Типы заземляющих электродов. Кольцевой заземляющий электрод. Вертикальные заземляющие электроды

Лучший, самый дешевый и наименее трудоемкий тип заземляющего электрода — это заземляющий электрод основания. При правильном изготовлении он обладает практически неограниченным сроком службы, а его устойчивость практически не зависит от погодных условий. Фундаментный заземляющий электрод обеспечивает высокий уровень защиты и безопасности использования электрооборудования, а также не влияет на механическую прочность строительных конструкций. Почему это так редко? Ответ прост. Архитекторы и дизайнеры мало заботятся об этом, это не их индустрия. Поэтому они не вкладывают его в строительные проекты. Тогда остаётся единственный выход — создание заземляющего электрода руками специалистов по электромонтажным работам и подключению его к главной электросети нового дома.

Заземляющий электрод здания

Основным назначением заземления строительного объекта является соблюдение требований защиты от поражения электрическим током при использовании электроустановок, а также функциональных требований к установке молниезащиты. В частности, это такие задачи, как:

  • обеспечение надежной работы электроустановки;
  • выполнение всех требований, касающихся защиты жизни людей;
  • эффективное выравнивание потенциалов всех объектов и удаление энергии перенапряжения, возникающей в электрических сетях, в том числе за счет воздействия близких разрядов молнии;
  • ведущие токи замыкания на землю и токи утечки;
  • безопасное рассеивание тока молнии, разряженного от системы молниезащиты в земле.

Принципы проектирования заземляющих электродов для целей молниезащиты были включены в стандарт ГОСТ Р 57190-2016, который различает два типа заземляющих электродов:

  • Система типов, состоящая из горизонтальных и вертикальных заземляющих электродов, выполненных снаружи. Количество таких заземляющих электродов должно быть не менее 2
  • Система типа B, в виде основания, кольца или решетчатого заземляющего электрода.

Эффективность системы заземления определяется ее заземляющим сопротивлением. В общих случаях, если нет особых обстоятельств, рекомендация для нормальных строительных работ не должна превышать 10 Ом (Ом). Однако для домов на одну семью это часто слишком ограничительно. Иногда энергетические компании требуют этого, но это не имеет под собой никаких оснований, вытекающих из правовых положений или технических стандартов. Частные дома — это объекты с самыми низкими уровнями защиты (III и IV), для которых стандарт ГОСТ Р 57190-2016 не обеспечивает требуемого максимального сопротивления заземления. Вместо этого он принимает, как приемлемый, постоянный минимальный размер заземления 5 м. Итак, какое сопротивление заземления придет к нам тогда, это будет принято.

Статья по теме: Маты компенсационные: особенности, преимущества, назначение

Монтаж заземляющего устройства (ЗУ)

Заземляющее устройство или устройство заземления (заземление) – это конструкция электрически связанных между собой металлических или биметаллических проводников различной геометрии и конфигурации, с одной стороны, и объемного проводника бесконечно большого сечения Земли, с другой.

Цель и смысл организации заземления (контура) – увод подавляющей части тока в землю безопасным для человека способом при аварии электроустановки, обеспечивая тем самым защиту от поражения человека и чувствительного оборудования.

Заземляющие металлические проводники принято разделять на поверхностные (горизонтальные; полосовая сталь) и глубинные (вертикальные; уголок, труба (в т.ч. обсадная), круг, арматура) заземлители; в отдельных случаях в качестве устройства заземления применяют железобетонный фундамент зданий/сооружения. Причем если глубина монтажа (заглубления) заземлителей небольшая (3 – 5 метров), то такое заземление также называют поверхностным. Глубинное (подземное) устройство заземления подразумевает более глубокое заглубление механическим способом методом вибрационного вбивания или скважинного бурения.

Выбор конечного проекта устройства заземления зависит от мощности электротока, который необходимо безопасно отвести/стечь в землю и электрохимических характеристик грунта/земли.

Монтаж заземляющего устройства

Монтаж заземления принято разделять на 4 этапа:

  • Начальные земляные работы: копка, бурение.
  • Монтажные работы: укладка горизонтальной полосы, забивка/установка вертикальных заземлителей; сварка/болтовое скрепление элементов заземляющего устройства; окраска наружных элементов заземляющего устройства и мест сварных соединений защитным битумным составом черного цвета.
  • Конечные земляные работы: засыпка.
  • Измерительные работы: замер сопротивления заземляющего устройства.

Начальные земляные работы

Начальные земляные работы

Перед началом земляных работ необходимо обозначить/отмаркировать трассу укладки горизонтального заземлителя. Для этой цели достаточно выборочно снять поверхностную часть грунта на глубину полуштыка лопаты (можно ограничиться метками в виде приямка на расстояние полуметра-метра друг от друга по всей длине трассы).

Далее делается полноценная траншея на ширину лопаты 210-240 миллиметров и глубину не менее 0,5 метра (в идеале: 0,5÷0,7 метра).

При монтаже глубинных/подземных электродов (глубина до 200 метров) применяют скважинное шнековое бурение с использованием ямобура или буровой установки. Бурение осуществляется под проектную глубину и диаметр безопасным способом.

Монтажные работы

После выполнения начальных земляных работ выполняется забивка/вдавливание вертикальных заземлителей ручным (кувалдой) или механическим способом (ковшом экскаватора (до 5 метров), либо вибромолотом/перфоратором с силой удара 19-21 Джоуль (до 30 метров)).

Монтаж вертикальных заземлителей ручным способом (кувалдой) имеет ряд ограничений:

— Глубина монтажа не более 2,5 метра (на практике средняя глубина монтажа 1,5 метра; уголок гнется; ударное место уголка раскрывается «розочкой»).

— Жесткий грунт (например, голубая глина; камни/валуны и пр.).

— Песчаный и мерзлотный грунт (высокое удельное сопротивление грунта).

Метод вдавливания в землю заземлителя хорош на глубину до 5 метров и имеет те же ограничения, что и ручным способом.

Для монтажа глубинно-модульных (типового глубинного) заземлителей используется специальная насадка SDS-max; для монтажа уголков или арматуры применяется профессиональная насадка собственного производства для вибромолота или SDS-max. Данная мера значительно упрощает и ускоряет процесс монтажа вертикальных заземлителей. Очевидные ограничения данного метода: каменистый грунт. Очевидный плюс: минимальный землеотвод и независимые от сезона параметры заземлителя, а также хорошие результаты в песчаном высокоомном грунте.

В качестве вертикального заземлителя, как правило, используется полосовая черная или оцинкованная сталь 40х4 мм. Обычно данную полосу поставляют хлыстами длиной 6 метров или бухтой 50 метров.

Соединение полосовой стали между собой и вертикальным электродом выполняется методом дуговой сварки. Место сварного соединения после остывания и зачистки шлака + флюса необходимо покрыть защитным битумным составом черного цвета.

Применение болтовых зажимов для соединения электродов допускается, но нами не рекомендуется из-за недолговечного результата электрического соединения. Через непродолжительное время грунтовая влага окисляет металл в месте соединения, в результате чего образуется большое переходное сопротивление, которое выводит из строя само заземляющее устройство (оно не работает). Применение болтовых соединений в системах заземления – это вынужденная мера!

Для подключения Главной заземляющей шины (ГЗШ) в помещении электроустановки делают переход от стальной полосы на заземляющий проводник (ПВ-3, ПуГВ) с сечением не менее фазного и полосатой маркировкой желто-зеленого цвета изоляции. Для удобства само место соединения на улице выполняют в пластиковой разделительной коробке с IP65 желательно на высоте 2,5 метра (вне доступа касания человека); саму полосовую сталь окрашивают в черный цвет.

Конечные земляные работы

После монтажа саму траншею/приямок засыпают мягким глиносодержащим грунтом (без крупнообломочного/с валунами грунта).

Использование песчаного грунта для засыпки горизонтального заземлителя ухудшает характеристики последнего, поскольку создает вокруг него область растекания тока с большим удельным сопротивлением. Напротив, в отдельных случаях для уменьшения электрического сопротивления заземляющего устройства рекомендуется засыпать пространство вокруг горизонтального электрода низкоомным материалом/наполнителем (бентонитовая глина (удерживает влагу), коксовая мелочи (имеет низкое удельное сопротивление) и им подобных).

Измерительные работы

После завершения конечных земляных работ обязательно проводятся измерительные работы: меряют сопротивление заземляющего устройства.

В процессе монтажа глубинно-модульного заземления, после прохождения каждый трех метров грунта заземляющим электродом делается контрольная проверка сопротивления заземления путем прямого измерения 3-х проводным способом.

Когда все сделано правильно заземляющее устройство служит долго и его характеристики сильно не изменяются в зависимости от сезона.

Более подробную информацию по монтажу заземляющего устройства Вы можете получить по телефону: +7 (812) 748-26-28.

Типы заземления, основные условия

Заземляющие устройства, составляющие существенную часть заземляющей установки, могут быть естественными или искусственными, или они представляют собой смешанную систему, состоящую из обоих типов.

Естественные земли. В качестве естественных заземляющих электродов могут использоваться металлические водопроводные трубы, свинцовые оболочки и броня силовых кабелей, металлические элементы, встроенные в фундамент, армирование бетона в земле и другие металлические элементы объектов, имеющих хороший контакт с землей. Особенно рекомендуется использовать в качестве заземления естественную конструкционную арматуру в фундаментах из бетона, армированного стальными полосами или стержнями, встроенными в днище фундамента.

В качестве искусственных заземляющих электродов могут использоваться секции, стержни, провода, кабели, пластины или полосы. Как правило, стальные, покрытые проводящими защитными покрытиями (антикоррозийными), встроенными в землю горизонтально (горизонтальные заземляющие электроды) или вертикально (вертикальные заземляющие электроды), а также стержни или полосы, встроенные в фундаментные скамейки, не действует как структурное усиление (хотя их связи с усилением сделаны). Заземляющие электроды могут быть выполнены из отдельных горизонтальных или вертикальных элементов (концентрированные заземляющие электроды) или они могут быть сложными заземляющими электродами, сформированными из системы заземляющих электродов различных конфигураций (например, радиальных, решетчатых или кольцевых заземляющих электродов).Система, состоящая из заземления, защитных и заземляющих проводников, называется системой заземления. В процессе монтажа контуров заземления, система должна быть подключена к шине выравнивания потенциалов защищаемого здания.

