Электросеть и номинальное напряжение трансформатора и сети

Трансформаторы напряжения – это устройства, предназначенные для преобразования напряжений переменного тока в электрических цепях переменного тока частотой 50 или 60 Гц с номинальными напряжениями от 0,38 до 750 кВ посредством электромагнитной индукции. Понижение высоких напряжений в трансформаторах напряжения происходит без изменения частоты переменного тока. Трансформаторы напряжения используются для обеспечения электроэнергией токовых обмоток реле и измерительных приборов, например, амперметров, вольтметров, ваттметров и многих других. Также трансформатор напряжения защищает подключенные к нему устройства от повреждения высоким током в случае, если в основной цепи происходит короткое замыкание. Трансформаторы напряжения с двумя вторичными обмотками, кроме питания измерительных приборов и реле, предназначаются для работы на устройствах сигнализации замыканий на землю в сети с изолированной нейтралью или на защиту от замыканий на землю в сети с заземленной нейтралью. Использование трансформаторов напряжения в электроустановках позволяет изолировать маломощные низковольтные измерительные приборы и устройства, что удешевляет стоимость и позволяет использовать более простое оборудование, а также обеспечивает безопасность обслуживания электроустановок. Трансформаторы напряжения применяются в таких областях как электроэнергетика, электроника, радиотехника. Корпус трансформатора может быть выполнен, например, из компаунда на основе гидрофобной циклоалифатической смолы. Это необходимо для защиты обмоток от воздействия факторов окружающей среды, а также от механических повреждений.

Трансформаторы напряжения можно классифицировать по следующим признакам:

  • по наличию или отсутствию заземления вывода X первичной обмотки;
  • по количеству фаз;
  • по количеству обмоток;
  • по наличию компенсационной обмотки или обмотки для контроля изоляции сети;
  • по виду изоляции;
  • по классу точности;
  • по способу охлаждения;
  • по месту установки;
  • по номинальному коэффициенту напряжения;
  • по классу напряжения по ГОСТ 1516.3, кВ;
  • по наибольшему рабочему напряжению, кВ;
  • по номинальному напряжению первичной обмотки;
  • по номинальному напряжению вторичной обмотки. Если вторичных обмоток две, то по номинальному напряжению основной вторичной обмотки;
  • по номинальному напряжению дополнительной вторичной обмотки (если она есть);
  • по номинальной мощности трансформатора, кВА (киловольт-амперы);
  • по максимальной мощности трансформатора, кВА (киловольт-амперы);
  • по напряжению короткого замыкания;
  • по наибольшему току обмоток;
  • по рабочему положению в пространстве;
  • по степени защиты корпуса IP;
  • по климатическому исполнению;
  • по категории размещения согласно ГОСТ 15150;
  • по диапазону рабочих температур;
  • по габаритным размерам;
  • по весу, объему;
  • в зависимости от модели, марки, производителя.

Выбор трансформаторов тока

Трансформаторы тока выбираются по номинальному напряжению, номинальному первичному току и проверяются по электродинамической и термической стойкости к токам короткого замыкания. Особенностью выбора трансформаторов тока является выбор по классу точности и проверка на допустимую нагрузку вторичной цепи.

Классы точности трансформаторов тока

  • Трансформаторы тока для присоединения счетчиков, по которым ведутся денежные расчеты, должны иметь класс точности 0,5.
  • Для технического учета допускается применение трансформаторов тока класса точности 1;
  • Для включения указывающих электроизмерительных приборов — не ниже 3;
  • Для релейной защиты — класса 10(Р).

Чтобы погрешность трансформатора тока не превысила допустимую для данного класса точности, вторичная нагрузка Z2 не должна превышать номинальную нагрузку Z2ном, задаваемую в каталогах.

Индуктивное сопротивление таковых цепей невелико, поэтому принимают Z2р = г2р. Вторичная нагрузка г2 состоит из сопротивления приборов г приб, соединительных проводов гпр и переходного сопротивления контактов гк:

Для определения сопротивления приборов, питающихся от трансформаторов тока, необходимо составить таблицу — перечень электроизмерительных приборов, устанавливаемых в данном присоединении.

