Характеристики автоматических выключателей на примере TEXENERGO

Автоматические выключатели — это устройства, отвечающие за защиту электрической цепи от повреждений, связанных с воздействием на нее большого тока. Слишком сильный поток электронов может повредить бытовую технику, а также вызвать перегрев провода с последующим оплавлением и воспламенением изоляции. Если вовремя не обесточить линию, это может привести к возгоранию, поэтому в соответствии с требованиями ПУЭ (Правила устройства электроустановок) эксплуатация сети, в которой не установлены автоматические выключатели, запрещается. АВ имеют несколько параметров, один из которых — это время-токовая характеристика автоматического выключателя. В этой статье мы объясним, чем отличаются коммутаторы категорий A, B, C, D и какие сети используются для защиты.

Характеристики расцепителей защитных автоматов

Для тех, кто предпочитает всё проверять по первоисточникам, по тексту и в конце статьи привожу ГОСТы, в которых даны четкие официальные определения.

Итак, внутри автомата есть два устройства расцепления (выключения), каждый из которых срабатывает независимо, в своем диапазоне токов. Работа обоих этих расцепителей приводит к тому, что они так или иначе отключают автомат, когда через него протекает сверхток (больше номинального).

Первый – тепловой расцепитель, который работает на принципе нагрева и изгиба биметаллической пластинки, по которой протекает рабочий ток автомата. Для примера, на таком же принципе работает регулятор температуры в утюге и электронагревателе. Пластинка калибрована и настроена таким образом, что при определенном токе она нагревается до определенной температуры, что приводит к её критическому изгибу и, как следствие, выключению автомата. Тепловой расцепитель обладает некоторой инерционностью, что благотворно сказывается на его работе в реальных условиях. Если можно так выразиться, он “ожидает”, прежде чем сработать.

Второй расцепитель – электромагнитный. Скорость его работы гораздо выше по сравнению с тепловым расцепителем. Из названия понятен принцип работы – имеется электромагнит, который срабатывает и выключает нагрузку при коротком замыкании. Ток “расцепления” электромагнитного расцепителя в несколько раз (в разных случаях от 3 до 20) выше тока теплового расцепителя.

Можно ещё выделить независимый расцепитель, который замыкает или размыкает контакты автоматического выключателя при ручном воздействии. Название немного неверное, поскольку он управляется рукой человека, либо тепловым, либо электромагнитным расцепителм, либо внешним расцепителем.

Рассмотрим подробно характеристики расцепителей с примерами и ссылками на ГОСТ.

Все характеристики определяются при контрольной температуре +30 °С.

Время-токовая характеристика (ВТХ)

Это – основная характеристика, которой описывается работа автоматического выключателя. У неё встречаются и другие названия –

  • характеристика срабатывания,
  • характеристика расцепителя,
  • токовая характеристика,
  • отключающая характеристика,
  • защитная характеристика,
  • кривая тока,
  • кривая отключения,
  • характеристика отключения

Официальное название из ГОСТ Р 50345-2010 (п. 4.5, п.5.3.5) – тип тока (диапазон токов) мгновенного расцепления. Этот ГОСТ с 1 марта 2022 г не действует. Читайте до конца.

Смысл один – это график, на котором показана зависимость времени отключения автомата от величины проходящего через него тока:

Время-токовая характеристика, она же – кривая отключения автомата, защитная характеристика

На графике обозначены три области – B, C, D. Согласно ГОСТ Р 50345-2010 (п. 5.3.5), каждая из них определяет свой порог срабатывания электромагнитного расцепителя:

  • B – от 3 до 5 In,
  • C – от 5 до 10 In,
  • D – от 10 до 20 In,

где In – номинальный ток теплового расцепителя. То есть, ток срабатывания электромагнитного расцепителя нормируется через ток теплового.

Этот ток, обозначаемый буквой, называется током мгновенного расцепления:

ГОСТ Р 50345-2010, п. 3.5.17 ток мгновенного расцепления

(instantaneous tripping current): Минимальное значение тока, вызывающее автоматическое срабатывание выключателя без преднамеренной выдержки времени. Сколько же длится это мгновение?

