Формула электрического напряжения и скорость зарядов


Чему равна скорость тока в проводнике? Банальный если не риторический вопрос, не правда ли? Все мы в школе учили физику и хорошо помним, что скорость электрического тока в проводнике равна скорости распространения фронта электромагнитной волны, то есть равна скорости света. Но ведь на тех же уроках физики, нам показывали и кучу интересных опытов, где мы могли сами во всем убедиться. Вспомним хотя бы замечательные опыты с электрофорной машиной, эбонитом, постоянными магнитами и т.д.

А вот опыты по измерению скорости электрического тока не показывали даже в университете, ссылаясь на отсутствие необходимого оборудования и сложность данных экспериментов. За последние несколько десятков лет прикладная наука сделала огромный рывок вперед и сейчас у многих любителей есть дома та аппаратура, о которой несколько десятков лет назад не мечтали даже научные лаборатории. А потому пришла пора начинать показывать и опыт по измерению скорости электрического тока, что бы вопрос был закрыт раз и навсегда в лучших традициях физики. То есть не на уровне математики гипотез и постулатов, а на уровне простых и понятных каждому экспериментов и опытов.

Суть эксперимента по измерению скорости электрического тока проста до безобразия. Возьмем провод, определенной длинны, в нашем случае 40 метров, подключим к нему генератор сигналов высокой частоты и двухлучевой осциллограф один луч соответственно к началу провода, а другой к его концу. Вот и все. Время, за которое электрический ток пройдет по проводу длиной 40 метров составляет около 160 наносекунд. Сдвиг именно на это время мы и должны увидеть на осциллографе между двумя лучами. Посмотрим теперь, что же мы видим на практике

То есть как мы увидели, никакой задержки в 160 наносекунд в нашем случае нет. И именно в нашем случае мы не смогли измерить скорость электрического тока, т.к. она оказалась на несколько порядков больше и не поддается измерению такими приборами. Может быть, у нас провода были сврхнанотехнологичные, или наш электрический ток просто не знал, что он обязан задержаться на 160 наносекунд в проводе? Но что есть, то есть.…

В силу того, что эксперимент был проведен всего один, какие либо выводы делать рано. Мы надеемся, что и Вам захочется повторить данный опыт и поделиться с нами его результами. С нетерпением ждем Ваших видеоотчетов.

Источник

Почему ток в розетке и проводах не бежит со скоростью света? Или все-таки…

Любой человек, разбирающийся в физике, скажет, что скорость движения электрического тока равна скорости света и составляет 300 тысяч километров в секунду. С одной стороны он прав на 100%, но есть нюансы.

Измерение и нахождение

Обозначается напряжение буквой U. Параметр равен отношению: U = A / q, где: A — работа поля, выполняемая для переноса q из одного места в другое, q — значение заряда. Из этой формулы можно получить размерность для измерения единицы напряжения. В физике принято работу считать в джоулях [Дж], а величину заряда в кулонах [Кл].

Следовательно, параметр измеряется отношением [Дж / Кл]. Но это настолько важная электрическая величина, что для неё выбрали не только своё обозначение, но и название единицы измерения — вольт. В международном обозначении используется символ V (volt). Один вольт представляет собой такое напряжение между точками электрической цепи, при котором для переноса заряда в один кулон полем совершается работа в один джоуль.

Раз существует физическая величина, значит, должно быть устройство, предназначенное для её измерения. Называется такой измеритель вольтметр. На схеме его обозначают с помощью круга и стоящего внутри него символа V. Следует отметить, что в зависимости от измеряемого значения могут быть использованы более точные устройства, микровольтметр или киловольтметр.

Измеритель всегда подключается параллельно измеряемым точкам. При этом положительная клемма присоединяется к плюсовой части схемы, а отрицательная к минусовой. При измерении вольтметр не оказывает влияние на электрические параметры. Связанно это с тем, что устройство обладает высоким внутренним омическим с сопротивлением и ток через него практически не протекает.

Следует отметить, что существует переменное напряжение и постоянное. Первое называют так из-за того, что оно постоянно изменяет знак с течением времени. Это связано с изменением направления движения носителей зарядов. Переменное напряжение, в отличие от постоянного, описывается функцией. Чаще всего используется синусоидальная. Формула для его расчёта выглядит так: u (t)= Um * sin (wt+f), где Um — максимальная амплитуда, wt — частота, f — угол между гармоническим сигналом напряжения и тока.

Прибор, используемый для наглядного наблюдения за формой сигнала, называют осциллограф. Им можно измерить напряжение в зависимости от модели до гигагерца. Устройство бывает аналоговым, цифровым и стробирующим. Осциллограф считается устройством для профессионалов и используется для радиоэлектронных приборов.

