину, которая описывает действие силы (заметьте, именно силы, а не те́ла), приводящее к изменению значения скорости рассматриваемого тела.
Из этого становится очевидным, что термин «работа тока» — это своеобразный жаргонизм, с которым вы уже неоднократно сталкивались. Работа тока — это, говоря строгим языком физики, работа электрически сил, которые, перемещая заряженные частицы, увеличивают их скорость, а значит и кинетическую энергию.
Мы уже с вами знаем, что работа по переносу электрического заряда в электрическом поле оценивается произведением величины перенесённого заряда на величину разности потенциалов между начальной и конечной точками переноса, то есть на величину напряжения:
A
=
ΔqU.
Очевидно, что это соотношение может быть применимо и для оценки работы тока. Однако эта формула имеет неудобство в связи с тем, что и ней фигурирует перенесённый в электрическом поле заряд, измерение которого требует особых методов. Поэтому удобнее расписать этот заряд, используя формулу силы тока:
Такая запись приводит нас к удобной формуле для определения работы электрического тока: работа тока на участке цепи равна произведению силы тока, напряжения и времени, в течение которого шёл ток:
A
=
IUΔt.
Единицей работы тока, как вы догадались, является джоуль. Эту единицу можно выразить через электрические единицы — ампер и вольт:
1 Дж = 1 А ∙ 1 В ∙ 1 с.
Для измерения работы тока в реальной жизни пользуются специальными приборами — счётчиками электрической энергии, которые сейчас можно увидеть в каждом доме. Однако в них работу тока принято выражать не в джоулях, а в киловатт-часах (1 кВт ∙ час = 3,6 ∙ 106 Дж)
.
Применяя к потребителю электротока закон Ома, можно из основной формулы работы получить ещё два варианта, исключив в первом случае из формулы напряжение, а во-втором — силу тока:
Получив формулу для работы электрического тока, мы легко получим и формулу для мощности тока. Ведь в любом случае мощность есть отношение работы ко времени её совершения:
Напомним, что единицей измерения мощности является ватт.
А для измерения мощности электрического тока в цепи используют специальные приборы, называемые ваттметрами.
Давайте для примера решим с вами такую задачу. Два потребителя, сопротивления которых равны R
1 и
R
2 подключают к сети постоянного тока сначала последовательно, а потом — параллельно. В каком случае потребляется большая мощность от сети?
На одном из прошлых уроков мы с вами говорили о действиях электрического тока, которые он способен оказывать, протекая в различных средах. Давайте с вами вспомним, что тепловое действие тока
проявляется в том, что при протекании тока по проводнику последний нагревается.
Химическое действие тока
мы можем наблюдать при его прохождении через растворы солей, кислот или щелочей.
А магнитное действие тока
проявляется в создании им магнитного поля.
Также мы с вами говорили о том, что тепловое действие ток производит в любой среде: твёрдой, жидкой и газообразной. Например, нагревание проводника происходит потому, что разогнавшиеся под действием электрического поля свободные носители зарядов — электроны — сталкиваются с ионами кристаллической решётки проводника и отдают им часть своей энергии. В результате энергия теплового движения ионов около положений равновесия возрастает. То есть происходит переход энергии электрического поля во внутреннюю энергию проводника.
При этом, очевидно, что чем больше будет сопротивление проводника, тем большее количество теплоты в нём выделится при протекании электрического тока одной и той же силы.
Это легко проверить на простом опыте. Возьмём три последовательно соединённых проводника, изготовленных из разных материалов, например, из нихрома, никелина и меди, и подключим их к источнику постоянного тока.
Спустя некоторое время мы заметим, нихромовый проводник нагрелся почти до белого каления, никелиновый — лишь слегка покраснел, а вот медный проводник практически не изменил свой цвет.
Таким образом, действительно, чем больше сопротивление проводника, тем «труднее» двигаться зарядам в нём и тем больше нагревается проводник.
В 1841 году английский учёный Джеймс Прескотт Джоуль и независимо от него в 1842 году российский учёный Эмилий Христианович Ленц, изучая на опыте тепловые действия тока установили закон, позволяющий рассчитать количество теплоты, выделяемое в проводнике при протекании в нём электрического тока. Согласно этому закону, количество теплоты, выделяющееся в проводнике, прямо пропорционально квадрату силы тока, проходящего по проводнику, сопротивлению проводника и времени, в течение которого поддерживается неизменный ток в проводнике.