Суммарное сопротивление приборов, Ом, рассчитывается посуммарной мощности:

В РУ 6—10 кВ применяются трансформаторы с /2ном = 5А; в РУ 110 — 220 кВ — 1 или 5 А. Сопротивление контактов ГК принимают 0,05 Ом при двухтрех приборах и 0,10 — при большем количестве приборов. Сопротивление проводов рассчитывается по их сечению и длине. Для алюминиевых проводов минимальное сечение — 4 мм2; для медных — 2,5 мм2.

Расчетная длина провода зависит от схемы соединения трансформатора тока и расстояния l от трансформатора до приборов:

  • при включении трансформаторов тока в неполную звезду;
  • 21 — при включении всех приборов в одну фазу;
  • l — при включении трансформаторов тока в полную звезду.

При этом длина l может быть принята ориентировочно для РУ 6—10 к В:

  • при установке приборов в шкафах КРУ / = 4… 6 м;
  • на щите управления /= 30…40 м;
  • для РУ 35 кВ / = 45…60 м;
  • для РУ ПО — 220 кВ/ = 65…80 м.

Если при принятом сечении провода вторичное сопротивление цепи трансформаторов тока окажется больше ZHOU для заданного класса точности, то необходимо определить требуемое сечение проводов с учетом допустимого сопротивления вторичной цепи:

где р — удельное сопротивление.
Полученное сечение округляется до большего стандартного сечения контрольных кабелей: 2,5; 4; 6; 10 мм2.

Условия выбора трансформатора тока приведены в табл. 7.5. Дополнительно могут быть заданы: КТН = 1т.тн/УР21ном — кратность тока динамической стойкости трансформатора тока; КТ = /Т//|„ОМ — кратность тока термической стойкости; /i„OM — номинальный ток первичной обмотки трансформатора тока.

По количеству фаз трансформаторы напряжения можно разделить на следующие группы:

  • однофазные;
  • трехфазные.

И однофазные и трехфазные трансформаторы напряжения широко используются в трехфазной сети питания. Трехфазные трансформаторы напряжения устанавливают в трехфазной электросети. Однофазные трансформаторы напряжения также рекомендуют устанавливать в трехфазной электросети группой по одному трансформатору на каждую отдельную фазу. Группа из трех однофазных трансформаторов, установленных на общей раме (площадке) и электрически соединенных между собой по определенной схеме – это трехфазная группа однофазных трансформаторов. Однофазные трансформаторы имеют по одному стержню с первичной и вторичной обмотками. Другими словами, только по одной фазе. Каждый трехфазный трансформатор содержит по три стержня (замкнутые сверху и снизу) с первичной и вторичной обмотками, соединяемые затем одной из двух основных схем.

Общее устройство и принцип работы

Каждый трансформатор оборудуется двумя или более обмотками, индуктивно связанными между собой. Они могут быть проволочными или ленточными, покрытыми изоляционным слоем. Обмотки наматываются на сердечник, он же магнитопровод, выполненный из мягких ферромагнитных материалов. При наличии одной обмотки, такое устройство называется автотрансформатором.

Принцип действия трансформатора довольно простой и понятный. На первичную обмотку устройства подается переменное напряжение, что приводит к течению в ней переменного тока. Этот переменный ток, в свою очередь, вызывает создание в магнитопроводе переменного магнитного потока. Под его воздействием в первичной и вторичной обмотках происходит наведение переменной электродвижущей силы (ЭДС). Когда вторичная обмотка замыкается на нагрузку, по ней также начинает течь переменный ток. Этот ток во вторичной системе отличается собственными параметрами. У него индивидуальные показатели тока и напряжения, количество фаз, частота и форма кривой напряжения.

В конструкцию простейшего силового трансформатора входит магнитопровод, изготавливаемый из ферромагнитных материалов, преимущественно из листовой электротехнической стали. На стержнях магнитопровода – сердечника располагаются первичная и вторичная обмотки. Первичная обмотка соединяется с источником переменного тока, а вторичная подключается к потребителю.

По способу охлаждения трансформаторы напряжения можно разделить на следующие группы:

  • трансформаторы с масляным охлаждением (или масляные трансформаторы);
  • трансформаторы с воздушной системой охлаждения (трансформаторы сухие и с литой изоляцией).