Автоматы TEXENERGO – с разными защитными характеристиками и номинальными токами: B6, B16, C40, C32

Время срабатывания tср электромагнитного расцепителя типа В определяется так (ГОСТ Р 50345-2010, п. 9.10.2):

  • tср > 0,1 с для тока 3 In,
  • tср < 0,1 с для тока 5 In и более

Значит ли это, что при токе 3In он может и не сработать за время ≤ 0,1 с? Да. В ГОСТе так и написано “без расцепления”. Но за время больше 0,1 с АВ должен сработать посредством электромагнитного или теплового расцепителя. Правда, не указано, за какое время – 0,2 или 2 с?

В диапазоне 3…5 АВ сработает с некоторой вероятностью, а при 5In и больше – сработает 100%. Это зависит от конкретного экземпляра. И если уж сработает, то за время менее 0,1 с. Реальные значения лежат в пределах 0,01 – 0,003 с, зависит от тока и везения – на какую часть синусоиды приходится момент КЗ.

Для характеристик типа С, D время срабатывания tср определяется аналогично, в своих пределах.

Почему на графике ВТХ указаны не линии, а области? Дело в том, что кроме естественного разброса параметров устройств, ток расцепления зависит от температурного состояния автомата. Нижняя часть графика относится к случаю, когда автомат долго был в работе (горячее состояние), верхняя – автомат в холодном (неразогретом) состоянии.

В другой статье пишу про то, чем автоматический выключатель отличается от предохранителя.

Я считаю, что гораздо удобнее пользоваться не графиками с относительными величинами, а таблицами, в которых указаны характерные рабочие точки для автомата определенного номинала. Читайте статью, в которой я привёл таблицы с рабочими значениями АВ разных номиналов.

Когда сработает тепловая, а когда – электромагнитная защита?

Чтобы было понятно, для примера возьмем автомат В10 – защитная характеристика В, номинальный ток 10 А – и проанализируем график токовый характеристики по основным диапазонам тока:

  • 0…11,3 А – автомат выключаться не должен, это диапазон токов для его нормальной работы,
  • 11,3…14,5 А – есть вероятность, что автомат через некоторое время сработает в результате действия теплового расцепителя (подробнее – ниже),
  • 14,5…30 А – время выключения по тепловой защите составит от 1 часа (для тока 14,5 А) до 4 с (для 30 А),
  • 30…50 А (3…5 In) – интересный участок, тут может сработать и тепловой расцепитель (за время от 4 до 1 с), и электромагнитный.
  • если сверхток более 50 А (>5 In), работает только электромагнитная защита, поскольку тепловая тут слишком инерционная.

Что изменится, если для примера взять автомат С10? Изменится лишь участок, на котором работают оба расцепителя, он сдвинется к значениям 50… 100 А. Для автомата D10 этот диапазон будет 100…200 А.

Почему такой большой разброс? Он происходит от разброса рабочих характеристик реальных автоматов. То есть, для В10 при токе 30 А электромагнитная защита МОЖЕТ сработать, а при токе 50 А ДОЛЖНА сработать.

Зачем нужны разные защитные характеристики автоматов? Отличия – лишь в порогах отключения электромагнитного расцепителя. Превышение тока в несколько раз может произойти при пуске различных инерционных устройств. Такой ток называют пусковым, и он появляется в быту в результате включения электродвигателей.

Для большинства бытовых устройств мощность встроенных двигателей – не более 2,2 кВт, это номинальный ток 10 А. Пусковой ток при этом – до 50 А для особо тяжелых условий пуска, и длится он менее секунды. Для автомата С16 выключение по пусковому току может произойти только, если ток будет превышать 80 А.

