Понятие номинальной мощности трансформатора
Номинальная мощность трансформатора – это полная мощность, на которую рассчитан прибор его изготовителем. То есть, напряжение, которое в течение всего срока эксплуатации трансформатор выдерживает без перерыва.
Заводы дают гарантию службы от 20 до 25 лет.
Данный показатель всегда связан с температурным режимом работы: насколько допускается нагрев обмоток и при каких условиях охлаждается агрегат. При разных мощностях обмоток трансформатора номинальной считают наибольшую. В основном, в трансформаторах установлено масляное охлаждение, которое напрямую зависит от температуры окружающей среды.
Поскольку погодные условия постоянно изменяются, наибольший нагрев обмоток при максимальной теплоте воздуха считается верхним пределом среднего показателя сопротивления температуры, возможной для соблюдения безопасности.
У приборов с другим типом охлаждения в паспорте от производителя прописываются номинальные температурные условия.
Помимо номинальной, есть типовая мощность трансформатора, которая считается, как сумма величин нагрузки на все обмотки, поделенная на два. А максимальная нагрузка на обмотки рассчитывается, как произведение наибольшей величины тока на максимально разрешенное напряжение данной части цепи.
Система отвода тепла
В процессе преобразования электроэнергии часть потерь выделяется в виде тепла, поэтому система его отвода неизменно присутствует в любом СТ. Мощные аппараты снабжены для этого специальной двухконтурной системой, охлаждение масла в которой производится следующими способами:
- Посредством радиаторов (см. Е на рис. 4), обеспечивающих отвод тепла во вторичную или внешнюю среду.
- Бак-корпус с гофрированной поверхностью (применяется в маломощных аппаратах).
- Установка вентиляционного оборудования. Такое решение позволяет увеличить производительность на четверть.
Вентиляторы принудительной системы охлаждения СТ - Дополнительные системы водяного охлаждения. Это один из самых простых и эффективных способов отвода тепла.
- Применение специальных насосов, обеспечивающих циркуляцию масла в системе отвода тепла.
Устройства управления рабочим напряжением
В некоторых случаях возникает необходимость повысить или понизить напряжение нагрузки СТ, для этой цели в большинстве конструкций предусмотрено специальный переключатель. По сути, он меняет коэффициент трансформации путем переключения на большее или меньшее число витков в катушках.
Как правило, такие манипуляции выполняются при снятой нагрузке, но существуют устройства позволяющие изменять КТ без отключения потребителей.
Виды дополнительного оборудования
Для обеспечения стабильной работы и обслуживания СТ их конструкция может включать следующие устройства, именуемые навесным или дополнительным оборудованием:
- Реле давления газа, представляет собой защитную систему. Если СТ переходит в нештатный режим работы, то в результате большого выделения тепла происходит разложение масла. Данный процесс сопровождается выделением газа. При его быстром образовании срабатывает защита, отключающая аппарат от питания и нагрузки. Если процесс газообразования протекает медленно, включается оповещение.
- Термоиндикаторы, показывают нагрев масла в различных узлах системы отвода тепла.
Индикатор температуры масла - Влагопоглотители. Применяются в негерметичных масляных системах отвода тепла, препятствуют образованию водяного конденсата.
- Системы маслорегенерации.
- Датчики давления, если оно превышает определенный порог, автоматически включается устройство сброса для нормализации.
- Датчик уровня заполнения масла в системе отвода тепла.
В чем измеряется и указывается
Номинальную мощность трансформаторов измеряют в кВА (киловольт-амперах), а не в кВТ (киловаттах). Эти два показателя отличаются друг от друга и не тождественны. Первый – это полная (номинальная) мощность, второй – активная. Номинальная потребляется в работу не в полном объеме, поскольку часть ее распространяется на электромагнитные поля цепи, и только оставшаяся часть – это активная мощность – действует по назначению.
Нагрузка на трансформатор обуславливается потребляемым током, а не энергией, которая используется фактически. То есть, полная мощность представляет собой все напряжение, налагаемое во время работы прибора на все составляющие электрической цепочки. Поэтому данную номинальную величину указывают в единицах вольт-ампер.