Трансформаторы напряжения с естественным воздушным охлаждением (или «сухие» трансформаторы). Такая система охлаждения осуществляется посредством естественной конвекции воздуха и частичного лучеиспускания в воздухе. Условно принято обозначать естественное охлаждение при открытом исполнении – С, при защитном исполнении — СЗ, при герметичном исполнении СГ, с принудительной циркуляцией воздуха (дутьем) — СД. Трансформаторы напряжения с естественным масляным охлаждением. Такая система охлаждения выполняется для трансформаторов мощностью до 16000 кВА. Осуществляется посредством передачи тепла, выделенного в обмотках и магнитопроводе, маслу, циркулирующему по баку и радиаторам, а после — окружающему воздуху. Для лучшей отдачи тепла в окружающую среду бак трансформатора снабжают ребрами, охлаждающими трубами или радиаторами в зависимости от мощности. Обратите внимание, температура масла в верхних, наиболее нагретых слоях не должна превышать +95°С. Условно принято обозначать естественное масляное охлаждение – М. Трансформаторы напряжения с масляным охлаждением с дутьем и естественной циркуляцией масла. Такая система охлаждения выполняется для трансформаторов мощностью от 16000 кВА до 80 000 кВА. Осуществляется посредством размещения специальных вентиляторов в навесных охладителях из радиаторных труб. Вентилятор засасывает воздух снизу и обдувает нагретую верхнюю часть труб. Пуск и останов вентиляторов осуществляется автоматически в зависимости от нагрузки и температуры нагрева масла. Трансформаторы с таким охлаждением могут работать при полностью отключенном дутье, если нагрузка не превышает 100% от номинальной, а температура верхних слоев масла не более 55 °С, а также независимо от нагрузки при отрицательных температурах окружающего воздуха и температуре масла не выше 45 °С. Максимально допустимая температура масла в верхних слоях при работе трансформатора с номинальной нагрузкой 95 °С. Условно принято обозначать масляное охлаждение с дутьем и естественной циркуляцией масла – Д. Трансформаторы напряжения с масляным охлаждением с дутьем и принудительной циркуляцией масла через воздушные охладители. Такая система охлаждения выполняется для трансформаторов мощностью от 63000 кВА и выше. Охладители состоят из тонких ребристых трубок, обдуваемых снаружи вентилятором. Электронасосы, встроенные в маслопроводы, создают непрерывную принудительную циркуляцию масла через охладители. Благодаря высокой скорости циркуляции масла, большой поверхности охлаждения и интенсивному дутью охладители обладают большой теплоотдачей и компактностью. Такая система охлаждения позволяет значительно уменьшить габаритные размеры трансформаторов. Условно принято обозначать масляное охлаждение с дутьем и принудительной циркуляцией масла через воздушные охладители – ДЦ. Трансформаторы напряжения с масляно-водяным охлаждением с принудительной циркуляцией масла. Такая система охлаждения выполняется для мощных трансформаторов от 160 MBА и более. Выполняется так же, как охлаждение ДЦ (трансформаторов напряжения с масляным охлаждением с дутьем и принудительной циркуляцией масла через воздушные охладители). Разница в том, что охладители в этой системе состоят из трубок, по которым циркулирует вода, а между трубками движется масло. Температура масла на входе в маслоохладитель не должна превышать 70 °С. Чтобы предотвратить попадание воды в масляную систему трансформатора, давление масла в маслоохладителях в этом случае должно превышать давление циркулирующей в них воды не менее чем на 0,02 МП. Условно принято обозначать масляно-водяное охлаждение с принудительной циркуляцией масла – Ц.

Основные характеристики

Для защиты ответственных электрических цепей от неожиданностей применяют стабилизаторы напряжения. В зависимости от мощности, их используют в быту и на производстве. Номинальные значения потенциала для некоторых объектов приведены в таблице.