Ток, при котором срабатывает электромагнитный расцепитель, на практике может получиться и в результате короткого замыкания. Но ток короткого замыкания не бесконечен – он определяется сопротивлением цепи от подстанции до места замыкания. Если сопротивление проводов и переходное сопротивление контактов велико (а в частном секторе это – сплошь и рядом!), ток при КЗ где-нибудь в переноске может быть всего лишь 100 А. Если наименьший автомат защиты установлен на 25 А с типом защитной характеристики С, электромагнитная защита сработает (как повезёт!) при токе от 125 до 250 А. То есть, не сработает вообще! Выручит тепловой расцепитель, но время его реакции может быть от 2 до 10 с. А за это время от искр и пламени из злополучной переноски может загореться что угодно.

Может быть ещё хуже: ток мгновенного расцепления конкретного экземпляра автомата С25 может быть равен 250А. А ток КЗ может быть 249А! Тепловой расцепитель сработает примерно за секунду, а за это время могут произойти катастрофические события.

Именно поэтому в частном секторе, где до подстанции – несколько километров старого алюминия, да и в квартирах я очень рекомендую ставить автоматы с характеристикой В (статья про выбор АВ в домашний щиток). А вот более обширная статья на эту тему на блоге.

Защитная характеристика С вполне допустима и используется пока повсеместно.

Характеристика D в быту не применяется и даже вредна – там нет и не может быть больших пусковых токов, превышающих номинальный в 10…20 раз. А учитывая, что в частном доме часто очень низкий ток КЗ, электромагнитный расцепитель “D” становится бесполезным и опасным – мы лишаемся защиты от КЗ.

Рассмотрим подробно несколько терминов и точек на характеристике.

Номинальный ток теплового расцепителя In

Это максимальный ток, который автомат может гарантированно проводить неограниченное время без негативных последствий и срабатывания расцепителей. Номинальный ток указан числом на передней части автомата, перед числом указан тип защитной характеристики.

Номинальный ток In – основной параметр автоматического выключателя.

Пример на фотографиях выше – В6. Ещё пример, автоматы с номинальным током 40 и 32 А и защитной характеристикой С:

Защитные автоматы TEXENERGO BA47-29 С40, С32

Неотключающий ток теплового расцепителя 1,13 In

Это ток, действие которого не приводит к выключению автомата. Его называют также током условного нерасцепления. В ГОСТ Р 50345-2010 (п.8.6 и п.9.10) говорится, что автомат не должен выключаться в течение часа при токе 1,13 In. Поэтому на характеристике и указано значение 1,13.

Отключающий ток теплового расцепителя 1,45 In

Этот параметр также называют током условного расцепления. Он равен 1,45 In. Иными словами, при сверхтоке, превышающем номинал в 1,45 раза, автомат должен гарантированно сработать по тепловой защите в течение часа работы.

Для испытания автомата на соответствие этого параметра сначала пропускают через него в течение часа ток 1,13 In, а затем сразу, не отключая повышают ток в течение 5 с до 1,45 In.

Проверочный ток теплового расцепителя 2,55 In

Эта точка на графике не отмечена, но в ГОСТе (Р 50345-2010, п.9.10.1.2) приведена. Данный ток используют для проверки работы теплового расцепителя защитного автомата. Для этого подают ток 2,55 In на все полюсы автомата в холодном состоянии. Время размыкания должно быть в пределах от 1 до 60 с для автоматов с In ≤ 32 А, и от 1 до 120 с для In > 32 А.

Выводы по графику ВТХ

Читая эти правила и смотря на график ВТХ, можно сделать два вывода.

  1. Правила позволяют больший разброс времени выключения, чем это указано на графике.
  2. Точка 2,55 In выбрана не случайно – при этом токе во всех типах автоматов в выключении участвует только тепловой расцепитель.

Коррекция номинального тока от температуры

Есть два фактора температурной коррекции – количество рядом стоящих автоматических выключателей и температура окружающей среды.

Как я говорил выше, все характеристики теплового расцепителя определяются при температуре окружающей среды 30 °С. Однако, автомат при работе греется, это нормально. Когда в щитке стоят несколько автоматов (а так всегда и бывает), они взаимно нагревают друг друга, и тепловой расцепитель будет срабатывать раньше, чем положено по номиналу.