Измерение сопротивления заземления

Содержание

скрыть

1 ОПРЕДЕЛЕНИЕ

2 СОПРОТИВЛЕНИЕ ЗАЗЕМЛЯЮЩЕГО ЭЛЕКТРОДА

3 ВЛИЯНИЕ РАЗМЕРОВ ЭЛЕКТРОДА И ГЛУБИНЫ ЕГО ЗАЗЕМЛЕНИЯ

4 ВЛИЯНИЕ УДЕЛЬНОГО СОПРОТИВЛЕНИЯ ГРУНТА НА СОПРОТИВЛЕНИЕ ЗАЗЕМЛЕНИЯ ЭЛЕКТРОДА

5 ФАКТОРЫ, ВЛИЯЮЩИЕ НА УДЕЛЬНОЕ СОПРОТИВЛЕНИЕ ГРУНТА

6 ЗНАЧЕНИЯ СОПРОТИВЛЕНИЯ ЗАЗЕМЛЕНИЯ

7 ПРИНЦИП ИЗМЕРЕНИЯ СОПРОТИВЛЕНИЯ ЗАЗЕМЛЕНИЯ

8 ПОЛОЖЕНИЕ ВСПОМОГАТЕЛЬНОГО ЭЛЕКТРОДА ПРИ ИЗМЕРЕНИИ

9 ИЗМЕРЕНИЕ СОПРОТИВЛЕНИЯ ЗАЗЕМЛЕННОГО ЭЛЕКТРОДА (Метод 62-х процентов)

10 УДАЛЕННОСТЬ ВСПОМОГАТЕЛЬНОГО ЭЛЕКТРОДА

11 ИЗМЕРЕНИЕ ПРОВОДИМОСТИ ПРОВОДНИКА ЗАЗЕМЛЕНИЯ

12 ДВУХТОЧЕЧНЫЙ МЕТОД ИЗМЕРЕНИЯ (Упрощенный метод)

13 ИЗМЕРЕНИЕ УДЕЛЬНОГО СОПРОТИВЛЕНИЯ ГРУНТА (4-точечный метод)

14 ИЗМЕРЕНИЕ УДЕЛЬНОГО СОПРОТИВЛЕНИЯ ГРУНТА ПРИБОРОМ TERCA 2

15 ИЗМЕРЕНИЕ НАПРЯЖЕНИЯ ПРИКОСНОВЕНИЯ

16 ИЗМЕРЕНИЕ ПРИБОРОМ С.А 6415 C ПРИМЕНЕНИЕМ ТОКОВЫХ КЛЕЩЕЙ

17 ПРИМЕРЫ ИЗМЕРЕНИЙ НА МЕСТНОСТИ

ОПРЕДЕЛЕНИЕ

Под термином заземление подразумевается электрическое подключение какой-либо цепи или оборудования к земле. Заземление используется для установки и поддержания потенциала подключенной цепи или оборудования максимально близким к потенциалу земли. Цепь заземления образована проводником, зажимом, с помощью которого проводник подключен к электроду, электродом и грунтом вокруг электрода.

Заземление широко используется с целью электрической защиты. Например, в осветительной аппаратуре заземление используется для замыкания на землю тока пробоя, чтобы защитить персонал и компоненты оборудования от воздействия высокого напряжения. Низкое сопротивление цепи заземления обеспечивает стекание тока пробоя на землю и быстрое срабатывание защитных реле. В результате постороннее напряжение как можно быстрее устраняется, чтобы не подвергать его воздействию персонал и оборудование. Чтобы наилучшим образом фиксировать опорный потенциал аппаратуры в целях ее защиты от статического электричества и ограничить напряжения на корпусе оборудования для защиты персонала, идеальное сопротивление цепи заземления должно быть равно нулю. Из дальнейшего описания станет ясно, что на практике этого добиться невозможно. Достаточно низкие, но не предельные, значения сопротивления заданы в последних стандартах безопасности NEC®, OSHA и др.

СОПРОТИВЛЕНИЕ ЗАЗЕМЛЯЮЩЕГО ЭЛЕКТРОДА

На рис.1 показан заземляющий штырь. Его сопротивление определяется следующими компонентами: (А) сопротивление металла штыря и сопротивление контакта проводника со штырем; (Б) сопротивление контакта штыря с грунтом; (В) сопротивление поверхности земли протекающему току, иначе говоря, сопротивление земли, которое часто является самым важным из перечисленных слагаемых.

Подробнее: (А) Обычно заземляющий штырь делается из хорошо проводящего металла (полностью медный штырь или с медным покрытием) и клеммой соответствующего качества, поэтому сопротивлением штыря и его контакта с проводником можно пренебречь. (Б) Национальное бюро стандартизации показало, что сопротивлением контакта электрода с грунтом можно пренебречь, если электрод плотно вбит и на его поверхности нет краски, масла и подобных веществ. (В) Остался последний компонент – сопротивление поверхности грунта. Можно представить, что электрод окружен концентрическими слоями грунта одинаковой толщины. Ближний к электроду слой имеет наименьшую поверхность, но наибольшее сопротивление. По мере удаления от электрода поверхность слоя увеличивается, а его сопротивление уменьшается. В конечном счете, вклад сопротивления удаленных слоев в сопротивление поверхности грунта становится незначительным. Область, за пределами которой сопротивлением слоев земли можно пренебречь, называется областью эффективного сопротивления. Ее размер зависит от глубины погружения электрода в грунт. Теоретически сопротивление земли можно определить общей формулой: R = L / A (Сопротивление = Удельное сопротивление х Длина / Площадь ) Эта формула объясняет, почему уменьшается сопротивление концентрических слоев по мере их удаления от электрода: R = Удельное сопротивление грунта х Толщина слоя / Площадь При вычислении сопротивления земли удельное сопротивление грунта считают неизменным, хотя это редко встречается в практике. Формулы сопротивления земли для систем электродов очень сложны и при этом зачастую позволяют вычислять сопротивление лишь приблизительно. Наиболее часто используется формула сопротивления заземления для случая одного электрода, полученная профессором Дуайтом (H. R. Dwight) из Массачусетского технологического института: R = /2 L x ((In4L)-1)/r R = , где R – сопротивление заземления штыря в омах, L – глубина заземления электрода, r – радиус электрода, — среднее удельное сопротивление грунта в Ом·см.

ВЛИЯНИЕ РАЗМЕРОВ ЭЛЕКТРОДА И ГЛУБИНЫ ЕГО ЗАЗЕМЛЕНИЯ

Влияние размера: увеличение диаметра штыря уменьшает сопротивление заземления незначительно. Удвоение диаметра снижает сопротивление меньше, чем на 10% (см. рис.2). Влияние глубины заземления штыря: сопротивление заземления уменьшается с увеличением глубины. Теоретически при удвоении глубины сопротивление уменьшается на 40 %. Стандарт NEC (1987, 250-83-3) предписывает заземлять штырь минимум на 8 футов (2,4 м) для обеспечения хорошего контакта с землей (см. рис.3). В большинстве случаев штырь, заземленный на 10 футов (3 м), удовлетворяет требованиям NEC. Минимальный диаметр стального штыря равен 5/8 дюйма (1,59 см), а медного или покрытого медью стального штыря — равен 1/2 дюйма (1,27 см) (NEC 1987, 250-83-2). На практике минимальный диаметр 3 м штыря заземления равен:

  • 1/2 дюйма (1,27 см) для обычного грунта,
  • 5/8 дюйма (1,59см) для сырого грунта,
  • 3/4 дюйма (1,91 см) для твердого грунта или для штыря длиннее 10 футов.

ВЛИЯНИЕ УДЕЛЬНОГО СОПРОТИВЛЕНИЯ ГРУНТА НА СОПРОТИВЛЕНИЕ ЗАЗЕМЛЕНИЯ ЭЛЕКТРОДА

Приведенная выше формула Дуайта показывает, что сопротивление заземления зависит не только от глубины и площади поверхности электрода, но и от удельного сопротивления грунта. Оно является главным фактором, который определяет сопротивление заземления и глубину заземления штыря, какая потребуется для обеспечения малого сопротивления. Удельное сопротивление грунта сильно изменяется в зависимости от района земного шара и времени года. Оно в значительной степени зависит от содержания в почве электропроводящих минералов и электролитов в виде воды с растворенными в ней и солями. Сухая почва, не содержащая растворимых солей, имеет высокое сопротивление (см. таблицу№ 1).

ПочвыУдельное сопротивление, Ом·см Мин.Удельное сопротивление, Ом·см СреднееУдельное сопротивление, Ом·см Макс.
Зольные почвы, шлаки, засоленные почвы, пустынные59023707000
Глины, глинистые сланцы, илистая, суглинок340406016000
Те же с песком или гравием102015 800135000
Гравий, песок, камни с небольшим количеством глины или суглинка5900094000458000

Таблица № 1

ФАКТОРЫ, ВЛИЯЮЩИЕ НА УДЕЛЬНОЕ СОПРОТИВЛЕНИЕ ГРУНТА

Два типа почвы в сухом виде могут стать фактически изоляторами с удельным сопротивлением более 109 Ом · см. Как можно видеть в таблице № 2, сопротивление образца почвы изменяется весьма быстро при увеличении содержания влаги в ней приблизительно до 20%.

Содержание влаги, %Удельное сопротивление, Ом·см ЗемляУдельное сопротивление, Ом·см Песчаный суглинок
0меньше 109меньше 109
2,5250000150000
516500043000
105300018500
151900010500
20120006300
3064004200

Таблица№2
Удельное сопротивление почвы, также, зависит от температуры. Таблица№ 3 показывает, как меняется удельное сопротивление песчаного суглинка с содержанием влаги 12,5% при изменении температуры от +20 до -15°С. Как можно видеть, удельное сопротивление изменяется от 7200 до 330 000 Ом-сантиметров.

Температура, °СТемпература по Фаренгейту, FУдельное сопротивление, Ом·см
20687200
10509900
032(вода)13800
032(лед)30000
-52379000
-1514330000

Таблица№3
Поскольку удельное сопротивление грунта сильно зависит от температуры и содержания влаги, разумно считать, что сопротивление устройства заземления будет зависеть от времени года. Такие изменения показаны на рис.7. Поскольку стабильность температуры почвы и содержания в ней влаги улучшается по мере удаления от поверхности, то система заземления будет эффективна в любое время, если штырь вбит на значительную глубину. Отличные результаты получаются, когда штырь достигает уровня воды.

В некоторых случаях удельное сопротивление грунта настолько велико, что для получения низкого сопротивления заземления требуется сложное устройство и значительные затраты. В этих случаях оказывается более экономичным использовать заземленный штырь небольших размеров и снижать сопротивление заземления, периодически повышая содержание растворимых веществ в почве вокруг электрода. Рисунок 8 показывает существенное уменьшение сопротивления песчаного суглинка при увеличении содержания в нем соли.

На рис. 9 показана зависимость удельного сопротивления грунта, пропитанного раствором соли, от температуры. Конечно, если используется пропитка грунта соляным раствором, штырь заземления должен быть защищен от химической коррозии.

