Понятие холостого хода трансформатора
Когда у трансформатора наблюдается выделенное питание одной обмотки, а другие пребывают в разомкнутом состоянии. Этот процесс приводит к утечке энергии, что и называют потерями холостого хода. Его развитие происходит под влиянием ряда внешних и внутренних факторов.
Мощность трансформатора не используется в полной мере, а часть энергии утрачается по причине некоторых магнитных процессов, особенностями первичной обмотки и изоляционного слоя. Последний вариант влияет при использовании приборов, функционирующих на повышенной частоте.
Нормирование энергоэффективности сухих распределительных трансформаторов
Для формирование модели, на основе которой можно осуществить нормирование энергоэффективности (как отмечалось автором в ряде работ [9, 11 12]) требуется рассматривать не один отдельный или несколько трансформаторов, а весь комплекс силовых/распределительных трансформаторов, обеспечивающих электроснабжение на обширной территории, вплоть до территории страны или группы стран. И фундаментальным для всех последующих выводов является понятие «энергоэффективность».
- С количественной стороны, «Энергетическая эффективность — это характеристики, отражающие отношение полезного эффекта от использования энергетических ресурсов к затратам энергетических ресурсов, произведенным в целях получения такого эффекта, применительно к продукции…». Таково определение энергоэффективности по 261-ФЗ.
- С содержательной стороны, энергоэффективность — это управляемое состояние большой, организованной для каких-либо целей, совокупности устройств, которое характеризует способность этой совокупности изменять (уменьшать, сокращать) удельные затраты на функционирование данной совокупности устройств. Это авторская концептуальная трактовка энергоэффективности, положенная в основу разрабатываемой теории энергоэффективности силовых и распределительных трансформаторов.
Нормирование потерь хх и кз сухих энергоэффективных силовых/распределительных трансформаторов осуществляется по методике, описанной в [9].
Для адекватного сравнения с результатами нормирования потерь масляных энергоэффективных трансформаторов, приняты следующие исходные данные и упрощения для моделирования:
- В тестовых расчетах для упрощения модели предполагается, что все установленные трансформаторы — сухие. В методике, изложенной в работе [9] также принято, что все трансформаторы являются масляными. Можно усложнить модель и рассмотреть всю совокупность трансформаторов, состоящей из двух групп: 80 % масляные и 20 — сухие. На результаты расчетов это повлияет не существенно.
- Как и в работе [9], целевое сокращение энергоемкости ВВП принято равным 0,08 т.у.т./млн.руб.
Полный перечень исходных данных приведен в таблице 4.
Таблица 4. Исходные данные для расчета нормативных потерь хх и кз энергоэффективных сухих силовых/распределительных трансформаторов. | |
Показатель | Значение |
Общее количество распределительных трансформаторов в РФ, штук, NΣ | 3 020 649 |
Суммарная трансформаторная мощность, МВА, SΣ | 846 472 |
Суммарные потери (при загрузке, равной 1), кВт, PΣ | 10 737 243 |
Целевое значение сокращения энергоёмкости ВВП, т.у.т./млн.руб., ΔЭ | 0,08 |
Значение суммарной доли подлежащих сокращению потерь, кВт*час, ΔWΣ | 21 375 000 000 |
Значение суммарной мощности подлежащих сокращению потерь, кВт, ΔPΣ | 2 440 000 |
Удельное значение сокращаемых потерь, кВт/кВА, ΔPуд | 0,002882 |
Доля потерь Kхх в общей мощности потерь, | 0,12726 |
Доля потерь Kкз в общей мощности потерь, | 0,87274 |
Значения полученных энергоэффективных потерь хх и кз для каждой номинальной мощности всей линейки сухих трансформаторов от 25 до 6300 кВА приведены в таблице 5.