Проверим его справедливость с помощью такого опыта. Возьмём калориметр, содержащий 100 мл миллилитров воды при температуре 18 оС, и поместим в неё проводник в виде спиральки известного сопротивления. Концы проводника включим в цепь, состоящую из источника тока, амперметра и ключа. С помощью секундомера будем засекать время эксперимента.
Замкнув ключ, подождём пока температура воды в калориметре не повысится на 10 оС.
Теперь рассчитаем количество теплоты, полученное водой, используя для этого известную нам формулу из термодинамики:
Здесь c
— это удельная теплоёмкость воды;
m
— её масса; а Δ
t
— изменение температуры воды. Тогда после подстановки чисел и простых расчётов, получаем, что вода получила от нагревателя 4200 Дж теплоты.
Теперь определим количество теплоты, выделившееся в проводнике, используя для этого закон Джоуля — Ленца:
Подставив в полученное уравнение данные наших опытов, найдём, что за время эксперимента в проводнике выделились те же 4200 Дж теплоты. Это подтверждает правоту закона Джоуля — Ленца.
Формулой Q
=
I
2
R
Δ
t
удобно пользоваться при расчёте количества теплоты, которое выделяется в проводниках при последовательном соединении, так как в этом случае ток во всех проводниках один и тот же.
При параллельном же соединении проводников ток в них различен, а вот напряжение на концах этих проводников одно и то же. Поэтому расчёт количества теплоты при таком соединении удобнее вести по формуле: Q
=
U
2Δ
t
/
R
.
Эта формула показывает, что при параллельном соединении в каждом проводнике выделяется количество теплоты, обратно пропорциональное сопротивлению проводника.
Закон сохранения энергии
Закон сохранения энергии – фундаментальный закон природы, о котором никогда не стоит забывать.
Общее количество энергии замкнутой физической системы не прибывает и не убывает, а переходит из одной формы в другую, всегда оставаясь постоянным.
Так, если телега скатится с горки, ее потенциальная энергия перейдет в кинетическую. Силы трения (диссипативные силы) мы здесь не рассматриваем. В реальном мире телега, конечно, затормозит, но энергия не исчезнет, а перейдет во внутреннюю энергию молекул вследствие трения колес о поверхность.
Закон сохранения энергии применим не только в рамках классической механики. Это закон, применимый к целой Вселенной. Вот что говорил о законе сохранения энергии Ричард Фейман:
Это математический принцип, утверждающий, что существует некоторая численная величина, которая не изменяется ни при каких обстоятельствах. Это отнюдь не описание механизма явления или чего-то конкретного… Просто отмечается то странное обстоятельство, что можно подсчитать какое-то число и затем спокойно следить, как природа будет выкидывать любые свои трюки, а потом опять подсчитать это число — и оно останется прежним.
Энергия и работа
Энергия является мерой способности физической системы совершить работу, поэтому количественно энергия и работа выражаются в одних единицах (джоулях, [Дж]).
Механическая работа численно равна изменению механической энергии. Эту связь работы и энергии мы легко можем почувствовать на себе: например, если провести день очень активно, то к вечеру никаких сил и энергии не останется.
В механике принято считать, что работу по перемещению тела из одного положения в другое совершает сила. Работу силы можно вычислить по формуле:
A=F∙s∙cosα,
где F — сила, совершающая работу, [H];
S — перемещение тела, [м];
α — угол между направлением силы и направлением перемещения.
Если угол α острый, то работа силы положительна, если прямой, то работа равна нулю, если тупой, то работа отрицательна.
Основные теоретические сведения
Механическая работа
Энергетические характеристики движения вводятся на основе понятия механической работы или работы силы. Работой, совершаемой постоянной силой F, называется физическая величина, равная произведению модулей силы и перемещения, умноженному на косинус угла между векторами силы F и перемещения S:
Как успешно подготовиться к ЦТ по физике и математике?