Информацию по нагреву автоматов я вынес в отдельную статью – что будет, если нагреть автоматический выключатель. Изменение характеристик автомата от температуры.

Выключатели с выдержкой времени

Автоматические выключатели, оснащённые механизмом установки времени срабатывания вне зависимости от значения тока, называются селективными. Соответственно аппараты, не обладающие этим качеством относятся к неселективным. Рассмотрим, что такое селективность и зачем она нужна.

Селективность — это

одно из основных качеств, которым должна обладать защита. Селективность заключается в необходимом и достаточном объёме защитных отключений повреждённого участка сети. Это означает, что в случае повреждения оборудования (например, короткого замыкания), защита должна отработать так, чтобы отключенным оказался только повреждённый сегмент схемы. Всё остальное оборудование должно при этом по возможности оставаться в работе. Какое отношение к этому имеет выдержка времени выключателя, покажем на примере.

Предположим, на вводе питания секции 0,4 кВ установлен выключатель «1». От этой секции питаются несколько отходящих линий через линейные выключатели. Пусть на одной из отходящих линий установлен выключатель «2».

Теперь предположим, что в самом начале этой линии произошло короткое замыкание. Какой выключатель должен быть отключен защитами, чтобы выделить только повреждённый участок? Конечно же, «2». Но ведь ток короткого замыкания в этой ситуации протекает через два выключателя – «1» и «2» (короткое замыкание подпитывается от источника через выключатель ввода «1»). Каким же образом обеспечить отключение только выключателя «2», ведь значение тока, протекающего через эти выключатели практически одинаково. Вот здесь и приходит на помощь возможность установления искусственной задержки времени отключения на автомате ввода «1». При этом защита просто не успевает сработать, так как линейный выключатель «2» отключит ток короткого замыкания без выдержки времени.

Номинальная наибольшая отключающая способность, Icn

На графике кривой отключения (ВТХ), приведенном выше, показаны сверхтоки только до 100 I/In. Однако, диапазон токов обычно простирается дальше, в область килоампер, вплоть до тока короткого замыкания в данной точке цепи . Само собой, при таких токах задача у автомата – не только отключить замкнувшую нагрузку, но и сохранить свою работоспособность.

Отключающая способность автомата должна быть гораздо больше, чем ожидаемый ток короткого замыкания в данной цепи.

Ведь при выключении (размыкании) контактов возникает электрическая дуга (фактически – пламя), которая может привести к пожару, взрыву, обгоранию поверхности контактов. И даже – сплавливанию и свариванию контактов! Чтобы уменьшить вероятность возникновения таких последствий, дугу гасят дугогасительными камерами специальной конструкции, а контакты делают из стойких сплавов.

Номинальная наибольшая отключающая способность 6000 А = 6 кА

Согласно ГОСТ Р50345-2010 (п. 6f), параметр Icn обозначается в рамке, и в данном случае равен 6000 А. У некоторых дешевых брендов Iсn = 4500 А, у более дорогих автоматов такого размера – 10 кА.

Как я говорил выше, совсем не факт, что такой ток будет течь через автомат в момент КЗ, разве только если автомат расположен рядом с подстанцией. Однако, это параметр говорит о способности стойко реагировать на короткие замыкания, исключая вероятность пожара, при этом ничуть не теряя своих качеств.

Мне попадались автоматы, которые после первого же КЗ вообще не хотели включаться. Впрочем, это простительно – в этом здании была собственная подстанция.

Название параметра происходит от английских слов “Capacity Normal”. Или “Rated Short-Circuit Capacity (Icn)”. Другие встречающиеся названия этого параметра – предельная коммутационная способность, номинальная наибольшая отключающая способность, номинальная отключающая способность, номинальная предельная наибольшая отключающая способность.

Часто путают этот параметр с номинальным условным током короткого замыкания Inc. Не смотря на то, что этот ток имеет те же значения (4500, 6000, 10000), он используется в описании характеристик устройств дифференциальной защиты (УЗО).