Таблица 5. Расчетные энергоэффективные нормативные потери для сухих трансформаторов мощностью 25-6300 кВА | |||||||
Мощность сухого трансформатора, кВА | Требуемое сокращение удельной мощности суммарных потерь сухих тр-ров, Вт | Расчётная нормативная удельная мощность потерь хх, Э-ЭФ. сухих тр-ров, Вт | Удельная мощность потерь хх обычных сухих тр-ров, Вт | Расчётная нормативная удельная мощность потерь кз, Э-ЭФФ. сухих тр-ров, Вт | Удельная мощность потерь кз обычных сухих тр-ров, Вт | Коэффициент энергоёмкости (КПД) э-эфф. сухих тр-ров | Коэффициент энергоэффективности (КПД) обычных сухих трансформаторов |
25 | 0,0721 | 173,2 | 195 | 399,7 | 450 | 0,9763 | 0,9742 |
40 | 0,1153 | 201,5 | 230 | 613,2 | 700 | 0,9799 | 0,9768 |
63 | 0,1816 | 257,9 | 290 | 1200,5 | 1350 | 0,9801 | 0,9740 |
100 | 0,2883 | 334,0 | 380 | 1757,8 | 2000 | 0,9826 | 0,9762 |
160 | 0,4612 | 436,7 | 510 | 2312,1 | 2700 | 0,9853 | 0,9799 |
250 | 0,7206 | 515,4 | 620 | 3034,0 | 3650 | 0,9880 | 0,9829 |
400 | 1,1530 | 916,2 | 1100 | 4830,8 | 5800 | 0,9874 | 0,9828 |
630 | 1,8160 | 1100,9 | 1240 | 5583,1 | 7100 | 0,9906 | 0,9868 |
1000 | 2,8826 | 1268,6 | 1600 | 6488,8 | 8900 | 0,9925 | 0,9895 |
1600 | 4,6121 | 1864,2 | 2100 | 7323,7 | 11000 | 0,9940 | 0,9918 |
2500 | 7,2064 | 2476,9 | 2750 | 13416,7 | 19500 | 0,9941 | 0,9911 |
4000 | 11,5302 | 2798,9 | 4000 | 24070,9 | 34400 | 0,9941 | 0,9904 |
6300 | 18,1601 | 3510,5 | 5400 | 30229,4 | 46500 | 0,9950 | 0,9918 |
Для сопоставления с действующими нормативами энергоэффективности трансформаторов в таблицах 6, 7, 8 приведены соответственно значения потерь хх и кз энергоэффективных трансформаторов в соответствии с постановлением правительства № 600 от 17 июня 2015 г., стандартом СТО 34.01-3.2-011-2017 и постановлением совета Европы № 548/2014 от 21 мая 2014 г.
Как видно из сравнения результатов расчета по новой методике нормирования показателей потерь сухих энергоэффективных трансформаторов, полученные данные ожидаемо не совпадают с показателями потерь нормативных документов. Так полученные значения потерь хх и кз для трансформатора мощностью 1000 кВА составляют, соответственно, 1270 Вт и 6500 Вт; стандартные значения — 1600 и 8900 Вт. Нормативный документ «Постановление № 600» требует для этой мощности трансформаторов значений потерь хх 1100 Вт и потерь кз 10500 Вт. Требования европейского стандарта составляют для потерь хх 1550 Вт и для потерь кз 9000 Вт.
Если мы будем исходить из требований сокращения интуитивно понятного и логически прозрачного показателя, научного критерия энергоёмкости ВВП, мы увидим, что требования к энергоэффективности трансформаторов управляемы и должны обосновываться более гибко, чем это определено действующими нормативными документами.
Автор выражает искреннюю благодарность руководству и ведущим специалистам ООО «Трансформер» за многочисленные предоставленные технические и другие данные о распределительных трансформаторах, а также за конструктивное обсуждение тезисов статьи.
Какие факторы влияют на потери
Современные трансформаторы в условиях полной нагрузки достигают 99% КПД. Но устройства продолжают совершенствовать, пытаясь снизить утрату энергии, которая практически равны сумме потерь холостого хода, возникающих под влиянием разнообразных факторов.
Изоляция
Если на стягивающих шпильках установлена плохая изоляция или ее недостаточно, возникает замкнутый накоротко контур. Это один из главных факторов данной проблемы трансформатора. Поэтому процессу изоляции следует уделять больше внимания, используя для этих целей качественные специализированные материалы.
Вихревые токи
Развитие вихревых токов связано с течением магнитного потока по магнитопроводу. Их особенность в перпендикулярном направлении по отношению к потоку. Чтобы их уменьшить, магнитопровод делают из отдельных элементов, предварительно изолированных. От толщины листа и зависит вероятность появления вихревых токов, чем она меньше, тем ниже риск их развития, приводящего к меньшим потерям мощности.