Чтобы помочь инженеру приблизительно определить глубину заглубления электрода, необходимую для получения заданного сопротивления устройства заземления, можно воспользоваться так называемой Номограммой заземления. Она показывает, что для получения сопротивления заземления 20 Ом на грунте с удельным сопротивлением 10000 Ом-сантиметров, потребуется дюймов заглубить на 20 футов штырь диаметром 5/8.

Работа с Номограммой заземления

  1. Выберите необходимое сопротивление по шкале R.
  2. Отметьте на шкале Р точку удельного сопротивления грунта.
  3. Проведите прямую линию через точки на шкале R и Р до шкалы K.
  4. Отметьте точку на шкале K.
  5. Выберите диаметр штыря и проведите прямую линию до шкалы D через точки на шкале DIA и на шкале K.
  6. Пересечение этой прямой с линией шкалы D покажет величину заглубления штыря, необходимую для того, чтобы обеспечить выбранное вначале сопротивление заземления.

ЗНАЧЕНИЯ СОПРОТИВЛЕНИЯ ЗАЗЕМЛЕНИЯ

В разделе «Сопротивление искусственных электродов» стандарта NEC ® 250-84 (1987) написано: «Если один электрод в виде штыря, трубы или пластины не обеспечивает сопротивление равное или меньшее, чем 25 Ом, то необходимо применить дополнительно любое из устройств, описанных в части 250-83. Где бы ни устанавливалась группа штырей, труб или пластин, указанный раздел требует, чтобы расстояние между ними было не менее 1,8 м.» Национальный кодекс по электричеству (NEC® — National Electrical Code) устанавливает, что сопротивление заземления не должно быть больше 25 Ом. Эта директива является верхней границей и во многих случаях требуется гораздо меньшее значение. Возникает вопрос: «Насколько низким должно быть значение сопротивления заземления?» Трудно назвать конкретное количество Ом. Низкое сопротивление заземления обеспечивает большую защиту персонала и оборудования. Поэтому стоит стремиться сделать его меньше одного Ом. Однако, было бы непрактично добиваться такого низкого значения сопротивления по всей сети распределения и передачи электроэнергии или на малых подстанциях. В некоторых регионах можно получить без значительных усилий значение 5 Ом. В других — трудно достигнуть и 100 Ом сопротивления заземления. Стандарты, принятые в промышленности, устанавливают, что передающая электроэнергию подстанция должна обеспечивать сопротивление заземления, не превышающее одного Ом. Для подстанций, распределяющих электроэнергию, рекомендуется сопротивление заземления не выше 5 и даже 1 Ом. На большинстве подстанций требуемое значение сопротивления может обеспечить система заземления в виде решетки.

В сетях электроосвещения или на узлах связи часто приемлемым значением считается 5 Ом. Если в сетях электроосвещения применяется громоотвод, то он должен подключаться к цепи заземления с сопротивлением не больше одного Ом. Именно такие значения сопротивления заземления, вытекающие из теории, обычно и применяются на практике. Однако всегда существуют случаи , когда очень трудно обеспечить сопротивление заземления, удовлетворяющее стандарту NEC ® или другим стандартам безопасности. Для этих случаев существует несколько методов уменьшения сопротивления заземления. В их числе система из параллельно соединенных электродов, система с глубоким заземлением составных электродов и химическая обработка грунта. Кроме того, в других публикациях обсуждается заземление в виде закопанных пластин, проводников (электрический противовес), в виде подключения к стальным конструкциям зданий и арматуре железобетонных конструкций.

Низкое сопротивление заземления может обеспечить подключение к трубам систем водо- и газоснабжения. Однако, применение с недавнего времени неметаллических труб и непроводящих стыков между трубами сделали проблематичным или вовсе невозможным обеспечить в этом случае низкое сопротивление заземления. Для измерения сопротивления заземления требуется специальные приборы. Большинство из них используют принцип падения потенциала, созданного переменным током (AC – alternative current) протекающим между вспомогательным и проверяемым электродом. Измерение проводится в омах и показывает сопротивление между заземленным электродом и окружающей его землей. В числе приборов СА® недавно появились измерители сопротивления заземления, применяющие клещи тока.

Примечание. National electric code ® и NEC ® являются зарегистрированными торговыми марками Национальной противопожарной ассоциации (National Fire Protection Association).

ПРИНЦИП ИЗМЕРЕНИЯ СОПРОТИВЛЕНИЯ ЗАЗЕМЛЕНИЯ

(Принцип падения потенциала, 3-точечная схема.) Вольтметром измеряется напряжение между штырями X и Y и амперметром — ток, протекающий между штырями X и Z (см. рис. 11).

(Заметьте, что точки X,Y и Z соответствуют точкам X,P и C прибора, работающего по 3-точечной схеме или точкам С1,Р2 и С2 прибора, работающего по 4-точечной схеме.) Пользуясь формулами закона Ома E = R I или R = E / I, мы можем определить сопротивление заземления электрода R. Например, если Е = 20 В и I = 1 А, то: R = E / I = 20 / 1 = 20 Ом При использовании тестера заземления не потребуется производить эти вычисления. Прибор сам сгенерирует необходимый для измерения ток и прямо покажет значение сопротивления заземления.

ПОЛОЖЕНИЕ ВСПОМОГАТЕЛЬНОГО ЭЛЕКТРОДА ПРИ ИЗМЕРЕНИИ

Для точного измерения сопротивления заземления размещать вспомогательный электрод тока Z достаточно далеко от измеряемого электрода для того, чтобы потенциал на вспомогательном электроде напряжения Y измерялся за пределами зон эффективного сопротивления как проверяемого электрода X, так и вспомогательного электрода тока Z. Наилучшим способом проверить, находится ли электрод за пределами зон эффективного сопротивления остальных электродов, будет проводить измерения, меняя его местоположение. Если вспомогательный электрод напряжения Y находится в зоне эффективного сопротивления одного из остальных электродов (или одновременно в обеих зонах, если зоны перекрываются), то при смене его местоположения показания прибора будут значительно меняться и в этом случае нельзя точно определить сопротивление заземления (см. рис 12).

С другой стороны, если вспомогательный электрод напряжения Y расположен за пределами зон эффективного сопротивления (рис. 13), то при его перемещении показания будут изменяться незначительно. Это и есть наилучшая оценка сопротивления заземления электрода Х. Результаты измерения лучше изобразить на графике, чтобы убедиться , что они находятся на почти горизонтальном участке кривой, как показано на рис.13. Часто расстояние от этого участка до проверяемого электрода равно приблизительно 62% расстояния от вспомогательного электрода тока до проверяемого электрода.

ИЗМЕРЕНИЕ СОПРОТИВЛЕНИЯ ЗАЗЕМЛЕННОГО ЭЛЕКТРОДА (Метод 62-х процентов)

Метод 62% был принят после изучения графиков и практических проверок. Этот метод обеспечивает наибольшую точность при условии однородности грунта. Этот метод применяется, если проверяемое устройство заземления и два вспомогательных электрода можно расположить в линию и когда проверяемое устройство заземления состоит из одного штыря, одной трубы , одной пластины и т.п., как показано на рис. 14.

На рис. 15 показано, что зоны эффективного сопротивления (группа концентрических поверхностей вокруг штырей) проверяемого электрода Х и вспомогательного электрода тока Z перекрываются. Если переместить электрод потенциала Y по направлению к электроду Х или Z и повторить измерение, то показания будут сильно различаться и измеренное значение будет неприемлемо далеко от истинного сопротивления заземления. Области эффективного сопротивления пересекаются и это приводит к тому, что измеренное значение сопротивления возрастает по мере удаления электрода Х от проверяемого электрода Y.

Теперь рассмотрим рисунок 16, на котором электроды Х и Z удалены на расстояние достаточное, чтобы зоны эффективного сопротивления электродов не пересекались. Если мы теперь построим график сопротивления в зависимости от расстояния между электродами X и Y, мы увидим, что разница между сопротивлением слева и справа от точки 62% (относительное расстояние от Y Х) приемлемо мала. Обычно эта разница измеряется в процентах от измеренной величины: ± 2%, ± 5%, ± 10% и т.д.

УДАЛЕННОСТЬ ВСПОМОГАТЕЛЬНОГО ЭЛЕКТРОДА

Нельзя назвать одно на все случаи значение расстояния от вспомогательного электрода тока Z до проверяемого электрода Х, поскольку оно зависит от длины и диаметра проверяемого электрода, однородности грунта и, особенно, от размеров эффективных областей сопротивления электродов. Однако, в данном параграфе дано приблизительное значение этого расстояния для электрода диаметром 1 дюйм при однородном грунте (для диаметра ? дюйма уменьшите расстояние на 10%, для диаметра 2 дюйма увеличьте расстояние на 10%).

Глубина заземления проверяемого электрода, футовРасстояние до электрода Y, футовРасстояние до электрода Z, футов
65072
85580
106088
127196
1874115
2086120
3045140

Приблизительное расстояние до вспомогательных электродов для метода 62%

ИЗМЕРЕНИЕ ПРОВОДИМОСТИ ПРОВОДНИКА ЗАЗЕМЛЕНИЯ

Проводимость проводника заземления можно измерить, включив его между двумя входами измерительного прибора (см. рис. 17).

ДВУХТОЧЕЧНЫЙ МЕТОД ИЗМЕРЕНИЯ (Упрощенный метод)

Этот альтернативный способ применяется , когда доступно другое очень хорошее заземление, кроме измеряемого. В густонаселенных районах, где трудно найти места для установки двух вспомогательных электродов, можно применить двухточечный метод. Измерение показывает сопротивлению двух устройств заземления, включенных последовательно. Поэтому второе заземление должно быть очень хорошим, настолько, чтобы его сопротивлением можно было пренебречь. Необходимо, также, измерить сопротивление провода и вычесть его из полученного измерения. Двухточечный метод не такой точный, как 3-точечный метод (метод 62%), поскольку зависит от расстояния между измеряемым электродом и вспомогательным заземлением (неиспользуемое заземление или водопроводная труба). Этот метод нельзя использовать как стандартный. Скорее, — это выход из положения в густонаселенных районах. См. рис. 18.