В работе электроприборов также учитывают коэффициент, который выражается в отношении активной к номинальной (cos фи). Данный коэффициент отражает величину сдвижения переменного тока по фазе относительно нагрузки, приложенной к ней.
Конструктивные особенности
Несмотря на разнообразие видов СТ их конструкция неизменно включает следующие обязательные элементы:
- выводы катушек высокого и низкого напряжения (ВН и НН), их принято называть силовыми вводами;
- систему отвода тепла;
- устройства, позволяющие регулировать рабочее напряжение;
- дополнительное оборудование, для контроля работы и обслуживания аппарата.
На рисунке ниже представлена типовая конструкция СТ с масляной системой отвода тепла.
Конструкция силового трансформатора с масляным охлаждением
Обозначения:
- А – бак расширителя, служит для выравнивания уровня масла при изменении его объема вследствие температурных колебаний.
- В – силовой ввод для ВН.
- С — ввод для НН.
- D – переключатель рабочего напряжения.
- E – радиатор, представляет собой трубы, по которым циркулирует масло.
- F – корпус, также играет роль бака для масла.
- G и H – катушки ВН и НН.
- I – магнитопроводный сердечник.
Теперь рассмотрим подробно назначение основных конструктивных элементов.
Назначение силовых вводов
Данный элемент конструкции необходим для подключения питания и нагрузки к СТ. Их расположение может быт как внутренним (закрытые клеммные колодки) так и внешним. Обратим внимание, что первый вариант расположение используется только в СТ с воздушной системой отвода тепла.
Обязательно наличие изоляции, между вводом и корпусом, она может быть маслобарьерной, элегазовой, конденсаторной-проходной или же выполнена из материалов, не проводящих электричество (фарфор, полимеры и т.д.).
Рис. 4. Фарфоровые изоляторы на вводах силового трансформатора
Шкала стандартных мощностей силовых трансформаторов
На территории России используется единая шкала стандартных мощностей. Она разделяется на два шага: 1,35 и 1,6, каждый включает ряд величин, представленных в таблице ниже.
Шаг 1,35. В кВА | Шаг 1,6. В кВА |
100 | 100 |
135 | 160 |
180 | 250 |
240 | 400 |
320 | 630 |
420 | 1000 |
560 | 1600 |
В настоящее время заводы выпускают трансформаторные подстанции (ТП), применяя мощности шага 1,6. Шкала шага 1,35 уже не используется на производствах, но старые установки, выпущенные в советское время, проектировались именно по этой шкале. При этом, исследования определили старые приборы как более выгодные, поскольку они могут работать в полную силу, в отличие от современных агрегатов.
При выборе разных видов приборов, учитывается, что они должны быть максимально близкими по наибольшему показателю нагрузки в обычном режиме и предельному напряжению в аварийном.
При выборе трансформаторов для промышленных производств важно учитывать их количество для рационального распределения электроэнергии и их типовые мощности при определенной номинальной нагрузке.
Принятая маркировка
Буквенно-цифровые обозначения СТ производится в соответствии с представленным ниже рисунком.
Маркировка силового трансформатора
Обозначения:
- Указывается тип аппарата. Возможны варианты «А», «Л», «Е» или отсутствие символа, что соответствует автотрансформатору, линейному или печному устройству. Отсутствие символа указывает на обычный СТ.
- «О» или «Т», соответствует однофазному или трехфазному аппарату.
- Используемая вариант отвода тепла (для масляных систем), возможные варианты:
- М – принудительные системы не используются.
- Д – производится принудительный обдув.
- ДЦ – производится принудительный обдув с ненаправленной циркуляцией.
- НЦ – водяно-масляное охлаждение с направленной циркуляцией.
- Ц – водно-масляное охлаждение с ненаправленной циркуляцией.
- Указание мощности в кВ*А.
- Допустимый уровень ВН (кВ).
- Вариант исполнения (наружное или внутреннее размещение, особые климатические условия и т.д.)
