В каждой электрической цепи имеются так называемые Р – ребра (они же ветви, звенья, участки) и У – узлы. Для ее описания существует система уравнений, в которых используются два правила Кирхгофа. В них, в качестве независимых переменных, выступают токи ребер. Поэтому количество независимых переменных будет равно количеству уравнений, что дает возможность нормального разрешения данной системы. На практике используются методы, направленные на сокращение числа уравнений. Среди них очень часто используется метод контурных токов, позволяющий выполнять расчеты и получать точные результаты.
Суть метода контурных токов
Основные принципы данного метода основываются на том факте, что протекающие в ребрах цепи токи, не все считаются независимыми. Присутствующие в системе У-1 уравнения для узлов, четко показывают зависимость от них У-1 токов. При выделении в электрической цепи независимого тока Р-У+1, вся система может быть сокращена до уравнений Р-У+1. Таким образом, метод контурных токов представляет собой очень простое и удобное выделение в цепи независимых токов Р-У+1.
Использование данного способа расчетов допускает, что в каждом независимом контуре Р-У+1 осуществляется циркуляция определенного виртуального контурного тока. Если какое-либо ребро относится лишь к одному конкретному контуру, то значение протекающего в нем реального тока будет равно контурному. В том случае, когда ребро входит в состав сразу нескольких контуров, ток, протекающий в нем, будет представлять собой сумму, включающую в себя соответствующие контурные токи. В этом случае обязательно учитывается направление обхода контуров. Независимыми контурами перекрывается практически вся схема, поэтому ток, протекающий в каком угодно ребре может быть выражен путем контурных токов, составляющих полную систему всех токов.
Закон Кирхгофа – расчет и применение
Для того чтобы построить систему независимых контуров, используется простой и наглядный метод создания планарных графов. На данной схеме ветви и узлы цепи размещаются на плоскости таким образом, что взаимное пересечение ребер полностью исключается. С помощью этого метода плоскость разбивается на области, ограниченные замкнутыми цепочками ребер. Именно они и составляют систему независимых контуров. Данный метод более всего подходит для ручных расчетов схем. Однако его применение может стать затруднительным или вовсе невозможным, если рассматриваемая схема не укладывается в рамки планарного графа.
Первый закон Кирхгофа
Первый закон Кирхгофа гласит, что в ветвях образующих узел электрической цепи алгебраическая сумма токов равна нулю(токи входящие в узел считаются положительными, выходящие из узла отрицательными).
Пользуясь этим законом для узла A (рисунок 1) можно записать следующее выражение:
Рисунок 1 — Первый закон Кирхгофа
I1 + I2 − I3 + I4 − I5 − I6 = 0.
Попытайтесь самостоятельно применить первый закон Кирхгофа для определения тока в ветви. На приведенной выше схеме изображены шесть ветвей образующие электрический узел В, токи ветвях входят и выходят из узла. Один из токов i неизвестен.
Запишите выражение для узла В
I1 + I2 + I3 + I4 + I5 − i = 0 I1 – I2 + I3 − I4 + I5 − i = 0 I1 + I2 + I3 − I4 + I5 − i = 0
Неправильно
Построение системы уравнений
Резонанс в электрической цепи
Построение системы уравнений по рассматриваемой методике выполняется по следующим правилам:
- Для каждого выбранного контура задается направление обхода;
- С левой стороны равенств записывается сумма всех произведений искомых токов в ветвях на сопротивление веток. В правую часть записывается сумма источников напряжений, присутствующих в контуре;
- Если направление искомой величины или источника напряжения такое же, как у заданного направления обхода, то слагаемые пишутся со знаком «плюс», в ином случае они имеют отрицательное значение;
- Значение токов в ветвях заменяют на их выражение через токи контура.
После выполнения арифметических действий (раскрытие скобок, приведение подобных слагаемых) получается система уравнений, в которых неизвестными величинами являются виртуальные контурные токи.
Решая систему уравнений, получают значения контурных, а затем искомых величин.