ИЗМЕРЕНИЕ УДЕЛЬНОГО СОПРОТИВЛЕНИЯ ГРУНТА (4-точечный метод)

Почему так важно измерять сопротивление грунта? Измерение сопротивления грунта преследует тройную цель. Во-первых, эти данные используются для геофизического изучения залегающих пород с целью определения зон и глубины залегания руд и для изучения других геофизических феноменов. Во-вторых, сопротивление грунта оказывает непосредственное влияние на степень коррозии подземных трубопроводов. Уменьшение сопротивления грунта приводит к усилению процесса коррозии и, следовательно, заставляет проводить специальную защитную обработку труб. В-третьих, сопротивление грунта непосредственно влияет на конструкцию устройств заземления. И именно поэтому здесь обсуждается вопрос о сопротивлении грунта. При разработке систем заземления большого размера, разумно определить области наименьшего сопротивления грунта, чтобы сконструировать наиболее экономичную установку. Измерять сопротивление можно двумя методами: двухточечным или 3-точечным. Двухточечный метод заключается просто в измерении сопротивления между двумя точками. В большинстве случаев наиболее точным является 4-точечный метод, который применен в тестере заземления модели 4500. Как следует из названия, 4-точечный метод (см рис. 19 и 20 ниже) на измеряемом участке требуется установить в линию четыре равноудаленных электрода. Между крайними электродами протекает ток известной величины, созданный генератором тока. Между внутренними электродами измеряется падение напряжения. Модель 4500 показывает непосредственно значение сопротивления в омах: = 4 AR/ (1+2A/(A2+4B2) -2A/(4A2+4B2)) А – расстояние между электродами в см; В – глубина заземления электродов в см. Если А > 20 В, то формула такова: = 2 AR (если А — в см) = 191,5 AR (если А – в футах) = Сопротивление грунта (в Ом·см) Это значение есть среднее удельное сопротивление грунта на глубине равной расстоянию А между электродами.

ИЗМЕРЕНИЕ УДЕЛЬНОГО СОПРОТИВЛЕНИЯ ГРУНТА ПРИБОРОМ TERCA 2

Имеется обширный участок земли, на котором надо определить место с наилучшим удельным сопротивлением. Немного интуиции не помешает. Поскольку наша цель найти место с наименьшим сопротивлением, сухой песчаной почве мы предпочтем влажный суглинок. Также следует оценить глубину залегания слоя с наименьшим удельным сопротивлением. Пример: После обследования зона поиска сократилась приблизительно до 75 квадратных футов (22,5 м?). Допустим, необходимо определить сопротивление на глубине 15 футов (450 см). Расстояние между крайними штырями заземления равно глубине, на которой необходимо измерить среднее удельное сопротивление (15 футов или 450 см). Чтобы применить более простую формулу Венера (r = 2? AR), необходимо заземлять электрод на глубину равную 1/20 расстояния между электродами или на 8 7/8 футов (22,5 см). Устанавливайте электроды по сетке, как показано на рис. 19, и подключайте тестер заземления модели 4500 по схеме на рис. 20. Выполните следующие действия:

  • Снимите перемычку, замыкающую выводы Х и Х V (C1 и P1) прибора;
  • Подключите прибор ко всем четырем штырям (см. рис.20).

Например, пусть измерено сопротивление R = 15, (удельное сопротивление) = 2 RA А (расстояние между электродами) = 450 см. Тогда : = 6,28 х 15 х 450 = 42 390 Ом·см.

ИЗМЕРЕНИЕ НАПРЯЖЕНИЯ ПРИКОСНОВЕНИЯ

Первой причиной для измерения напряжения прикосновения является необходимость оценить безопасность персонала и защиту оборудования от высокого напряжения. Однако, в некоторых случаях степень электрической безопасности можно оценивать с различных точек зрения. Периодические измерения сопротивления устройства заземления в виде электрода или решетки электродов рекомендуются в следующих случаях:

  1. Когда устройство заземления в виде электрода или решетки относительно мало и его удобно отключать.
  2. Когда есть подозрение, что идет коррозия электрода, вызванная низким сопротивлением грунта и гальваническими процессами.
  3. Когда пробой на землю поблизости от проверяемого устройства заземления маловероятен. Измерение напряжения прикосновения является альтернативным способом определения безопасности. Он рекомендуется в следующих случаях:
  4. Когда невозможно физически или по экономическим соображениям отключать заземление для того, чтобы произвести измерение.
  5. Когда можно ожидать пробоев на землю рядом с проверяемым заземлением или рядом с оборудованием, которое подключено к проверяемому заземлению.
  6. Когда «след» оборудования сравним с размером заземления, которое подлежит проверке. ( «След» – контур той части оборудования, которая соприкасается с землей.)

Ни измерение сопротивления заземления методом падения потенциала, ни измерение напряжения прикосновения не говорят о способности проводника заземления выдержать большие токи утечки с проводника фазы на проводник заземления. Требуется другой тест с использованием большого тока для того, чтобы это проверить. Для измерения напряжения прикосновения применяется 4-точеный тестер заземления. В процессе измерения прибор генерирует в земле небольшое напряжение, имитирующее напряжение неисправности неподалеку от проверяемой точки на земле. Прибор показывает значение в вольтах на ампер тока, протекающего при этом в цепи заземления. Отображенное на экране значение затем умножается на максимальную величину тока, ожидаемого в земле, чтобы вычислить напряжение прикосновения данной установки для худшего случая. Например, если при проверке системы с максимальным ожидаемым током неисправности 5000 А, прибор показал значение 0,100, то напряжение прикосновения будет равно 500 В. Измерение напряжения прикосновения похоже на метод падения потенциала тем, что так же требует установки вспомогательных электродов в землю или на ее поверхность. Но расстояние между вспомогательными электродами будет другое — см. рис. 21.

Рассмотрим следующий пример. Пусть изоляция изображенного на рисунке подземного кабеля была пробита недалеко от изображенной подстанции. В земле появятся токи, вызванные аварией, которые потекут к устройству заземления подстанции, создавая разность потенциалов. Это напряжение может быть опасным для здоровья, и даже жизни, персонала, который находится на данном участке земли. Чтобы приблизительно измерить напряжение прикосновения для данной ситуации, выполните следующие действия. Включите кабели между ограждением подстанции и точками С1 и Р1 4-точечного тестера заземления. Установите электрод в земле в точке,. где можно ожидать пробой кабеля и подключите электрод к выводу С2 прибора. Установите в землю еще один электрод на линии между первым электродом и точкой подключения к ограждению на расстоянии одного метра (или вытянутой руки) от места подключения к ограждению и подключите этот электрод к точке Р2 прибора. Включите прибор, выберите диапазон 10 мА и снимите измерение. Умножьте его на максимально возможный в случае аварии ток. Устанавливая электрод, подключенный к выводу Р2 прибора, в различные места вокруг ограждения, примыкающие к неисправной линии, можно получить карту изменения потенциала.

ИЗМЕРЕНИЕ ПРИБОРОМ С.А 6415 C ПРИМЕНЕНИЕМ ТОКОВЫХ КЛЕЩЕЙ

Это новый уникальный метод измерения сопротивления заземления. Он позволяет проводить измерение без отключения цепи заземления. Кроме того, преимущество метода в том, что он позволяет измерять общее сопротивление устройства заземления, включая сопротивление соединений в цепи заземления.

рис.22

рис.23

Обычно, проводник заземления электросети общего назначения можно представить схемой, показанной на рис. 22 или эквивалентной схемой, показанной на рис. 23. Если в какой-нибудь ветви с сопротивлением RX с помощью трансформатора создать напряжение E, через цепь потечет ток I . Описанные величины связаны соотношением E / I = RX. При известном неизменном напряжении Е сопротивление RX можно получить, измерив ток I. Обратимся снова к рис. 22 и 23. Ток создается специальным трансформатором, подключенным к через усилитель мощности к источнику напряжения с постоянной амплитудой и частотой 1,6 кГц. Этот ток регистрируется в образующемся контуре. Измеряемый сигнал регистрируется синхронным детектором, усиливается избирательным усилителем, преобразуется аналогово-цифровым преобразователем и отображается на ЖК-дисплее. Избирательный усилитель применяется для очищения полезного сигнала от сигналов с частотой сети и от высокочастотных шумов. Напряжение регистрируется катушками, охватывающими проводник в возбуждаемом контуре, затем усиливается и очищается, когда сравнивается в компараторе с опорным сигналом. Если клещи тока неправильно закрыты, на дисплее появляется сообщение «open jaws» («клещи открыты»).

ПРИМЕРЫ ИЗМЕРЕНИЙ НА МЕСТНОСТИ

ИЗМЕРЕНИЕ ЗАЗЕМЛЕНИЯ ТРАНСФОРМАТОРА, СМОНТИРОВАННОГО НА СТОЛБЕ ЛИНИИ ЭЛЕКТРОПЕРЕДАЧИ Снимите защитную крышку с провода заземления и обеспечьте достаточно свободного места для захвата проводника клещами тока. Клещи должны свободно охватывать проводник заземления. Клещами можно захватить и непосредственно штырь заземления. Примечание: клещи должны находиться на электрическом пути от нейтрали системы или проводника заземления к штырю или штырям (в зависимости от исполнения) Выберите измерение тока «А». Захватите клещами проводник заземления и измерьте ток в проводнике. Максимальное значение равно 30 А. Если значение тока превышает 30 А, измерение сопротивления заземления невозможно. Прекратите измерение. Снимите прибор С.А 6415 с данной точки и продолжите измерение в других точках. Если измеренный в цепи заземления ток не превышает допустимого, выберите режим «?» прибора и прочитайте результат измерения в омах. Измеренное значение соответствует не только сопротивлению системы заземления, но и включает сопротивление контакта нейтрали со штырем и всех соединений между нейтралью и штырем. Заметьте, что на рисунке 24 заземление обеспечивается торцом столба и заземленным штырем. Необходимо подключить клещи выше точки соединения проводников от торца столба и от штыря, чтобы измерить общее сопротивление заземления обоих заземлителей. Для последующих обращений к результату запишите дату, ток, сопротивление заземления в омах и номер столба.

Примечание: большое значение сопротивления может быть вызвано:

А) плохим заземлением штыря; Б) отключенным проводником заземления; В) большим сопротивлением контактов или мест сращивания проводника; осмотрите клещи, соединение на конце штыря, нет ли заглублённых трещин на стыках.

ИЗМЕРЕНИЕ ЗАЗЕМЛЕНИЯ НА РАСПРЕДЕЛИТЕЛЬНОЙ КОРОБКЕ ИЛИ НА СЧЕТЧИКЕ ЭЛЕКТРОЭНЕРГИИ Следуйте в основном описанной выше методике. Заметьте на рис. 25, что заземление может быть исполнено в виде группы штырей или, как показано на рис. 26, в качестве заземления может быть использована выходящая из земли водопроводная труба. Можно использовать одновременно оба вида заземления. В этом случае следует выбирать точку измерения на нейтрали так, чтобы измерить общее сопротивление заземления системы. ИЗМЕРЕНИЕ ЗАЗЕМЛЕНИЯ НА ТРАНСФОРМАТОРЕ, УСТАНОВЛЕННОМ НА ПЛОЩАДКЕ

  • Замечание. Никогда не открывайте ограждение трансформатора. Это — имущество коммунальной службы. Данное измерение может выполнять только специалист.
  • Соблюдайте все необходимые меры безопасности.
  • Присутствует о пасное напряжение.