Пример выбора трансформатора
Выбрать трансформатор можно исходя из их конструктивного исполнения, ориентируясь на необходимые характеристики, или по номинальной нагрузке.
Выбор по конструктивному исполнению
Силовые трансформаторы бывают нескольких видов:
- масляные – устанавливаются внутри или снаружи зданий, где нет опасности возгорания или взрыва веществ;
- сухие – находятся в пожароопасных помещениях;
- с негорючим жидким диэлектриком – устанавливаются внутри строений, отличающихся высокой взрыво- и пожароопасностью.
Масляные лучше остальных отводят тепло от сердечника и обмоток, составные части хорошо защищены от внешних воздействий. Также, данные трансформаторы меньше других по стоимости. К недостаткам относится необходимость установки в специальных помещениях или снаружи строений, из-за высокой вероятности возгорания или взрыва при поврежденной защите активных частей.
Сухие трансформаторы устанавливают в тех помещениях, где высокая вероятность возгорания и большое электрическое напряжение. Такие установки обладают повышенными огнеупорными свойствами благодаря жаропрочным изоляционным материалам. Но условия охлаждения уступают масляным, из-за чего плотность тока в обмотках меньше.
Агрегаты с негорючим диэлектриком обладают схожими огнеупорными свойствами с сухими, не наносят вред окружающей среде, за счет характеристик охлаждающей жидкостей и считаются более долговечными.
Выбор по мощности
Агрегаты для главных понизительных подстанций (ГПП) и цеховых трансформаторных подстанций выбирают по среднему напряжению за максимально загруженный период работы с контролем удельного расхода электроэнергии.
Фактор, которым характеризуется необходимая полная мощность трансформатора – это допустимое значение относительной аварийной нагрузки. Этот показатель регламентируется ГОСТом и определяется, как возможный тепловой износ изоляции агрегата за аварийный период с учетом температуры охлаждения, типа прибора и графика режима аварийной работы.
При определении необходимой номинальной нагрузки трансформатора используют два подхода, зависящие от наличия исходных данных:
- По заранее определенному суточному плану нагрузки производства за типичные сутки года в режиме аварийной и стандартной работы.
- По расчетной нагрузке в этих же режимах. По Государственному стандарту, цеховые ТП имеют мощности, указанные в таблице выше.
Список литературы
- Савинцев Ю. М. «Простая зависимость цены распределительного трансформатора от потерь холостого хода и короткого замыкания». [Электронный ресурс]. Дата обращения 26.11.2020.
- Савинцев Ю. М. «Как выбрать поставщика энергоэффективных трансформаторов — вот в чем вопрос». [Электронный ресурс]. Дата обращения 26.11.2020.
- Савинцев Ю. М. «Анализ рынка распределительных трансформаторов России в 2022 году». [Электронный ресурс]. Дата обращения 26.11.2020.
- Савинцев Ю. М. «Экспертный анализ рынка силовых трансформаторов: Часть 1: I–III габарит»./Юрий Михайлович Савинцев. — [б. м.]: — Издательские решения, 2015. — 86 с.
- «Трансформаторное оборудование». [Электронный ресурс]. Дата обращения 26.11.2020.
- «Трансформаторные заводы России — полный список производителей». [Электронный ресурс]. Дата обращения 26.11.2020.
- «Каталог поставщиков». [Электронный ресурс]. Дата обращения 26.11.2020.
- «Трансформаторы силовые из Турции» [2020]. [Электронный ресурс]. Дата обращения 26.11.2020.
- Трансформаторы — изготовитель — Италия. [Электронный ресурс]. Дата обращения 26.11.2020.
- Трансформатор — Германия. [Электронный ресурс]. Дата обращения 26.11.2020.
- Каталог поставщиков — силовые трансформаторы, реакторы. [Электронный ресурс]. Дата обращения 26.11.2020.
- Тихомиров П. М. «Расчет трансформаторов: учеб. пособие для вузов». 5-е изд. перераб. и доп. М.: «Энергоатомиздат», 1986. 528 с.
- Дымков А. М. «Расчет и конструирование трансформаторов: Учебник для техникумов»//Высшая школа. — 1971. — 264 с.