Наименование конструктаХарактер токовой нагрузкиUном в вольтах, если не отмечено другое
КардиограммаИмпульсная1,0―2,0 мВ
Батарейка: -мизинчиковая, щелочной элементCONST1,5
-тип Крона9,0
Антенна для телевизораВысокочастотная1―100,0 мВ
Выпрямитель для ноутбука, автомобильный аккумуляторCONST12,0
Телефонная линия―″―60
Разряд электрического: -ската―″―250
-угря650
Троллейная система трамвая, троллейбуса―″―660
Контактный рельс метрополитена―″―825
Энергосеть: -Российской Федерации~ переменная220/380
-Соединённых Штатов110/190
-Японии100/172
Электрифицированная железная дорога―″―25 кВ
То жеПостоянная3 кВ
Грозовое облако―″―≥10 гигавольт (1 млрд вольт)

Стандартный ряд номинальных величин сети ≥1000 В: 3,0; 6,0; 10,0; 20,0; 35,0… Значительное превышение норматива называют перенапряжением.

По рабочему положению в пространстве трансформаторы напряжения можно разделить на;

  • устройства с вертикальным рабочим положением в пространстве;
  • устройства с горизонтальным рабочим положением в пространстве;
  • устройства с любым рабочим положением в пространстве.

Номинальный коэффициент напряжения — коэффициент, на который следует умножать но минальное первичное напряжение, чтобы найти максимальное напряжение, при котором трансформатор соответствует требованиям по нагреву в течение установленного времени. Номинальное напряжение обмоток трансформатора напряжения – это величина напряжения на обмотках при холостом ходе. Номинальные напряжения первичных обмоток однофазных трансформаторов, включаемых между фазами, и трехфазных трансформаторов на напряжение до 1000 В должны быть 380 или 660 В.

Номинальное первичное напряжение трансформатора – это напряжение, которое, необходимо подвести к его первичной обмотке, чтобы на зажимах разомкнутой вторичной обмотки получить вторичное номинальное напряжение, указанное в паспорте трансформатора. Номинальное вторичное напряжение трансформатора – это напряжение, которое устанавливается на зажимах вторичной обмотки при холостом ходе трансформатора (к зажимам первичной обмотки подведено напряжение, а вторичная обмотка разомкнута) и при подведении к первичной обмотке номинального первичного напряжения. Номинальная мощность трансформатора, кВА (киловольт-амперы) – это указанное в паспорте значение полной мощности, на которую трансформатор может быть нагружен непрерывно в номинальных условиях установки и охлаждающей среды при номинальной частоте и напряжении. Номинальная мощность трансформатора напряжения может равняться: 10; 15; 25; 30; 50; 75; 100; 150; 200; 300; 400; 500; 600; 800; 1000; 1200 ВА. В случае, когда обмотки трансформатора имеют разные мощности, то за номинальную принимают наибольшую. Предельные мощности трансформаторов напряжения могут равняться: 160; 250; 400; 630; 1000; 1600; 2000; 2500 ВА. За номинальные и предельные мощности трехобмоточных трансформаторов принимают суммарные мощности основной и дополнительной вторичных обмоток. Номинальные токи обмоток трансформатора напряжения – это токи, определяемые по их номинальным мощностям и номинальным напряжениям. Номинальное напряжение короткого замыкания Uk, %– это напряжение в процентах от номинального, при подведении которого к одной из обмоток трансформатора в замкнутой накоротко другой обмотке ток равен номинальному. Оно характеризует полное сопротивление обмоток трансформатора. Степень защиты корпуса (IP). Степень защиты корпусов от физических повреждений, атмосферных осадков, а также его износостойкость и водонепроницаемость обозначается IP (от англ. Ingress Protection Rating — степень защиты оболочки). После букв указываются цифры. Первая из них обозначает степень защиты от твердых фрагментов, вторая — от проникновения жидкостей. IP — это целая система классификации степеней защиты оболочки электрооборудования от проникновения твердых предметов и воды в соответствии с международным стандартом IEC 60529 и ГОСТ14254-96. Перечислим основные данные классы: IPХ0 (защита отсутствует), IPХ1 (защита от вертикально падающих капель воды), IPХ2 (защита от диагонально падающих капель воды), IPХ3 (защита от мелких водяных брызг), IPХ4 (защита от большого количества водяных брызг, направленных со всех сторон), IPХ5 (защита от сильных струй воды, направленных со всех сторон), IPХ6 (защита даже при временном затоплении) и т.д. Перечислим основные классы защиты корпусов светильников от попадания твердых инородных тел. IP0Х (защита отсутствует), IP1Х (защита от контакта с рукой человека и от твердых инородных тел диаметром более 50мм), IP2Х (защита от контакта с пальцами и от твердых инородных тел диаметром не менее 12мм), IP3Х (защита от повреждений инструментом, проводами и иными подобными инородными предметами диаметром более 2,5 мм), IP4Х (защита от повреждений инструментом, проводами и иными подобными инородными предметами диаметром более 1,0 мм), IP5Х (полная защита от любого внешнего контакта с инородными предметами и защита от повреждения оборудования вследствие пылевых отложений внутри корпуса светильника), IP6Х (полная защита от любого внешнего контакта с инородными предметами, а также защита от проникновения пыли) и т.д. Ряд основных и наиболее часто встречающихся степеней защиты устройств защитного отключения: IP00, IP20, IP21, IP22, IP44. Модели с невысокой степенью защиты IP20, IP21 или IP22 используются в сухих помещениях. Такие модели отличаются низкой ценой. Модели с более высокой степенью защиты, например, IP44 можно использовать в помещениях с повышенной влажностью. Такие модели стоят дороже, но надежнее. Климатическое исполнение – это стандартная система категорий, которая включает в себя условия эксплуатации, транспортировки и хранения технических изделий относительно макроклиматического районирования поверхности земного шара. Другими словами это система категорий, определяющая в каких условиях можно эксплуатировать, хранить и транспортировать то или иное электрическое изделие. Для приборов и технических изделий, произведенных в Российской Федерации, применяется ГОСТ 15150-69. ОБОЗНАЧЕНИЕ КЛИМАТИЧЕСКОГО ИСПОЛНЕНИЯ ПО ГОСТ 15150-69 СОСТОИТ ИЗ БУКВЕННОЙ ЧАСТИ И ЦИФРОВОЙ ЧАСТИ.