Определите и посчитайте все штыри заземления (обычно имеется единственный штырь). Если штыри заземления находятся внутри ограждения, обратитесь к рис. 27, а если за пределами ограждения – к рис.28. Если имеется единственный штырь заземления и он находится внутри ограждения, то для измерения следует подключиться к проводнику сразу после контакта проводника со штырем. Часто, от зажима на штыре возвращается к нейтрали или внутрь ограждения несколько проводников.

Во многих случаях, наилучшее измерение можно получить при помощи клещей 3710 или 3730, подключенных непосредственно к заземленному штырю. При этом измеряется исключительно сопротивление устройства заземления. Подключайте клещи только в той точке, где имеется единственный путь для тока, текущего в нейтраль. Обычно, если вы получили очень низкое значение сопротивления, то это означает, что вы подключились к петле и вам следует переместить точку измерения ближе к штырю. На рис. 28 штырь заземления вне заграждения. Чтобы получить правильный результат, выберите точку подключения клещей, как показано на рисунке. Если внутри ограждения имеется несколько штырей в разных углах, надо определить, как они подключены, чтобы правильно выбрать точку измерения.

ПЕРЕДАЮЩИЕ СТОЙКИ Соблюдайте все необходимые меры безопасности. Присутствует опасное напряжение. Найдите проводник заземления около фундамента стойки. Заметьте, что существует много конфигураций. Будьте осторожны при определении проводников заземления. На рис. 29 показана одна стойка на бетонном фундаменте с внешним проводником заземления. Точка подключения клещей должна находиться выше места электрического соединения частей системы заземления, которая может быть выполнена в виде группы штырей, пластин, витков или элементов фундамента.

Источник информации: https://www.diagnost.ru/

Поделиться ссылкой:

Вам может быть интересно:

  • Пробник-индикатор, мультиметр, контролька. Изучаем…
  • Мифы о заземлении и UPS
  • Провод СИП. Плюсы и минусы различных систем
  • Термопреобразователи сопротивления

Материалы для строительства заземляющих электродов

Действующие нормативные акты допускают возможность изготовления заземляющих электродов из оцинкованной стали, электролитически покрытой медью или чистой меди. Часто медь используется в качестве материала для защитных покрытий стальных заземляющих электродов. Однако ни в одном из стандартов не упоминаются материалы, одобренные оцинкованной сталью. Толщина покрытий также регламентируется стандартами. Они различны для разных материалов, они также зависят от того, как уложены элементы. Другие предназначены для горизонтальных траншей, а другие — вертикальные.

Статья по теме: Как набрать много просмотров в Инстаграме на видео и эфир

Реализация кольцевого заземления

Кольцевой заземляющий электрод, то есть система типа B, чаще всего изготавливается из стальной оцинкованной ленты, погруженной в глубину, по меньшей мере, на 0,5 метра, на расстоянии около 1 метра от внешних стен защищаемого объекта. Лента должна быть закрытой системой. При использовании заземляющего электрода в целях защиты от перенапряжений глубина установки должна быть ниже зоны замерзания земли, то есть, по крайней мере, на 0,7 метра глубиной. Это связано с тем, что удельное сопротивление мерзлого грунта значительно выше нормы. К счастью, исследования показывают, что фактическая глубина промерзания почвы меньше, чем прогнозируется стандартами.

Все соединения, включая заземляющие проводники, должны быть надежными и защищены от коррозии. Если невозможно закрыть периметр обода, могут быть выполнены части обода. Но открытые концы обода должны быть закрыты вертикальными заземляющими электродами.

Заземление. Что это такое и как его сделать (часть 2)

1 часть. Заземление (общая информация, термины и определения)

2 часть. Традиционные способы строительства заземляющих устройств (описание, расчёт, монтаж)

3 часть. Современные способы строительства заземляющих устройств (описание, расчёт, монтаж)

2 часть. Традиционные способы строительства заземляющих устройств (описание, расчёт, монтаж)

В этой части я расскажу о традиционных/ классических способах строительства заземлителей, применяемых примерно с начала двадцатого века.

Г. Основные способы строительства

Г1. Несколько коротких электродов (“уголок и кувалда”)
Г1.1. Особенности решения

Г1.1.1. Промерзание грунта зимой Г1.1.2. Взаимное “экранирование”/ “затенение” электродов

Г1.2. Расчёт получаемого сопротивления заземления и необходимого количества заземляющих электродов Г1.3. Монтаж Г1.4. Достоинства и недостатки Г1.5. Уменьшение количества электродов

Г2. Одиночный глубинный электрод (“обсадная труба”)
Г2.1. Особенность решения Г2.2. Расчёт получаемого сопротивления заземления Г2.3. Монтаж Г2.4. Достоинства и недостатки

Г. Основные способы строительства

Напомню, в прошлой части я остановился на общем подходе…

При строительстве заземлителей чаще всего применяются вертикальные заземляющие электроды. Это связано с тем, что горизонтальные электроды трудно заглубить на большую глубину, а при малой глубине таких электродов — у них очень сильно увеличивается сопротивление заземления (ухудшение основной характеристики) в зимний период из-за замерзания верхнего слоя грунта, приводящее к большому увеличению его удельного электрического сопротивления.
В качества вертикальных электродов почти всегда выбирают стальные трубы, штыри/ стержни, уголки и т.п. стандартную прокатную продукцию, имеющую большую длину (более 1 метра) при сравнительно малых поперечных размерах. Этот выбор связан с возможностью легкого заглубления таких элементов в грунт в отличии, например, от плоского листа.

Существует два основных традиционных способа/ решения для строительства заземляющих электродов. Оба базируются на применении вертикальных заземляющих электродов.

Г1. Несколько коротких электродов (“уголок и кувалда”)

При таком подходе в качестве заземляющих электродов применяются небольшие (2-3 метра) стальные уголки/ штыри. Для создания заземлителя они соединяются вместе около поверхности грунта стальной полосой путем приваривания её к этим элементам электро или газосваркой.
Заглубление электродов в грунт производится банальным заколачиванием их кувалдой, которая находится в руках физически сильного и выносливого монтажника. Поэтому такое решение повсеместно применяется под условным названием «уголок и кувалда».

Большая площадь контакта заземлителя с грунтом (вот о чём я) достигается большим количеством электродов (многоэлектродный заземлитель

). Увеличивать глубину электродов (альтернативный путь увеличения площади контакта) очень затруднительно, т.к. с увеличением глубины увеличивается сила трения между монтируемым электродом и грунтом, а вес кувалды и силы монтажника имеют предел.

При выборе уголков/ штырей и другого подходящего металлопроката необходимо учитывать их коррозионную стойкость и возможность пропускать через себя токи большой величины в течении какого-то времени без расплавления.

Минимальные разрешенные поперечные размеры (сечения) заземляющих электродов описаны в таблице 1.7.4 ПУЭ, но последние годы чаще применяются поправленные и дополненные величины из таблицы 1 техциркуляра 11 от 2006 года ассоциации «РосЭлектроМонтаж» (источники).

В частности:

  • для уголка или прямоугольного профиля (полосы) из чёрной стали поперечное сечение должно составлять не менее 150 мм2 при минимальной толщине стенки 5 мм
  • для круглого стержня из чёрной стали минимальный диаметр должен быть 18 мм
  • для трубного профиля из чёрной стали минимальный диаметр должен быть 32 мм при минимальной толщине стенки не менее 3,5 мм
Г1.1. Особенности решения

При увеличении количества электродов необходимо учитывать некоторые особенности.

Г1.1.1. Промерзание грунта зимой

Зимой из-за промерзания грунта на глубины, в которых находится половина длины электродов (а это до 2-х метров) сопротивление такого заземлителя увеличивается. Для компенсации этого увеличения (для сохранения удовлетворительного качества заземления) заземлитель выполняется с достаточным “запасом” электродов. Например, для трёхметровых электродов необходимо двухкратное
увеличение количества.

Г1.1.2. Взаимное “экранирование”/ “затенение” электродов

Кроме того, увеличением количества электродов необходимо компенсировать само увеличение количества электродов Этот негативный момент т.н. “экранирования”/ “затенения” возникает при использовании множества заземляющих электродов и не позволяет близкорасположенным электродам полноценно “рассеивать” ток в окружающий грунт. Выражается в виде коэффициента использования проводимости заземлителя (ссылка на сторонний сайт).
Например: десять

электродов глубиной по 3 метра, расположенных в линию на расстоянии 3 метра (т.е. на расстояние = своей глубине) друг от друг “работают” на 60% от своей максимальной эффективности. Десять этих же электродов, расположенных на расстоянии 6 метров (т.е. на расстояние = своей двойной глубине) друг от друга “работают” на 75% от своей максимальной эффективности. Стопроцентная эффективность достигается отдалением электродов на расстояния около 30 метров (10 их глубин), что на практике никогда не используется в угоду стремления к адекватной компактности и стоимости монтажа заземляющего устройства.

Г1.2. Расчёт получаемого сопротивления заземления и необходимого количества заземляющих электродов

Опишу расчёты на примере десяти
наиболее часто используемых для такого способа
трёхметровых
электродов в виде стального равнополочного уголка с шириной полки
50 мм
, монтируемых на расстоянии
3-х метров
друг от друга в канаве глубиной 0,5 метров (в п. Г1.3. объяснение “почему так”). Грунт, в котором будут монтироваться эти электроды, будет суглинком, обычным для России, с удельным электрическим сопротивлением
100 Ом*м
.

Расчёты не сложны и проводятся в 3 этапа.

Получаемое сопротивление заземления
1 этап.
Для начала необходимо вычислить сопротивление заземления одного заземляющего электрода. Сопротивление заземления одиночного вертикального заземляющего электрода вычисляется по формуле:

R1 составит 27,8 Ом (при p = 100 Ом*м, L = 3 м, d = 0.05 м (50 мм; для плоских электродов под диаметром понимается их ширина), T = 2 м (T — расстояние от верхнего уровня грунта до середины заглубленного электрода)).

2 этап.

Общее сопротивление нескольких электродов в идеальных условиях будет меньше сопротивления заземления одного электрода во столько раз, сколько будет электродов.

Для десяти электродов общее сопротивление будет меньше в 10 раз и составит 2,78 Ом.

3 этап.

“Компенсации”. Сезонный коэффициент (увеличения сопротивления заземления в замерзшем зимой грунте) для таких электродов будет равен
2
(откуда это). Коэффициент использования проводимости электродов будет равен
0.6
, т.к. расстояние между электродами будет 3 метра (т.е. равное глубине электрода), а их количество — 10 штук (откуда это). Оба коэффициента увеличивают сопротивление заземления.

Итоговое общее сопротивление заземления вышеприведенных 10-ти электродов будет равно 5,56 Ом

летом и
9,27 Ом
зимой.