Чтобы уменьшить вихревые токи и увеличить электрическое сопротивление стали, в материал добавляют различные виды присадок.
Они улучшают свойства материала и позволяют снизить риск развития неблагоприятных процессов, плохо отражающихся на работе устройства.
Гистерезис
Как и переменный ток, магнитный поток также меняет свое направление. Это говорит о поочередном намагничивании и перемагничивании стали. Когда ток меняется от максимума до нуля, происходит размагничивание стали и уменьшение магнитной индукции, но с определенным опозданием.
При перемене направления тока кривая намагничивания формирует петлю гистерезиса. Она отличается в разных сортах стали и зависит от того, какие максимальные показатели магнитной индукции материал может выдержать. Петля охватывает мощность, которая постепенно перерасходуется на процесс намагничивания. При этом происходит нагревание стали, энергия, проводимая по трансформатору, превращается в тепловую и рассеивается в окружающую среду, то есть, она тратится зря, не принося никакой пользы всем пользователям.
Характеристики электротехнической стали
Для трансформаторов используют преимущественно холоднокатаную сталь. Но показатель потерь в ней зависит от того, насколько качественно собрали устройство, соблюдались ли все правила в ходе производственного процесса.
Для уменьшения потерь можно также немного добавить сечения проводам на обмотке. Но это не выгодно с финансовой точки зрения, ведь придется использовать больше магнитопровода и других важных материалов. Поэтому размер обмоточных проводов меняют редко. Пытаются найти другой, более экономичный способ решения этой проблемы.
Перегрев
В процессе работы трансформатора его элементы могут нагреваться. В этих условиях устройство не способно нормально выполнять свои функции. Все зависит от скорости этого процесса. Чем выше нагрев, тем быстрее прибор перестанет выполнять свои прямые функции и понадобится капитальный ремонт и замена определенных деталей.
В первичной обмотке
Если электрический ток по проводнику замыкается, то высокая вероятность утечки электрической энергии. Размер потерь зависит от величины тока в проводнике и его сопротивления, а также от показателя нагрузок, возлагаемых на прибор.
Причины потерь холостого хода
Сегодня используются масляные и сухие трансформаторные приборы. До недавнего времени, масляные трансформаторы были более распространены, но они имеют ряд серьезных недостатков, к примеру, низкую пожаробезопасность и сложность размещения, потому сегодня сухие трансформаторы используются гораздо чаще.
Среди основных причин потерь холостого хода в различных устройствах можно выделить следующие факторы:
- Коррозийные процессы на металлических элементах трансформаторов. Коррозия на металле появляется из-за нарушения защитного лакового слоя, из-за чего на оборудовании увеличиваются вихревые токи и происходит существенный нагрев металлических пластин.
- Витковые замыкания на обмотках, из-за которых могут появляться сильные скачки напряжения.
- Низкокачественная изоляция.
- Магнитные зазоры на металлических элементах.
- Слишком большое или слишком маленькое количество витков обмотки.
- Перегрев элементов трансформаторного оборудования.
Это лишь самые основные причины потерь холостого хода, с которыми специалисты сталкиваются чаще всего. Существуют и другие факторы, из-за которых величина потерь холостого хода может превышать допустимые пределы, из-за чего вырастет себестоимость эксплуатации электрических систем. Для определения причин потерь на отдельном трансформаторе, собственнику потребуется заказать услуги профессиональных электроизмерений.
Ниже вы можете воспользоваться онлайн-калькулятором для расчёта стоимости услуг электролаборатории.
Таблица потерь силовых трансформаторов по справочным данным в зависимости от номинала
Чаще всего проблема утечки электроэнергии связана с движением вихревых токов и перемагничиванием. Под влиянием этих факторов нагревается магнитопровод, который обуславливает основную часть потерь холостого хода независимо от тока нагрузки. Развитие этого процесса происходит независимо от того, в каком режиме функционирует устройство.
Постепенно, под влиянием определенных факторов могут меняться эти показатели в сторону значительного увеличения.
Таблица потерь ХХ
Мощность кВа | Напряжение ВН/НН, кВ | Потери холостого хода Вт |
250 | 10/0,4 | 730 |
315 | 10/0,4 | 360 |
400 | 10/0,4 | 1000 |
500 | 10/0,4 | 1150 |
630 | 10/0,4 | 1400 |
800 | 10/0,4 | 1800 |
1000 | 10/0,4 | 1950 |
Пример расчета
Чтобы было проще понять представленную методику, следует рассмотреть расчет на конкретном примере. Например, необходимо определить увеличение потребления энергии в силовом трансформаторе 630 кВА. Исходные данные проще представить в виде таблицы.