Также путают часто параметр Icn с двумя параметрами, которые я приведу ниже. Это происходит по причине того, что для аппаратов с низкой отключающей способностью все эти три параметра имеют одно численное значение.

Количество полюсов

Как уже было сказано, автомат защиты сети имеет полюса – от одного до четырех.

Подобрать для цепи устройство по их числу совсем несложно, достаточно лишь знать, где используются различные типы АВ:

  • Однополюсники устанавливают для защиты линий, в которые включены розетки и осветительные приборы. Они монтируются на фазный провод, не захватывая нулевого.
  • Двухполюсник нужно включать в цепь, к которой подсоединена бытовая техника с достаточно высокой мощностью (бойлеры, стиральные машинки, электрические плиты).
  • Трехполюсники монтируются в сетях полупромышленного масшатаба, к которым могут подключаться такие устройства, как скважинные насосы или оборудование автомастерской.
  • Четырехполюсные АВ позволяют защитить от КЗ и перегрузок электропроводку с четырьмя кабелями.

Применение автоматов различной полюсности – на следующем видео:

Предельная Icu и рабочая Ics отключающая способность

Значения номинальной наибольшей отключающей способности Icn равны 3000, 4500, 6000 и 10000 А (п.5.3.4), и в то же время равны значениям предельной наибольшей отключающей способности Icu (п.5.2.4).

Тут для меня немного не понятно – если эти параметры равны, зачем существует Icu? Кто знает – поделитесь в комментариях!

Ещё не понятно (возможно, это ошибка при переводе) – почему вместо номинальной наибольшей отключающей способности в указанном ГОСТ пишут “номинальная наибольшая коммутационная способность”. Надеюсь, что это одно и то же.

Ток Icu для автомата – крайний, предельный (Ultimate), но производитель гарантирует, что автомат безопасно отключит аварийную цепь, пусть даже ценой собственной жизни.

Значения номинальной рабочей отключающей способности Ics рассчитываются, исходя из номинальной наибольшей отключающей способности Icn:

Ics = % Icn

Рабочая и номинальная отключающие способности. Соотношения при разных значениях

Слово “рабочая” (Servise) говорит о том, что автомат можно после данного тока КЗ включить (естественно, после устранения причин КЗ), и он продолжит работать с теми же параметрами. Ток Ics автомат может выдержать три раза за весь период эксплуатации (но это не точно), далее он подлежит замене. Подробнее можно почитать в ГОСТе.

Параметры Icu и Ics в бытовом применении не используются, и в первом приближении (Icn ≤ 6 кА) можно сказать, что Icn =Icu = Ics, а для бытовых электрощитков вполне достаточно применения АВ с отключающей способностью 4,5 кА.

Однако, если говорить о вводных автоматах, по ГОСТ 32397-2013 при токах до 63 А номинальная наибольшая отключающая способность должна быть не менее 6 кА, а при токах до 125 А – не менее 10 кА.

В английской терминологии, откуда всё и пошло, это звучит как Rated Ultimate Short-Circuit Breaking Capacity (Icu) и Rated Service Short-Circuit Breaking Capacity (Ics)

Подробнее о силовых автоматах в литом корпусе, для которых эти параметры имеют значение, я пишу в другой статье.

Класс токоограничения

Этот параметр говорит о быстродействии автомата. Значение параметра приводится в рамке, под значением Icn:

Класс токоограничения автомата говорит о быстродействии электромагнитной защиты

Цифра в рамке говорит о части периода напряжения, за которое электромагнитная защита сработает при КЗ. Если указана цифра “3”, значит, при КЗ автомат успеет отработать за 1/3 периода, или за время около 6 мс.

Впрочем, в наши дни технология продвинулась настолько, что все производители легко выполняют данное условие, и автоматический выключатель любого бренда имеет класс токоограничения 3.

Скачать

Для тех, кто интересуется темой глубже и основательней, выкладываю ГОСТ, в котором подробно расписаны все характеристики и терминология касательно автоматических выключателей.