Необходимое количество заземляющих электродов

Представим, что наша задача — заземлить телекоммуникационное оборудование и для этого необходимо получить заземление с сопротивлением не более 4 Ом.

1 этап.

Всё повторяется. Вычисляем сопротивление заземления одного/ одиночного заземляющего электрода.

R1 составит 27,8 Ом.

2 этап.

Количество электродов в идеальных условиях напрямую зависит от необходимого сопротивления заземления с округление в большую сторону (“потолок”).

Для достижения 4-х Ом количество электродов получится 7 штук (округление 6,95).

3 этап.

“Компенсации”. Сезонный коэффициент (увеличения сопротивления заземления в замерзшем зимой грунте) для таких электродов будет равен
2
. Коэффициент использования проводимости электродов будет зависеть от рассчитываемого количества электродов — заранее его не выбрать. Однако можно прикинуть наихудший вариант и, допустив, что электродов будет больше 20, взять для расчёта величину
0,5
. Оба коэффициента увеличивают необходимое количество заземляющих электродов.

Итоговое необходимое количество вышеприведенных заземляющих электродов будет равно 28 штук

(округление 27,8).
Совпадение с сопротивлением заземления одного электрода случайно.

Г1.3. Монтаж

Монтаж описанного выше многоэлектродного заземлителя выглядит примерно так.

  1. От места ввода заземляющего проводника внутрь здания/ объекта по периметру/ контуру этого здания вдоль его стен на удалении в 1 метр копается канава длиной 84 метра (28 электродов на 3 метра) глубиной 0,5-0,7 метра.
  2. В эту канаву на расстоянии не менее 3-х метров друг от друга кувалдой забиваются предварительно заостренные с нижней стороны (болгаркой) стальные уголки или отрезки арматуры длиной 3 метра в количестве 28 штук.
  3. После забивания всех электродов — в канаву укладывается заземляющий проводник от ввода в здание (где расположен электрощит) до самого дальнего электрода. Обычно при таком способе таким проводником выступает стальная полоса 4*50 мм.
  4. Полоса качественно (!) длинным швом приваривается к электродам.
  5. Место сварки покрывается слоем битума или антикоррозионной краской, т.к. оно имеет склонность к быстрой коррозии в грунте.
  6. Канава засыпается.
  7. Снаружи или внутри здания делается переход со стальной полосы на медный провод, подключаемый к электрощиту. Для малых мощностей обычно делается вот так:

Углубление на 0,5-0,7 метра (канава) необходимо для механической и погодной изоляции проводника (полосы) и верхушек электродов. Например, чтобы не повредить их во время копки грунта для цветника и чтобы сталь меньше намокала во время дождя (это позволяет уменьшить её коррозию, а значит увеличить срок службы).
Взаимное расстояние между электродами не менее 3-х метров является некоторый мерой противодействия эффекту “экранирования”/ “затенения” электродов друг от друга.

Использование сварки для соединения элементов из чёрной стали — настоятельно рекомендовано ПУЭ (п. 1.7.139).

Используемые материалы:

  • стальной уголок шириной 50 мм и толщиной стенки 5 мм = 84 метра
  • или отрезки стальной гладкой арматуры диаметром 18 мм = 84 метра
  • стальная полоса 4*50 мм = около 85 метров
  • битум или антикоррозионная краска

Используемый инструмент:

  • лопата
  • кувалда потяжелее (4-5 кг)
  • сварочный аппарат

Используемые ресурсы:

  • сильный и выносливый монтажник
  • монтажник, обладающий навыками сварщика
Г1.4. Достоинства и недостатки

Достоинства:

  • простота
  • дешевизна материалов и монтажа
  • доступность материалов и монтажа

Недостатки:

  • высокая стоимость доставки материала на объект (в легковой автомобиль не положить из-за размеров и веса материалов)
  • необходимость применения большого объема грубой силы (копать канаву, махать кувалдой)
  • необходима сварка, а значит, сварочный аппарат и человек с навыками сварщика. Ситуация усугубляется при отсутствии на объекте электричества.
  • большая площадь, занимаемая заземлителем: часто несколько десятков метров около здания (десять 3-метровых электродов должны будут расположены в канаве длиной 27 метров)
  • небольшой срок службы электродов в 5-15 лет (особенно в грунтах с высокими грунтовыми водами). Увеличение поперечных размеров (толщины стали) чревато увеличением сложности монтажа.
  • неудобный монтаж, т.к. при использовании даже 2-метровых электродов в начале забивания необходимо вставать на какую-то скамейку/ лестницу и уже с нее “махать кувалдой”
  • невозможность монтажа в каменистом грунте
Г1.5. Уменьшение количества электродов

Иногда совместно с этим решением применяется метод кардинального снижения удельного электрического сопротивления грунта, который позволяет сократить количество заземляющих электродов в 2-3 раза при сохранении получаемого сопротивления заземления. Иными словами — этот метод позволяет существенно снизить сопротивление заземления. Речь идёт о засолении грунта в месте размещения электродов путем добавления в него большого объема поваренной соли NaCl (в среднем — 5 килограмм на метр длины канавы, в которую ведется монтаж). При её растворении в грунте (выщелачивании (wiki)) резко повышается концентрация ионов, участвующих в переносе заряда, а следовательно снижается его (грунта) электрическое сопротивление.
При неоспоримом положительном достоинстве такого метода, а также при его простоте и дешевизне — он имеет два огромных недостатка

, которые грозят восстановлением заземлителя практически “с нуля”:

  • за счет вымывания соли из грунта (дожди, весеннее таяние снега), концентрация ионов падает до естественного уровня за 1-3 года
  • соль вызывает сильную коррозию стали, разрушая электроды и заземляющий проводник за 2-3 лет
Г2. Одиночный глубинный электрод (“обсадная труба”)
Г2.1. Особенности решения Г2.2. Расчёт получаемого сопротивления заземления Г2.3. Монтаж Г2.4. Достоинства и недостатки

При таком подходе заземлителем является глубокий электрод (чаще всего одиночный) в виде стальной трубы, размещенной в пробуриваемом в грунте отверстии. Бурение и размещение в отверстии трубы выполняется специальной машиной — буровой установкой (обычно на базе грузового автомобиля).
Большая площадь контакта заземлителя с грунтом (вот о чём я) достигается большой длиной (вернее, глубиной) электрода. Кроме того, за счет достижения глубинных слоев грунта, в большинстве случаев имеющих меньшее удельное электрические сопротивление, такой способ имеет бОльшую эффективность (меньшее сопротивление заземления), чем первый — при одинаковой суммарной длине электродов.

Г2.1. Особенность решения

При увеличении глубины электрода необходимо учитывать, что в однородном грунте сопротивление заземления снижается не пропорционально этому увеличению (больше глубина -> меньше уменьшение сопротивления).

Поэтому при отсутствии на глубине слоев грунта с более низким удельным электрическим сопротивлением стоит рассмотреть вопрос увеличения количества электродов, а не увеличения глубины одиночного электрода. На решение этого вопроса будут влиять и стоимость монтажа дополнительных электродов, и доступность площади для их размещения.

Но напомню (оригинал): … на практике более чем в 70% случаев грунт на глубине более 5 метров имеет в разы меньшее удельное электрическое сопротивление, чем у поверхности, за счет большей влажности и плотности.

Г2.2. Расчёт получаемого сопротивления заземления

Опишу расчёты на примере одиночного тридцатиметрового
электрода в виде стальной трубы диаметром
100 мм
, смонтированной в канаве глубиной
0,5 метров
. Грунт, в котором будет монтироваться этот электрод, будет для упрощения расчёта однородным суглинком, обычным для России, с удельным электрическим сопротивлением
100 Ом*м
.

Расчёт проводится в 1 этап.

Сопротивление заземления одиночного вертикального заземляющего электрода вычисляется по формуле:

R1 составит 3,7 Ом

(при p = 100 Ом*м, L = 30 м, d = 0.1 м (100 мм), T = 15.5 м (T — расстояние от верхнего уровня грунта до середины заглубленного электрода)).

Сравните с результатом в п. Г1.2. Даже при условии однородного грунта одиночный глубинный заземлитель оказывается много эффективнее, чем многоэлектродный, что скажется на огромной разнице в занимаемой этим заземлителем площадки на поверхности. Но в этой “эйфории” не стоит забывать про стоимость буровых работ, о чём я упомяну ниже в п. Г2.4. (“Недостатки”).

Г2.3. Монтаж

На практике монтаж такого заземлителя в чём-то проще монтажа многоэлектродного заземлителя из первого решения ().

  1. От места ввода заземляющего проводника внутрь здания/ объекта на удалении в 3 метра (для безопасного подъезда установки) в сторону перпендикулярно стены копается канава длиной 3-4 метра глубиной 0,5-0,7 метра.
  2. Буровая установка производит бурение и установку электрода (“обсадная труба”).
  3. В канаву укладывается заземляющий проводник от ввода в здание (где расположен электрощит) до электрода. Обычно при таком способе таким проводником выступает стальная полоса 4*50 мм.
  4. Полоса качественно (!) длинным швом приваривается к электроду-трубе.
  5. Место сварки покрывается слоем битума или антикоррозионной краской, т.к. оно имеет склонность к быстрой коррозии в грунте.
  6. Канава засыпается.
  7. Снаружи или внутри здания делается переход со стальной полосы на медный провод, подключаемый к электрощиту. Например, как описано в п. Г1.3.

Используемые материалы:

  • стальная труба диаметром 100-200 мм с толщиной стенки 3,5-5 мм = 30 метров
  • стальная полоса 4*50 мм = около 5 метров
  • битум или антикоррозионная краска

Используемый инструмент:

  • буровая установка
  • лопата
  • сварочный аппарат

Используемые ресурсы:

  • монтажник, обладающий навыками сварщика
Г2.4. Достоинства и недостатки

Достоинства:

  • высокая эффективность
  • компактность, т.к. не нужно “городить” множество электродов
  • сезонная НЕзависимость качества заземления. Зимой из-за промерзания грунта сопротивление такого заземлителя почти не изменяется из-за нахождения в зоне промерзающего грунта не более 5-10% длины электрода.

Недостатки:

  • высокая стоимость буровых работ (от 1500-2000 рублей за метр бурения). Приведенный в расчётах (п. Г2.2.) электрод обойдется в 50-60 тысяч рублей.
  • (как и у первого способа) необходима сварка, а значит, сварочный аппарат и человек с навыками сварщика.
  • (как и у первого способа) небольшой срок службы электродов в 5-15 лет (особенно в грунтах с высокими грунтовыми водами). При использовании толстостенной трубы возможно его увеличение до большего срока, однако это вызывает увеличение стоимости этой трубы.