Обозначение | Расшифровка | Значение |
НН | Номинальное напряжение, кВ | 6 |
Эа | Активная электроэнергия, потребляемая за месяц, кВи*ч | 37106 |
НМ | Номинальная мощность, кВА | 630 |
ПКЗ | Потери короткого замыкания трансформатора, кВт | 7,6 |
ХХ | Потери холостого хода, кВт | 1,31 |
ОЧ | Число отработанных часов под нагрузкой, ч | 720 |
cos φ | Коэффициент мощности | 0,9 |
На основе полученных данных можно произвести расчет. Результат измерения будет следующий:
К² = 4,3338
П = 0,38 кВТ*ч
% потерь составляет 0,001. Их общее число равняется 0,492%.
Проверка устройства в режиме ХХ
Для этого выполняют такие действия:
- С использованием вольтметра проверяют напряжение, подающееся на катушку.
- Другим вольтметром исследуют напряжение на остальных выводах. Важно использовать устройство с достаточным сопротивлением, чтобы показатели были требуемого значения.
- Выполняют присоединение амперметра к цепи первичной обмотки. С его помощью можно добиться определения силы тока холостого хода. Также прибегают к применению ваттметра, с помощью которого стараются выполнить измерение уровня мощности.
После получения показаний всех приборов выполняют расчеты, которые помогут в вычислении. Чтобы получить нужные данные, необходимо показатели первой обмотки разделить на вторую. С применением данных опыта ХХ с результатами короткозамкнутого режима определяют, насколько полно устройство выполняет свои действия.
Особенности режима ХХ в трехфазном трансформаторе
На функционирование трехфазного трансформатора в таком режиме влияют отличия в подключении обмоток: первичная катушка в виде треугольника и вторичная в форме звезды. Ток способствует созданию собственного потока.
Трехфазный ток в виде группы однофазных имеет такие особенности: замыкание ТГС магнитного потока происходит в каждой фазе за счет сердечника. Если напряжение будет постепенно увеличиваться, то в изоляции возникнет пробой и электроустановка рано или поздно выйдет из строя.
Если в трансформаторе используется бронестержневая магнитная система, то в нем можно наблюдать развитие похожих процессов.
Вывод
Энергопотери в условиях холостого хода трансформатора связаны с магнитными потерями, потерями в первичной обмотке и изоляционном слое. Для снижения этого показателя до сих пор ведутся работы, несмотря на то, что КПД современных трансформаторов в условиях повышенной нагрузки составляет 99%.
Для снижения показателя утечки энергии необходимо снизить влияние провоцирующих факторов. Чтобы добиться этого, постоянно усовершенствуют технологию создания устройств, используют только прочные материалы, проверяя их экспериментальным путем.
Важность высокого качества электротехнической стали
Для того, чтоб была в наличии возможность осуществлять правильные вычисления показателей, следует применять данные по характерным особенностям различных видов стали. Помимо этого немаловажным фактором является такой показатель, как конфигурация магнитной системы. Все факторы можно условно поделить на технологические и условные. К первому типу факторов можно отнести резку стали на платины, аккуратность при удалении заусенцев, качество отжига, покрытие лаком. К факторам второго типа относятся способы и форма сопоставления пластин, которые были выполнены из стали. Также достаточно важной причиной, по которой увеличивается численность потерь в оборудовании, которое уже используется, является наличие нестабильных характеристик самой стали. Также возможны неполадки по причине небрежной сборки, при которой были допущены повреждения механического рода.
Несмотря на вышеуказанную информацию, при использовании оборудования, которое было собрано с полным учетом всех норм, все равно имеются отклонения от идеальных показателей, которые составляют примерно до пяти процентов. Поэтому данную особенность обязательно следует принимать во внимание, при осуществлении контроля за предельными показателями. Поэтому к параметрам, которые указаны в общем стандарте ГОСТ, все равно следует добавлять вероятность потери холостого хода трансформатора . Данный показатель может составлять примерно пятнадцать процентов. Важно осуществлять контроль за половиной данного значения.