Что такое электрический ток?

Из школьного курса физики известно, что электричество – это поток электронов, упорядоченно перемещающихся в проводнике. Пока источника электричества нет, электроны движутся в проводнике хаотически, в разных направлениях. Если суммировать траектории всех заряженных частиц, получится ноль. Поэтому кусок металла не бьет током.

Если металлический предмет подсоединить к электрической цепи, все электроны в нем выстроятся в цепочку и потекут от одного полюса к другому. Насколько быстро произойдет упорядочение? Со скоростью света в вакууме. Но это не означает, что электроны полетели от одного полюса к другому также стремительно. Это заблуждение. Просто люди настолько привыкли к утверждению, что электричество распространяется так же быстро как свет, что не особо задумываются над деталями.

Физический смысл величины

Можно провести простой эксперимент. Для этого необходимо собрать схему, состоящую из последовательно включённых двух ламп разного размера. Если их запитать от источника тока, то можно будет обнаружить, что большая лампа светит ярче по сравнению с малой. При этом величина силы тока для любого участка цепи будет одинаковой, так как устройств для накопления зарядов в цепи нет.

Поэтому можно предположить, что существует какая-то разница в режиме работы этих двух ламп. Как оказалось, это отличие определяется физической величиной. Она является характеристикой поля и носит название электрическое напряжение. Измеряется параметр в вольтах [В] в честь итальянского физика, химика и астролога, придумавшего гальванический элемент, электрометр, конденсатор и электроскоп.

За каждую секунду через лампы протекает одинаковый ток. Он нагревает спирали настолько сильно, что они начинают светиться. При перемещении заряда по цепи на него действует сила электрического поля, проталкивающая частицы через спирали. Можно сказать, что на тело воздействует сила и им выполняется работа. Поэтому в лампе, которая светит ярче, электрическая сила (электроток) совершает большую работу по сравнению со вторым источником света.

Похожую ситуацию можно встретить и при рассмотрении течения жидкости. Электрический ток можно уподобить движению воды. При этом можно провести следующую аналогию:

  • жидкость — заряды;
  • трубы — проводники;
  • насос — источник тока.

Пусть есть бак, с которого вода вытекает по трубе вертикально вниз и крутит турбину. Высота устройства H. Затем жидкость попадает в новый бак, к которому подсоединена другая турбина меньшего размера. Высота второй системы h. Циркуляцию воды обеспечивает установленный на пол насос. Работа, которая совершается для вращения турбин, разная. То есть одна и та же масса воды в зависимости от своего расположения затрачивает разную энергию. Отсюда по аналогии электрическое поле можно сравнить с высотой труб.

Получается, что в гидроустановке вначале работу совершает сила тяжести, а затем давления. В электрической же цепи электрополе и сторонняя сила в источнике тока

. Как показали опыты, отношение работы к величине заряда, который протекает во внешней цепи, не зависит от его количества. Таким образом, напряжение всегда задаётся между любыми двумя точками электрической цепи и является важной характеристикой.

Популярные заблуждения о скорости света

Еще одним примером такого поверхностного восприятия можно назвать понятие о природе молнии. Многие ли задумываются, какие физические процессы происходят во время грозы? Какова, например, скорость молнии? Можно ли без приборов узнать, на какой высоте бушуют грозовые разряды? Разберемся со всем этим по порядку.

Кто-то может сказать, что молния бьет со скоростью света, и будет не прав. Настолько быстро распространяется вспышка, вызванная гигантским электрическим разрядом в атмосфере, но сама молния гораздо медленнее. Грозовой разряд – это не удар луча света наподобие лазера, хотя визуально похоже. Это сложная структура в насыщенной электричеством атмосфере.

Ступенчатый лидер или главный канал молнии формируется в несколько этапов. Каждая ступень в десятки метров образуется со скоростью около 100 км/сек вдоль разрядных нитей из ионизированных частиц. Направление меняется на каждом этапе, поэтому молния имеет вид извилистой линии. 100 километров в секунду – это быстро, но до скорости электромагнитной волны очень далеко. В три тысячи раз.

Опыт Мандельштама и Папалекси

В классической теории предполагают, что перемещение частиц происходит в соответствии с законами механики. При этом пренебрегают силой взаимодействия между электронами. Считают, что при соударении с противоположно заряженными частицами кристаллической решётки ей передаётся вся энергия, ранее полученная в поле.