Современные технологии

Традиция — это прогресс в минувшем; в будущем прогресс станет традицией (Эдуар Эррио)
В конце двадцатого века было разработано решение, которое обладает достоинствами обоих описанных выше способов, не имея присущих им недостатков.

Кроме того, сильное влияние засоления грунта на снижение сопротивления заземления (п. Г1.5.) настолько привлекло внимание инженеров, что было найдено “лекарство” от недостатков этого метода — вымывания соли из грунта и коррозии электродов. Оно породило очень интересный способ строительства заземлителя, применимый там, где пасуют простые металлические электроды — в вечномёрзлых, а также каменистых грунтах.

О них я расскажу в следующей, заключительной, части.

UPD: Дополнительно по заземлению в частных домах

Тем, кто живёт в частных домах. /Бодрю/ Ребят, не впадайте в панику из-за большого количества заземляющих электродов в примере. Там я рассчитывал устройство с сопротивлением не более 4 Ом. Это весьма жесткие требования. Для заземления электросети частного дома достаточно строить заземление с сопротивлением не более 10 Ом. Вот почему:

  1. Это сопротивление оптимально с точки зрения работы защитных автоматов
  2. Это сопротивление достаточно для подключения к устройству молниеприёмников (ну мало ли — вдруг захотите)
  3. Это сопротивление достаточно для гарантированного срабатывания УЗИПов, которые рекомендуется ставить в щит на вводе в дом. УЗИПы нужны для защиты вашего электрооборудования от импульсных перенапряжениях при попадании молнии в воздушную линии электропередачи где-нибудь по ходу линии от трансформатора

10 Ом получить много проще. Это всего 10 электродов. Полдня нормальной работы.

Алексей Рожанков, специалист технического

При подготовке данной части использовались следующие материалы:

  • Публикации на сайте “Заземление на ZANDZ.ru”
  • Правила Устройства Электроустановок (ПУЭ), часть 1.7 в редакции седьмого издания (гуглить)
  • Технический циркуляр 11/2006 ассоциации «Росэлектромонтаж» (гуглить)
  • Собственный опыт и знания

Вертикальные заземляющие электроды

Вертикальные заземляющие электроды изготовлены из труб или специально подготовленных стержней, утопленных в землю так, что их верхние концы находятся ниже уровня земли. Рекомендуется расстояние между отдельными элементами заземляющего электрода на расстоянии не менее их длины. Вертикально забитые заземляющие электроды особенно полезны, когда удельное сопротивление грунта уменьшается с увеличением глубины. Их глубина вождения обычно составляет около 2,5 метров, однако есть заземляющие электроды длиной 7 метров. Дальнейшее увеличение этого измерения редко приносит заметные выгоды.сли сопротивление заземляющего электрода изготовлено выше, чем требуется, следующий должен быть погружен и подключен к первому параллельно.

Расстояние между этими элементами должно быть:

  • равны по крайней мере их длине в случае двух вертикальных элементовж;
  • большее расстояние с большим количеством вертикальных элементов.

Если существует риск замерзания или высыхания почвы, длину вертикальных элементов следует увеличить на 1 или 2 метра.

Статья по теме: Как правильно оформить витрину

Элементы, соединяющие отдельные части вертикального заземляющего электрода, должны иметь такую же механическую прочность, что и стержни или трубы заземляющего электрода, а также должны быть устойчивы к механическим воздействиям во время удара.

Забивка электродов заземлителей

Электроды-заземлители забивают в грунт машинами специального назначения (см. ниже), или приспосабливают для этого серийные электрические и пневматические молотки, электротрамбовки, бензоперфораторы, легкие копры, вибраторы и другие механизмы ударного и виброударного действия, а также и ручные приспособления для монтажа единичных заземлителей в удаленных местах.

При забивке можно применять стальные электроды любого профиля — уголковые, квадратные, круглые, однако наименьший расход металла (при одинаковой проводимости) и наибольшая устойчивость к грунтовой коррозии (в случае равного расхода металла) достигаются при использовании стержневых электродов из круглой стали.

При забивке в обычные грунты на глубину до 6 м рационально и экономично применять стержневые электроды диаметром 12—14 мм. При требуемой глубине до 10 м, а также при забивке коротких электродов в особо плотные грунты необходимы более прочные электроды диаметром от 16 до 20 мм. С помощью ударных механизмов трудно забить электроды глубже, чем на 10 — 12 м. Для этого рациональнее применить механизмы ударно-вибрационного действия — вибраторы, с помощью которых электроды легко погрузить даже в промерзший грунт, теряющий свою прочность под воздействием вибрации.

Вибраторами можно погрузить электроды значительно глубже, чем при ввертывании и вдавливании. Это особенно важно для грунтов с высоким удельным сопротивлением (порядка 1000 Ом) и глубоким уровнем грунтовых вод (более 9 м), например для сухих песков, в которых сопротивление электрода по мере заглубления снижается очень резко:

  • Глубина забивки электрода, м . . . 3,5 5 7 9 11 13 15 18
  • Сопротивление растеканию. Ом . . . 300 250 20 10

Из этих цифр видно, что один вертикальный электрод, погруженный на глубину 18 м, будет иметь примерно такую же проводимость, что и 30 электродов, погруженных на глубину 3,5 м. Учитывая перемычки, необходимые для соединения коротких электродов, металла понадобится гораздо больше, значительно повысятся и затраты труда и стоимость заземляющего устройства, а проводимость ввиду взаимоэкранирования коротких электродов может оказаться даже хуже, чем у одного глубинного электрода.

Если при проектировании грунт не зондировали и электрические характеристики грунта неизвестны, то во избежание лишней работы монтаж глубинных заземлителей рекомендуется проводить в следующей последовательности:

  • подготовить отрезки электрода. Их длину принять соответственно конструкции используемого механизма;
  • забить нижний отрезок электрода;
  • измерить сопротивление растеканию забитого отрезка;
  • приварить следующий отрезок электрода;
  • забить второй отрезок и снова выполнить измерение;
  • работу продолжать до достижения нужной проводимости.

Механическим вибратором, навешенным на трактор (рис. 1,а), погружали электроды из круглой стали диаметром 18—20 мм на глубину до 18 м. На том же тракторе установили и сварочный генератор.

Рис. 1. Забивка вертикальных злектродов-заземлителей: а, б — навесными механическим или электрическим вибратором; в, г — электровибратором, укрепленным на электроде или на рессорах; д, е — электромолотком, укрепленным на составном или на цельном электроде; 1 — вибратор; 2 — грузоподъемная стрела; 3 — гибкий приводной вал; 4 — сцепление; 5 вал отбора мощности трактора и ременная передача на сварочный генератор и на сцепление привода вибратора; 6— погружаемый заземлитель; 7 — труба-боек; 8— площадка с верхним бойком; 9 — рессора; 10 — электромолоток; 11 — вставной боек; 12— муфта; 13— козлы с ограждением; 14 — направляющий уголок; 15 — зажим

Механический вибратор массой 8 кг имеет круглый корпус диаметром 100 мм, в котором на двух подшипниках вращается дебаланс. Посредством промежуточного бойка, прикрепленного к корпусу на спиральных пружинах, и трубчатого наконечника удары передаются на погружаемый электрод.

Вибратор подвешен к трактору на легкую откидную укосину. Во вращение он приводится двигателем трактора через дополнительно установленное сцепление и гибкий вал диаметром 16 мм. Данная конструкция вибратора не уравновешена в горизонтальной плоскости, и поэтому длина погружаемого отрезка определяется высотой подвески вибратора к укосине. При уравновешенной конструкции электрод, пропускаемый через эту конструкцию, мог бы быть цельным, однако перевозка по бездорожью и установка для погружения длинных прямых стержней затруднительна, а выполнение сварочных работ на месте необходимо во всех случаях. Отсутствие силовых передач или движущихся частей в вибраторе, кроме единственного массивного дебаланса, делает его исключительно надежным. В рабочей зоне нет открытых движущихся частей, и нет сжатого воздуха и электрического напряжения. Это повышает безопасность работающих.

За один прием погружали отрезок электрода длиной 2—2,5 м, потом вибратор поднимали, наращивали сваркой следующий отрезок и продолжали погружение до достижения достаточной проводимости заземлителя. Цикл работы — погружение электрода на 2,5 м и его наращивание — в зависимости от плотности грунта и достигнутой глубины занимал от 2 до 7 мин.

В других случаях используют электровибратор, подвешенный к крановой стреле, смонтированной на автомобиле (рис. 1, б). Для выполнения сварочных работ в кузове машины установлен сварочный трансформатор, а для электропитания трансформатора, привода стрелы и вибратора установлен электрогенератор. Кнопки управления установки смонтированы на стенке автомашины в защитном кожухе. Стрела грузоподъемностью 0,5 т вынесена на крышу фургона. Подъем вибратора занимает 2 мин, а погружение отрезка электрода длиной 3 м, изготовленного из отходов труб, — около 5 мин.

К электровибратору заводского выпуска дополнительно изготовляют направляющий стакан с цилиндрическим переходником для электродов круглого сечения или с переходником, насаживаемым на электрод из угловой стали или стали соответственно другого профиля.

Мощность электровибратора — 1,2 кВт, масса — 100 кг. Мощность электродвигателей на подъемной лебедке и стреле соответственно 1,7 и 1,0 кВт.

На автомашине установлен электрогенератор мощностью 25 кВт, обеспечивающий питание вибратора, электродвигателей и сварочного трансформатора. Контур заземления монтируется с помощью такой установки звеном из двух рабочих, из которых один является шофером, а другой имеет совмещенную профессию слесаря и сварщика. Оба они обучены способам осмотра, измерения и проверки качества заземлителя. Звено монтирует электроды, сваривает их в контур, проверяет его и оформляет протокол измерения и акт осмотра заземлителя (заполняет бланки).

Такой же способ погружения небольшого числа электродов можно использовать и без специально оборудованного автомобиля или трактора, применив легкий вибратор мощностью до 0,8 кВт, устанавливаемый в рабочее положение вместе с погружаемым электродом усилием одного-двух рабочих. Использование специальной металлической подставки (рис. 4, в) позволяет рабочим не прикасаться к приспособлению в процессе погружения электрода, что существенно облегчает работу.

Другое приспособление для забивки электродов, также имеющее небольшой вибратор, показано на рис. 1, г. Две автомобильные рессоры скреплены скобами. На верхней рессоре укреплена площадка, на которой размещен вибратор с бойком-держателем электрода. На нижней рессоре укреплена аналогичная площадка с отрезком трубы, служащим другим бойком. При работе вибратора бойки соударяются, для чего между ними должен быть достаточный зазор. Электроды заземления могут использоваться любого профиля, но проще всего применять стержневые электроды, при которых изготовление бойков проще.