Основные понятия
Рассмотрим пример. В заданной схеме, см.
Токи в резисторах В данном случае удобно проверить задачу с помощью первого закона Кирхгофа, согласно которому сумма токов сходящихся, в узле равна нулю. Выполняем все поэтапно.
В табл. Ток в сопротивлении R3, являющийся общим для обоих контуров, равен разности контурных токов I11 и I22, так как эти токи направлены в ветви с R3 встречно. Управляемые элементы работают под влиянием управляющего воздействия тиристоры, транзисторы и другие.
Пусть, например, задана величина приложенного к току напряжения U и требуется определить ток в цепи и распределение напряжений на ее участках. Последовательное соединение нелинейных элементов. Управляемые элементы работают под влиянием управляющего воздействия тиристоры, транзисторы и другие.
Примеры решения задач на законы Кирхгофа
В схеме рис. После проведенных преобразований рис.
Приступаем к основному этапу — составлению системы уравнений контурных токов. Про комплексные числа можно подробнее прочитать на нашем сайте. Определим параметры электрической цепи рис. Уравнения по второму закону составляют для независимых контуров. Но с помощью закона Кирхгофа удобно проверять простые цепи, имеющие один контур.
Система уравнений 4. Метод контурных токов заключается в том, что вместо токов в ветвях определяются, на основании второго закона Кирхгофа, так называемые контурные токи, замыкающиеся в контурах. Запишем уравнения:: 4. В этом случае ток в нагрузке становится равным нулю, и как следует из соотношения 1. КАК ТЕЧЁТ ТОК В СХЕМЕ — Читаем Электрические Схемы 1 часть
Оптимизированная процеДypa составления системы
По упрощенной методике поступают следующим образом:
- В уравнениях в левой части записывают произведение суммы всех входящих в контур сопротивлений на контурный ток;
- От полученного выражения вычитаются умноженные на сумму сопротивлений общей ветви соседние контурные токи;
- Справа записывается сумма источников ЭДС контура.
Формальный подход
Формальный подход предполагает матричную форму записи системы уравнений. Для расчетов исходные данные записывают в матричной форме. Используются такие матрицы:
- C – в которой i строк, соответствующих количеству контуров, и j столбцов по количеству ветвей;
- Z – диагональная матрица сопротивлений, количество строк и столбцов которой соответствуют числу веток;
- Ct – трaнcпонированная матрица С;
- I – матрица контурных величин;
- J – матрица источников тока;
- Е – матрица ЭДС.
При составлении матрицы С каждый элемент Сij:
- 0, если ветвь j не входит в контур;
- -1, если ветвь входит в контур, направление тока противоположно контурному;
- 1 – то же самое, но направление тока совпадает с контурным.
В матрице Z диагональные элементы равняются сопротивлению участков, остальные приравниваются нулю.
Итоговая формула для расчетов имеет вид:
C∙Z∙Ct∙I=C(Z∙J+E).
Такая форма записи решения в матричной форме показывает, каким образом выполняются действия над составленными матрицами.
Пример системы уравнений
Ниже рассмотрен пример расчета конкретной схемы без учета номиналов элементов.
Пример решения
В заданной цепи выделяют три контура. Как выразить токи в ветвях через контурные:
- i1=I1;
- i2=I2;
- i3=I3;
- i4=I2+I3;
- i5=I1+I2;
- i6=I1-I3.
Как составить систему уравнений:
- i1R1+i5R5+i6R6=E1;
- i2R2+i4R4+i5R5=E2;
- i3R3+i4R4-i6R6=0
Как подставить контурные значения:
- I1R1+( I1+I2)R5+( I1-I3)R6=E1;
- I2R2+( I2+I3)R4+( I1+I2)R5=E2;
- I3R3+( I2+I3)R4-( I1-I3)R6=0
После преобразования получается необходимая система уравнений:
- (R1+R5+R6)I1+R5I2+R6I3=E1;
- R5I1+(R2+R4+R5)I2+R4I3=E2;
- -R6I1+R4I2+(R3+R4+R6)I3=0.