Два радиофизика Мандельштам и Папалекси предполагали, что раз электрон обладает массой, то он должен иметь и инерцию. То есть если взять какой-либо метал привести его в движение, а затем резко остановить, то должно возникнуть направленное движение электронов. Опыт их был довольно оригинален. Для его проведения учёные подготовили:

  • катушку;
  • источник тока;
  • телефон.

Кратко опыт состоял из простого действия. Физики подавали на витки ток, а затем резко останавливали катушку. Щелчок, раздававшийся в телефонном наушнике, позволял судить им о возрастании тока. Отсюда они сделали вывод как о существовании массы у электрона, так и о возможности появления электротока без участия электромагнитного поля. Кроме этого, позволил утверждать о возможности возникновения электрического тока вне замкнутой цепи.

Советские учёные смогли качественно установить существование явления, но количественное измерение провести не смогли. Американец Толмен и шотландец Стюарт, заинтересовавшись открытым эффектом, усовершенствовали эксперимент и не только подтвердили опытный факт, но и смогли определить величину удельного заряда при резком торможении.

Для своей катушки они использовали 500 метров проволоки. С помощью скользящих контактов она подключалась к гальванометру и раскручивалась вдоль своей оси. Линейная скорость достигалась равной 500 м/с.

Для расчёта электродвижущей силы использовалась формула: E = (1 / e) * ∫ F * dL, где:

  • F — сторонняя сила;
  • L — длина проводника;
  • e — заряд частицы.

После интегрирования, использования выражения, определяющего силу инерции и закона Ома конечная расчётная формула приняла вид:

q = (m * L * r / e * R) * dw, где: w — угловая скорость вращения. Используемый баллистический гальванометр позволил физикам замерить отношение e / m. Опыты показали, что значение удельного заряда оказалось равным 1,7 * 1011 Кл / кг. Это доказало, что инерция вызывает сообщение частиц. При этом в переносе зарядов участвуют электроны.

Что быстрее: молния или гром?

Этот детский вопрос имеет простой ответ – молния. Из того же школьного курса физики известно, что скорость звука в воздухе равна примерно 331 м/сек. Почти в миллион раз медленнее электромагнитной волны. Зная это, легко понять, как высчитать расстояние до молнии.

Свет вспышки доходит до нас в момент разряда, а звук летит дольше. Достаточно засечь промежуток времени между вспышкой и громом. Теперь просто считаем, насколько далеко от нас ударила молния, по простой формуле:

L =T × 331

Где T – это время от вспышки до грома, а L – это расстояние от нас до молнии в метрах.

Например, гром прогремел через 7.2 секунды после вспышки. 331 × 7.2 = 2383. Получается, что молния ударила на высоте 2 километра 383 метра.

Решение задач

Выполнение расчётов помогает не только закрепить теоретический материал, но и научиться практическому применению знаний. Так, применение закона Ома позволяет правильно рассчитывать электрические схемы, подбирать нужные сопротивления. Вот несколько из типовых заданий, рассчитанных на учащихся седьмых классов:

  1. Определить напряжение на обмотке электропускателя, если при прохождении через неё заряда электрическое поле выполняет работу в 10 джоулей. Напряжённость поля составляет 4 В, а действующая сила равняется 8 Н. Для того чтобы определить напряжение, нужно вычислить величину заряда. Сделать это можно из выражения: E = F / q. Отсюда q = F / E = 8 Н / 4 В = 2 Кл. Теперь можно использовать формулу: U = A / q. Все нужные данные известны, поэтому после подстановки значений и вычисления в ответе должно получиться: U = 10 Дж / 2 Кл = 5 В.
  2. Вычислить максимальное напряжение, которое можно подать на электрическую лампу сопротивлением 500 Ом, если она горит в полный накал при токе 0,5 ампер. Согласно закону Ома, напряжение и ток связаны формулой: I = U / R. Из неё можно выразить напряжение: U = I * R = 0,5 A * 500 Ом = 250 В.
  3. При переносе 240 Кл электричества из одной точки схемы в другую за 16 минут выполняется работа в 120 Дж. Найти напряжение и силу тока. Электроток можно вычислить из соотношения: I = q / t, а напряжение воспользовавшись формулой: U = A / q. Подставив исходные данные, можно будет получить: I = 240 Кл / 16 * 60 с = 0,25 А и U = 1200 Дж / 240 Кл = 5 В.
  4. Какова будет сила тока, если при напряжении 4 В за одну секунду расходуется 0,8 Дж электроэнергии. Чтобы решить задачу, нужно вспомнить, как зависят электроток и напряжение от величины заряда. Записав отношения и подставив одно в другое, получится формула: I = A / U * t = 0,8 Дж * Кл / 4 В * с = 0,2 А = 200 мА.