Цифровая ЧАСТЬ МАРКИРОВКИ УКАЗЫВАЕТ НА категорию размещения изделия:

  1. открытый воздух;
  2. то же что и 1 только без попадания прямых солнечных лучей и без осадков;
  3. в закрытом помещении без регулирования климатических условий;
  4. в закрытом помещении с вентиляцией и отоплением;
  5. в помещениях с высокой влажностью, без искусственного регулирования климатических условий.

Обратите внимание, допускается эксплуатация изделий в макроклиматических районах и, отличающихся от тех, для которых предназначены изделия, если климатические факторы в период эксплуатации не выходят за пределы номинальных значений, установленных для данных изделий. Например, изделия вида климатического исполнения УХЛ4 могут в летний сухой период эксплуатироваться в условиях УХЛ2. Обратите внимание, изделия могут быть предназначены также для эксплуатации в нескольких макроклиматических районах; в этих случаях сочетания различных условий эксплуатации или хранения со сроками пребывания в этих условиях устанавливают в стандартах или технических условиях на изделия, климатические исполнения (категория климатического исполнения) обязательно указываются в сопроводительных документах на товар. Гарантийный срок эксплуатации трансформаторов напряжения составляет, как правило, до 5 лет. Срок эксплуатации трансформаторов напряжения может составлять до 30 лет. Обратите внимание, в сетях с изолированной нейтралью трансформаторы напряжения могут входить в феррорезонанс с паразитными ёмкостями распределительных сетей. Чаще всего это явление наблюдается в кабельных сетях. Трансформаторы напряжения при наличии в сети феррорезонансных явлений выходят из строя. Для предотвращения порчи трансформаторов напряжения в результате феррорезонанса разработаны антирезонансные трансформаторы напряжения типа НАМИ.

ЭЛЕКТРОлаборатория

Доброе время суток, дорогие друзья!

Сегодня продолжим разговор о измерительных трансформаторах. Поговорим о трансформаторах напряжения.

В ходе работы мне чаще всего приходится сталкиваться с трансформаторами напряжения следующих типов: НТМИ, который сейчас вытесняется НАМИ и ЗНОЛ.

Назначение трансформаторов напряжения (ТН

).

При напряжении свыше 1000 В, непосредственное включение приборов недопустимо как по условию изоляции, так и безопасности обслуживающего персонала. В связи с этим при высоких напряжениях измерительные приборы включаются через промежуточные измерительные трансформаторы, называемые трансформаторами напряжения (ТН).