Для того чтобы успешно подготовиться к ЦТ по физике и математике, среди прочего, необходимо выполнить три важнейших условия:
- Изучить все темы и выполнить все тесты и задания приведенные в учебных материалах на этом сайте. Для этого нужно всего ничего, а именно: посвящать подготовке к ЦТ по физике и математике, изучению теории и решению задач по три-четыре часа каждый день. Дело в том, что ЦТ это экзамен где мало просто знать физику или математику, нужно еще уметь быстро и без сбоев решать большое количество задач по разным темам и различной сложности. Последнему научиться можно только решив тысячи задач.
- Выучить все формулы и законы в физике, и формулы и методы в математике. На самом деле, выполнить это тоже очень просто, необходимых формул по физике всего около 200 штук, а по математике даже чуть меньше. В каждом из этих предметов есть около десятка стандартных методов решения задач базового уровня сложности, которые тоже вполне можно выучить, и таким образом, совершенно на автомате и без затруднений решить в нужный момент большую часть ЦТ. После этого Вам останется подумать только над самыми сложными задачами.
- Посетить все три этапа репетиционного тестирования по физике и математике. Каждый РТ можно посещать по два раза, чтобы прорешать оба варианта. Опять же на ЦТ, кроме умения быстро и качественно решать задачи, и знания формул и методов необходимо также уметь правильно спланировать время, распределить силы, а главное правильно заполнить бланк ответов, не перепутав ни номера ответов и задач, ни собственную фамилию. Также в ходе РТ важно привыкнуть к стилю постановки вопросов в задачах, который на ЦТ может показаться неподготовленному человеку очень непривычным.
Кинетическая энергия
Поскольку кинетической энергией обладает механическая система, находящаяся в зависимости от скоростей, на которых движутся различные её точки, то она бывает поступательного и вращательного типа. Для измерения энергии используется единица Джоуль (Дж) в системе СИ.
Давайте рассмотрим то, как найти энергию. Формула кинетической энергии:
- Ex= mv²/2, Ek – это кинетическая энергия, измеряемая в Джоулях;
- m – масса тела (килограммы);
- v–скорость (метр/секунду).
Для определения того, как найти кинетическую энергию для твердого тела, выводят сумму кинетической энергии поступательного и вращательного движения.
Вычисленная таким образом кинетическая энергия тела, которое движется на определенной скорости, демонстрирует работу, которую должна выполнить сила, воздействующая на тело в состоянии покоя, чтобы придать ему скорость.
Потенциальная энергия положения на большой высоте
Формула (1) верна при условии, что ускорение свободного падения g постоянно по всей высоте подъема, т.е. в случае подъема на относительно небольшую высоту. В гравитационном поле любого небесного тела сила тяжести и соответственно ускорение свободного падения тела убывают пропорционально квадрату расстояния от центра этого тела. Поэтому при подъеме на большую высоту следует учитывать, что g = g(h) и, следовательно G = G(h):
Здесь: W — работа против гравитационной силы (Джоуль), G — гравитационная сила, с которой два тела притягиваются друг к другу (Ньютон), ma — масса первого тела (кг), mb — масса второго тела (кг), r — расстояние между центрами масс тел (метр), r1 — начальное расстояние между центрами масс тел (метр), r2 — конечное расстояние между центрами масс тел (метр), γ — гравитационная постоянная 6.67 · 10 -11 (м 3 /(кг · сек 2 )),
Потенциальная энергия
Чтобы узнать то, как найти потенциальную энергию следует применить формулу:
- Ep = mgh, Ep – это потенциальная энергия, измеряемая в Джоулях;
- g — ускорение свободного падения (квадратных метрах);
- m– масса тела (килограммы);
- h — высота центра масс тела над произвольным уровнем (метры).
Поскольку для потенциальной энергии характерно взаимное влияние друг на друга двух и больше тел, а также тела и любого поля, то любая физическая система стремится найти положение, в котором потенциальная энергия будет наименьшей, а в идеале нулевой. потенциальной энергией. Следует помнить о том, что для кинетической энергии характерна скорость, а потенциальной — взаиморасположение тел.
Теперь вы знаете все о том, как найти энергию и ее значение по формулам физики.
Источник: elhow.ru