Таким образом, для решения задач, связанных с электрическим напряжением, нужно запомнить несколько формул и понимать суть процесса. Но при этом важно знать размерности величин. Причём все вычисления принято выполнять в Международной системе единиц. А также следует знать, что скорость упорядоченного движения носителей заряда зависит от действия внешнего электрического поля. И находится как V = I / q * n *S, где n — концентрация (табличная величина), q — заряд, S — площадь поперечного сечения проводника.

Скорость электромагнитной волны – это не скорость тока

Теперь будем более внимательны к цифрам и терминам. На примере молнии убедились, что маленькое неверное допущение может привести к большим промахам. Точно известно, что скорость распространения электромагнитной волны равна 300 000 километров в секунду. Однако это не означает, что электроны в проводнике перемещаются с такой же скоростью.

Представим, что две команды соревнуются, кто быстрее доставит мяч с одного края поля на другой. Обязательное условие – каждый член команды сделает несколько шагов с мячом в руках. В одной команде пять человек, а в другой – один. Пятеро, выстроившись в цепочку, сыграют в пас, сделав каждый несколько шагов в направлении от старта к финишу. Одиночке придется бежать всю дистанцию. Очевидно, что победят пятеро, потому что мяч летит быстрее, чем человек бегает.

Так же и с электричеством. Электроны «бегают» медленно (собственная скорость элементарных частиц в направленном потоке исчисляется миллиметрами в секунду), но передают друг другу «мячик» заряда очень быстро. При отсутствии разности потенциалов на разноименных концах проводника все электроны движутся хаотично. Это тепловое движение, присутствующее в каждом веществе.

Если бы электроны двигались в проводах со скоростью света

Представим, что скорость электронов в проводнике все-таки близка к световой. В этом случае современная энергетика была бы невозможна в привычном для нас виде. Если бы электроны двигались по проводам, пролетая 300 000 километров в секунду, пришлось бы решать очень сложные технические задачи.

Самая очевидная проблема: на такой скорости электроны не смогут следовать за поворотами проводов. Разогнавшись на прямом участке, заряженные частицы будут вылетать по касательной как не вписавшиеся в вираж автомобили. Чтобы удержать летящие на космических скоростях электроны внутри энергетических магистралей, придется снабжать провода электромагнитными ловушками. Каждый участок проводки станет похожим на фрагмент адронного коллайдера.

К счастью элементарные частицы предвигаются гораздо медленнее и для передачи энергии на дальние расстояния вполне пригодны неизолированные алюминиевые провода для ЛЭП

Надеемся, что ознакомившись с этим обзором, вы нашли ответ на вопрос почему ток не бежит по кабелям со скоростью света и вспомнили кое-что из школьного курса физики, а это, согласитесь, крайне полезно в любом возрасте.

Источник

Строение металлов

Находясь в твердом агрегатном состоянии, металлы обладают кристаллической решеткой. Это упорядоченная структура: каждый атом находится в строго определенном месте.

Но какие частицы тогда будут обеспечивать протекание электрического тока? Дело в тем, что в узлах кристаллической решетки находятся положительные ионы (рисунок 1). В пространстве меду этими ионами беспрестанно двигаются свободные электроны.

Рисунок 1. Кристаллическая решетка металла

Вспомним немного о том, что же представляют собой такие частицы, как ионы. В обычных условиях атомы электрически нейтральны. Электроны несут отрицательный заряд, а протоны, находящиеся в ядре — положительный. Заряд этот по модулю одинаков. Таким образом, в электрически нейтральном атоме количество электронов будет равно количеству протонов в ядре.

Если атом теряет хоть один электрон, он теряет свою электронную стабильность. Теперь суммарный положительный заряд всех протонов в ядре по абсолютному значению больше отрицательного заряда электронов. Такой атом называют положительным ионом.

В таком строении кроется ответ на вопрос: “Почему в обычных условиях металл электрически нейтрален?”.

Отрицательный заряд всех свободных электронов по абсолютному значению равен положительному заряду всех ионов решетки.

Обратите внимание на тот факт, что не все электроны в металлах являются свободными. Часть из них остается связанными с ядрами атомов, а другая их часть — беспорядочно движется между этими атомами.

Эти электроны изначально находятся на самых удаленных от ядра орбитах. Они слабо связаны с ядром. Поэтому они могут довольно легко переходить от одного атома к другому, повторяя этот процесс множество раз. Именно это движение мы и называем беспорядочным движением свободных электронов.

Рейтинг
( 2 оценки, среднее 4.5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]