Электрод заземления свободно вставляют через трубу-боек в верхний боек-держатель до упора. Затем включают вибратор, и с каждым его ударом электрод погружается в грунт на глубину, равную зазору между бойками, а все приспособление опускается вниз под действием своей тяжести. Зазор между бойками восстанавливается силой отдачи и упругости рессор. Когда приспособление, опускающееся вместе с электродом, приблизится к поверхности земли, вибратор отключают и приспособление снимают. Если глубина погружения заземлители недостаточна, то к забитому заземлителю приваривают следующий отрезок круглой стали и процесс забивки повторяют.

В грунт средней плотности стержневой электрод диаметром 16 мм длиной 4 м забивают за 5 мин, а длиной 8 м — за 20 мин, включая время сварки отрезков электрода. Приспособлением можно забивать не только круглую сталь, но и трубы и сталь других профилей, если для этого поставить в приспособление боек-держатель и направляющую электрод трубу соответственных размеров.

Накоплен большой опыт погружения заземлителей при помощи электромолотков и пневмомолотков, серийно выпускаемых заводами. Используя передвижной электрогенератор или компрессор, можно включать в работу одновременно 2—3 и более молотков, ускоряя работы.

В мастерской заранее изготовляют отрезки стержневых электродов длиной по 2,5 м и к одному концу каждого отрезка приваривают муфту, изготовленную из трубы соответственного диаметра и длиной 100 мм, прорезанную с любой стороны на толщину стенки вдоль. Прорезь нужна для продольного сварного шва.

При заготовке электродов их вставляют в муфту на 50 мм, приваривают поперечным швом торец муфты к электроду по его окружности и продольным швом длиной 50 мм вдоль прорези в муфте. Вторая половина длины муфты остается свободной для удобства соединения отрезков и забивки. Электромолоток (рис. 1, д) с вставленным в него бойком, входящим своим концом в верхнюю половину муфты, надежно в ней удерживается и, вибрируя под действием собственной массы при включении источника энергии, забивает электрод.

В процессе забивки удерживать электромолоток руками не нужно, что значительно облегчает работу. Но для установки электромолотка массой до 21 кг на вертикально поставленный на грунте электрод необходимы прочные, устойчивые переносные козлы с ограждением рабочей площадки.

После того, как электрод погрузится до своего верхнего конца, молоток отключают, снимают с электрода и в верхнюю половину муфты вставляют нижний конец следующего отрезка электрода, приваривают его по- перечным и продольным швами к забитому электроду и продолжают погружение, установив электромолоток в муфту, имеющуюся на верхнем конце второго отрезка.

Работа по изготовлению муфт и затраты на это труб или листовой стали иногда кажутся монтажникам излишними, и они предпочитают соединять концы отрезков погружаемых электродов заземления менее трудоемкой и простой непосредственной сваркой встык, без муфт. Однако соединение муфтами надежнее и создает удобство в работе. Но муфты создают дополнительное сопротивление (увеличивают реакцию грунта), немного замедляют погружение и уменьшают наибольшую возможную глубину погружения при данной мощности механизма, что особенно заметно в плотном грунте. Сварку встык все же рекомендовать нельзя, так как она непрочна, а сварка внахлестку или с накладками замедляет погружение еще больше, чем муфта.

Для электробезопасности молоток должен иметь двойную изоляцию, либо (при обычной изоляции) он должен быть заземлен отдельной жилой шлангового кабеля, по остальным жилам которого подается электроэнергия от генератора или от внешней сети. Дополнительной мерой безопасности, как и для работы с любым электроинструментом, может быть применение резиновых перчаток или устройств защитного отключения.

Если вблизи имеется компрессор, то вместо электромолотка рациональнее применить легкий пневмомолоток, но и тогда нужно иметь прочные, устойчивые козлы, так как пневмомолоток в обычно применяемых приспособлениях приходится во время работы удерживать руками, чтобы он не соскочил с электрода вследствие отдачи. Одно из таких приспособлений представляет собой специальную насадку-переходник, верхним концом закрепляемую в пневмомолотке и имеющую в нижнем конце полый цилиндр, в который вставляется конец электрода.

Каркас козел можно изготовить из тонкостенных стальных труб диаметром 22—24 мм или из легких, но дорогих дюралюминиевых труб диаметром 20—22 мм, а площадку из досок толщиной 40 мм или из рифленой стали толщиной 4 мм. Если козлы сделать из досок целиком, то они будут тяжелее стальных и быстро придут в негодность.

Если козел нет, то электрод можно забить непосредственно с земли) но тогда забиваемые отрезки придется забивать не по 2,5 мм, как рекомендовалось ранее, а короче, соответственно росту рабочего, который будет держать механизированный инструмент на электроде.

В мягкий грунт можно забивать электромолотком длинные (до 5 м) электроды небольшого диаметра (до 13 мм) без предварительной заготовки коротких отрезков и сварки их на месте. Это существенно облегчает работу (рис. 1,е).

Электромолоток снабжают зажимом, действующим при давлении на него вниз и отпускающим электрод при поднимании молотка. Кроме того, на молоток крепят направляющий уголок. Электрод пропускают через зажим и через отверстие в направляющем уголке. Затем приспособление вместе с электродом ставят на землю и погружают электрод примерно на 0,8 м. После того как приспособление приблизится к земле, его переставляют вверх по электроду на удобную по росту рабочего высоту и продолжают забивку заземлителя.

При достаточной мощности электромолотка (0,6— 0,8 кВт) конец электрода подготавливать к погружению не нужно, а при меньшей мощности — конец электрода заостряют для облегчения забивки. Электроинструменты и механизмы с электрическим приводом получают питание от устанавливаемых на автомобилях и тракторах электрогенераторов или от перевозимых в кузовах автомобилей небольших (мощностью 2 кВт) серийно выпускаемых промышленностью бензоэлектрических агрегатов.

Если имеется электротрамбовка, то ее можно использовать для забивки электродов, сняв башмак, предназначенный для трамбовки грунта, и насадив на боек ударную втулку, имеющую внутренний диаметр соответственно диаметру вставляемого во втулку стержневого электрода. Аналогично можно приспособить электроперфораторы, электробетоноломы и другие ударные электрические или пневматические ручные машины, снабжая их переходниками для забивки электродов из круглой стали или стали других профилей.

При применении пневмоинструментов сжатый воздух Для них подается от компрессоров, которые могут иметь электропривод или механический привод от двигателя автомобиля или трактора. Одна из конструкций механического привода показана на рис. 5. На тракторе Т-40 (или другой марки) устанавливают компрессор производительностью порядка 1 м3/мин при рабочем давлении воздуха до 1 мПа. Для воздушного охлаждения на коми, рессоре монтируют крыльчатку вентилятора автомобильного типа. Около компрессора устанавливают передачу для привода от вала отбора мощности трактора.

Pиc. 2. Пневматический заглубитель электродов на тракторе Т-40 с тележкой: 1 — раздаточный вентиль; 2 — манометр; 3 — редукционный клапан; 4 — трактор; 5 — прицепная тележка; 6 — перевозимые электроды; 7 — компрессор; 8 — редуктор; 9 — ресивер; 10 — отбойный молоток; 11 — шланг сжатого воздуха

Ресивер емкостью 300 л П-образной формы, изготовленный, например, из цельнотянутой стальной трубы диаметром 180 мм, монтируют спереди трактора. На ресивере устанавливают предохранительные клапаны, манометр, редуктор для регулировки давления сжатого воздуха на входе и раздаточные вентили для подключения шлангов, питающих пневмоинструменты. Для перевозки электродов заземления, инструментов и инвентаря можно применить прицепную тележку. Пневмоинструменты (перфораторы, отбойные молотки, рубильные молотки) подбирают так, чтобы их характеристики соответствовали параметрам компрессора. При забивке электродов механизированными инструментами (ручными машинами) небольшой мощности в холодное время года нужно иметь с собой, помимо основного приспособления, еще дрель с длинными сверлами, снабженными наконечниками из твердого сплава. В случае, если толщина мерзлого слоя грунта не поддается пробивке, его просверливают до талого грунта, в скважину вставляют электрод и продолжают забивку.

Работниками группы компании Энергостроймеханизация совместно с работниками механизированной колонны № 71 и Нормативно-исследовательской станции № 40 Энергостройтруда при строительстве ВЛ 500 кВ был предложен и внедрен агрегат для монтажа заземляющих устройств опор линии. Для этой цели на базе трактора ДТ-75 было смонтировано навесное оборудование, в состав которого вошли: компрессор Зиф-55; сварочный агрегат ГС-300, молот МО-5 с комплектом шлангов, переходник (боек) для забивки электродов.

Работы производили двое электролинейщиков и машинист-тракторист. В среднем в зависимости от сопротивления грунта для заземления каждой опоры забивали 4—5 электродов длиной 3—6 м из круглой стали диаметром 16 мм. После забивки первых трех электродов и приварки к ним горизонтальных перемычек измеряли сопротивление растеканию тока заземления и при необходимости забивали дополнительные электроды. Общее время сооружения заземляющего устройства опоры составило около 2 ч.

Высокая производительность агрегата, позволявшего применить глубинные электроды, дала основание предложить замену запроектированных ранее горизонтальных лучей-заземлителей на вертикальные, получить при этом экономию затрат и снизить вдвое расход металла.

Заводами выпущены специальные машины для монтажа заземляющих устройств и универсальные машины, могущие быть использованными для этой цели.

7280

Закладки

Комментировать

Комментарии 0

Никто пока не комментировал эту страницу.

Написать комментарий

Самые распространенные ошибки руководителя

Основной причиной ошибок, возникающих во время заземления, является игнорирование проблем электрохимической коррозии и связанного с этим неправильного выбора компонентов системы заземления, особенно тех, которые применяются при подключении заземляющих электродов. Чаще всего они возникают, когда система заземления отклоняется от однородной классической формы. Например, в случае неполного обода, с наконечником в виде вертикальных заземляющих электродов, а также в случае соединения заземляющих и кольцевых заземляющих электродов. Однако мы хотели бы напомнить вам, что в случае домов на одну семью (уровень защиты III или IV) нет необходимости увеличивать, например, кольцевой заземляющий электрод для получения определенного сопротивления заземления.

Различные металлы, помещенные во влажную почву или бетон, то есть в электролитическую среду, принимают различный электрический потенциал, измеренный относительно электрода сравнения. Связанные друг с другом, они образуют гальванический элемент, через который постоянный ток может постоянно течь в результате разности потенциалов. Даже если значение этого тока относительно мало, порядка миллиампера, это опасное явление, потому что оно длится непрерывно и вызывает ускоренную деградацию материала, из которого сделано соединение. В крайних случаях он полностью разрушается через несколько лет.

Рейтинг
( 2 оценки, среднее 4.5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]