Система из трех уравнений легко решается после подстановки известных параметров. Из полученных значений контурных токов затем можно найти искомые величины.
Данный пример решения задач по методу контурных токов показывает, что любую достаточно сложную схему можно существенно упростить для решения, руководствуясь указаниями.
Важно! Метод неприменим, если нет возможности преобразовать цепь без взаимного пересечения ветвей.
В некоторых случаях упростить схему можно путем преобразования ветвей, соединенных по схеме «звезда» в треугольник.
Точно такие же результаты получаются при использовании метода узловых потенциалов. В основе расчетов – поиск потенциала каждого узла (так называемый узловой потенциал). Существуют программы, позволяющие произвести онлайн расчет параметров по рассмотренным методам.
Переменный ток.
В цепи должен соблюдаться баланс мощностей, то есть энергия отданная источниками должна быть равна энергии полученной приемниками.
Последним этапом находим действительные токи, для этого нужно записать для них выражения. Работа активного двухполюсника под нагрузкой в номинальном режиме определяется уравнением 1.
Определим параметры электрической цепи рис. Неуправляемые нелинейные элементы имеют одну вольт-амперную характеристику; управляемые — семейство характеристик.
Определить ток I1 в заданной по условию схеме с источником тока, используя метод эквивалентного генератора. Чтобы решить такую систему можно воспользоваться программой MathCad. В цепи должен соблюдаться баланс мощностей, то есть энергия отданная источниками должна быть равна энергии полученной приемниками. Свернуть цепь можно с помощью эквивалентных преобразований последовательного, параллельного и смешанного соединений.
Читайте дополнительно: Нормы прокладки кабеля под землей
АГЗ МЧС РГР №1 Расчёт линейных цепей постоянного тока
Уравнения по второму закону составляют для независимых контуров. Определим параметры электрической цепи рис. Контурный ток равен действительному току, который принадлежит только этому контуру. Свернуть цепь можно с помощью эквивалентных преобразований последовательного, параллельного и смешанного соединений.
Направление обхода контура совпадает с направлением контурных токов. Режим работы электрической цепи рис. Переменный синусоидальный ток или напряжение задается уравнением: Здесь Im — амплитуда тока. Например, с помощью закона Кирхгофа, который гласит, что сумма ЭДС в контуре равна сумме напряжений в нем. Метод контурных токов заключается в том, что вместо токов в ветвях определяются, на основании второго закона Кирхгофа, так называемые контурные токи, замыкающиеся в контурах.
Определить токи во всех ветвях схемы на основании метода наложения.
Эта вольт-амперная характеристика строится по двум точкам 1 и 2 рис. Для этого необходимо найти напряжение в цепи, которое будет общим для обоих резисторов, так как соединение параллельное. Следовательно, схема источника тока рис. Вычислим коэффициент подобия.
Составить баланс мощностей в исходной схеме схеме с источником тока , вычислив суммарную мощность источников и суммарную мощность нагрузок сопротивлений. Рекомендуется узлы схемы a, b, c, d заменить на 1, 2, 3, 4 соответственно. Исключением служат цепи, содержащие более сложные соединения звездой и треугольником. В нашем случае эти токи направлены по часовой стрелке. Законы Кирхгофа — Теория и задача
Основные принципы
Любая электротехническая цепь состоит из участков (ветвей), образующих узлы и контуры. Для определения значений тока через любой элемент используют два закона Кирхгофа. Прямое составление уравнений дает систему с их максимальным количеством, равным количеству ветвей. В результате, если множество узлов цепи равно У, а число ветвей Р, то уравнения распределяются следующим образом:
- Для узлов У-1 по закону Кирхгофа для токов;
- Для ветвей Р-У+1 по закону Кирхгофа для напряжений.
Данное количество избыточно и приводит к образованию громоздкой системы уравнений большой размерности.
Для упрощения расчетов разработаны методики, которые позволяют сократить количество уравнений до приемлемых значений без снижения точности результатов. Наиболее простым является метод контурных токов.