В данный момент ГОСТ Р 50345-99 (МЭК 60898-95) (Аппаратура малогабаритная электрическая. Автоматические выключатели для защиты от сверхтоков бытового и аналогичного назначения) не действует, вместо него введен ГОСТ Р 50345-2010 (МЭК 60898-1:2003) (Аппаратура малогабаритная электрическая. Автоматические выключатели для защиты от сверхтоков бытового и аналогичного назначения. Часть 1. Автоматические выключатели для переменного тока). Его и выкладываю для скачивания:

• ГОСТ Р 50345-2010 / ГОСТ Р 50345-2010 (МЭК 60898-1:2003) Аппаратура малогабаритная электрическая. Автоматические выключатели для защиты от сверхтоков бытового и аналогичного назначения. Часть 1. Автоматические выключатели для переменного тока. Настоящий стандарт распространяется на воздушные автоматические выключатели (далее — выключатели) для переменного тока для работы при частоте 50 или 60 Гц на номинальное напряжение (между фазами) не более 440 В, номинальный ток не более 125 А и номинальную отключающую способность не более 25000 А., pdf, 1.89 MB, скачан: 1097 раз./

• Харечко В.Н., Харечко Ю.В. Автоматические выключатели модульного исполнения / Харечко В.Н., Харечко Ю.В. Автоматические выключатели модульного исполнения: Справочное пособие. В справочном пособии изложены требования ГОСТ Р 50345-99 (МЭК 60898-95) к автоматическим выключателям бытового назначения, предназначенным для защиты от сверхтока, рассмотрена конструкция автоматических выключателей, даны характеристики и приведена их классификация. Разбираются ошибки, которые частично исправлены в новой версии ГОСТ Р 50345-2010, pdf, 7.17 MB, скачан: 1102 раз./

Обновление по ГОСТ на автоматические выключатели от 1 марта 2021 г.

ГОСТ Р 50345-2010 (МЭК 60898-1:2003) теперь не действует, вместо него – вступил в действие ГОСТ IEC 60898-1-2020 с тем же названием. Кроме того, есть ГОСТ IEC 60898-2-2011, в котором более точно приведены контрольные точки ВТХ в таблице 7 и п.9.

Cтатья про ток КЗ, опубликованная в бумажном журнале “Электротехнический рынок”:
• Ток КЗ: размер имеет значение / Статья про ток КЗ, опубликованная в журнале Элек.ру, pdf, 4.45 MB, скачан: 626 раз./
На сегодня всё, жду вопросов и справедливой критики в комментариях.

А во второй части статьи мы рассмотрим конструкцию защитного автомата снаружи и изнутри, а также проведём его тестирование.

Отличие от прочих коммутационных устройств

Может возникнуть вопрос, в чём заключается отличие автоматического выключателя от других коммутационных аппаратов, не способных коммутировать значительные токи. Дело в том, что коммутация токовых нагрузок, а именно их отключение, сопровождается возникновением электрической дуги. Причём, чем больше значение тока, тем сильнее дуговой разряд при отключении контактов. Горение дуги происходит в ионизированном воздушном пространстве, то есть, воздух становится электропроводящим. В зависимости от разрываемого тока и напряжения сети, дуговой разряд в промежутке определённой величины может вообще не погаснуть после отключения контактов.

Примером может служить дуговая электрическая сварка, где установив между электродом и деталью требуемый зазор, дугу можно поддерживать постоянно. Кроме этого, горящая в разрыве контактов электрическая дуга ионизирует окружающее пространство и вызывает междуфазное короткое замыкание в случае многополюсных коммутационных аппаратов.

Но это относится только к разъединителям. Автоматический выключатель оборудован специальными дугогасительными камерами, типовая конструкция которых содержит ряд параллельно расположенных пластин, они разделяют дугу на отдельные участки, где та и затухает. Также предусмотрен путь отвода образующихся при горении дуги газов. Персональной дугогасительной камерой оборудован каждый полюс автомата, что препятствует распространению ЭД на контакты соседних фаз.

Рейтинг
( 1 оценка, среднее 5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]