Ёмкостная
Еще один пример реактивной составляющей мощности содержит ёмкостная нагрузка, это, например, конденсатор. Принцип работы конденсатора – накапливание и передача энергии, соответственно часть мощности тратится именно на это и напрямую не расходуется на работу оборудования.
Практическаи вся окружающая вас электроника и бытовая техника содержит конденсаторы.
Принцип работы
Принцип работы любого силового трансформатора заключается в явлении электромагнитной индукции. На первичную обмотку подается переменный ток, который образует в магнитопроводе переменный магнитный поток. Это происходит за счет его замыкания на магнитопроводе и образования сцепления между обмотками, индуцируя ЭДС. Нагрузка, подключенная ко вторичной обмотке, приводит к образованию в ней напряжения и тока.
Конструктивно, для получения любого напряжения на вторичной обмотке, используется необходимое соотношение витков между обмотками. Силовой трансформатор обладает свойством обратимости. Иными словами, он может быть использован и для повышения, и для понижения напряжения. В большинстве случаев силовой трансформатор применятся для решения определенных задач. Например, конкретно повышать или понижать напряжение. У повышающего трансформатора напряжение на первичной обмотке ниже, чем на вторичной.
Расчет
Для выяснения показателя активной мощности, необходимо знать полную мощность, для её вычисления используется следующая формула:
S = U I, где U – это напряжение сети, а I – это сила тока сети.
Этот же расчет выполняется при вычислении уровня передачи энергии катушки при симметричном подключении. Схема имеет следующий вид:
Схема симметричной нагрузки
Расчет активной мощности учитывает угол сдвига фаз или коэффициент (cos φ), тогда:
Очень важным фактором является то, что эта электрическая величина может быть как положительной, так и отрицательной. Это зависит от того, какие характеристики имеет cos φ. Если у синусоидального тока угол сдвига фаз находится в пределах от 0 до 90 градусов, то активная мощность положительная, если от 0 до -90 – то отрицательная. Правило действительно только для синхронного (синусоидального) тока (применяемого для работы асинхронного двигателя, станочного оборудования).
Также одной из характерных особенностей этой характеристики является то, что в трехфазной цепи (к примеру, трансформатора или генератора), на выходе активный показатель полностью вырабатывается.
Расчет трехфазной сети
Максимальная и активная обозначается P, реактивная мощность – Q.
Из-за того, что реактивная обуславливается движением и энергией магнитного поля, её формула (с учетом угла сдвига фаз) имеет следующий вид:
Для несинусоидального тока очень сложно подобрать стандартные параметры сети. Для определения нужных характеристик с целью вычисления активной и реактивной мощности используются различные измерительные устройства. Это вольтметр, амперметр и прочие. Исходя от уровня нагрузки, подбирается нужная формула.
Из-за того, что реактивная и активная характеристики связаны с полной мощностью, их соотношение (баланс) имеет следующий вид:
S = √P 2 + Q 2 , и все это равняется U*I .
Но если ток проходит непосредственно по реактивному сопротивлению. То потерь в сети не возникает. Это обуславливает индуктивная индуктивная составляющая – С и сопротивление – L. Эти показатели рассчитываются по формулам:
Сопротивление индуктивности: xL = ωL = 2πfL,
Сопротивление емкости: хc = 1/(ωC) = 1/(2πfC).
Для определения соотношения активной и реактивной мощности используется специальный коэффициент. Это очень важный параметр, по которому можно определить, какая часть энергии используется не по назначению или «теряется» при работе устройства.
При наличии в сети активной реактивной составляющей обязательно должен рассчитываться коэффициент мощности. Эта величина не имеет единиц измерения, она характеризует конкретного потребителя тока, если электрическая система содержит реактивные элементы. С помощью этого показателя становится понятным, в каком направлении и как сдвигается энергия относительно напряжения сети. Для этого понадобится диаграмма треугольников напряжений:
Диаграмма треугольников напряжений
К примеру, при наличии конденсатора формула коэффициента имеет следующий вид:
Для получения максимально точных результатов рекомендуется не округлять полученные данные.