ТН предназначены как для измерения напряжения, мощности, энергии, так и для питания автоматики, синхронизации и релейной защиты ЛЭП от замыканий на землю.

Обозначения некоторых ТН, наиболее используемых в электроустановках.

НОМ – ТН. Однофазный, масляный;

ЗНОМ – заземляемый ввод ВН, напряжения, однофазный, масляный;

НТМИ – напряжения, трехфазный, масляный, с обмоткой для контроля изоляции сети;

Рисунок 1. Внешний вид ТН НТМИ-6(10)кВ.

Рисунок 2. Схема соединения обмоток ТН НТМИ-6(10)кВ.

НАМИ – напряжения, антирезонансный, масляный, с обмоткой для контроля изоляции сети;

Рисунок 3. Внешний вид ТН НАМИ-6(10)кВ.

Рисунок 4. Схема соединения обмоток ТН НАМИ-6(10)кВ.

НКФ – напряжения, каскадный, в фарфоровой покрышке;

СР – серия трансформаторов напряжения: измерительный, однофазный, емкостной напряжением 110-500 кВ.

НОЛ.11-6.05; НОЛ.0.8; НОЛ.12; НОЛ – незаземляемые трансформаторы напряжения 3-6-10 кВ;

ЗНОЛ.06; ЗНОЛЭ-35; ЗНОЛ – заземляемые ТН;

ЗхЗНОЛ; ЗхЗНОЛП – трехфазные антирезонансные группы ТН;

Рисунок 5. Внешний вид ТН 3хЗНОЛ-6(10)кВ

Рисунок 6. Схема соединения обмоток ТН 3хЗНОЛ-6(10)кВ.

Хочу отметить, что в высоковольтных узлах учета, устанавливаемых на ВЛ-10кВ вместо резисторов R1; R2; R3 (2,4кОм) устанавливается один резистор R (0,8кОм). Часто возникающий дефект – прогорание изоляции в точке соединения вывода Х ТН и резистора R1(R2 илиR3), что приводит перегоранию предохранителя в фазе, в которой стоит поврежденный резистор

ЗНОЛП; НОЛП – заземляемые и незаземляемые ТН со встроенными защитными предохранительными устройствами. В трансформаторах этих серий высоковольтные выводы первичной обмотки выполнены со встроенными защитными предохранительными устройствами (ЗПУ), которые, также как и магнитопровод с обмотками залиты изоляционным компаундом, образуя монолитный блок. ЗПУ выполнено в виде разборной конструкции с плавкой вставкой, представляющей собой металлодиэлектрический резистор, подобранный для каждого типа трансформаторов. Это устройство срабатывает при токах менее 1 А, время отключения от 5 до 10 секунд. После срабатывания ЗПУ подлежит перезарядке, которая производится персоналом предприятия, эксплуатирующего трансформатор.

Рисунок 7. Расположение ТН в высоковольтной ячейке.

Какое напряжение принято во вторичной обмотки ТН

.

Для основной вторичной обмотки ТН с номинальным напряжением, соответствующим линейному напряжению сети, установлено напряжение 100 В. Соответственно для ТН с фазным номинальным напряжением основной вторичной обмотки 100 /В при включении их по схеме звезда-звезда вторичное линейное напряжение, соответствующее номинальному, будет тоже 100 В.

Номинальное напряжение дополнительных вторичных обмоток устанавливается таким образом, чтобы максимальное значение напряжения 3Uо (на разомкнутом треугольнике) при однофазном замыкании на землю в сети, когда линейное напряжение соответствует номинальному напряжению ТН, было 100 В. Поэтому для дополнительных обмоток ТН, предназначенных для сети с заземленной нейтралью, установлено Uном = 100 В, а в сети с изолированной нейтралью Uном=100/3 В.

Трансформаторы напряжения производятся со следующим исполнением внутренней изоляции:

· Сухая (трансформаторы напряжения до 10кВ включительно типа НОСК-6, ЗНОЛТ-3, ЗНОЛТ-6, ЗНОЛТ-10 и др.).

· Бумажно-масляная (трансформаторы напряжением до 35кВ включительно типа НОМ-10, НОМ-35) с изоляцией выводов обмотки на полное номинальное напряжение.

· Литая эпоксидная (чешские однофазные трансформаторы напряжения и трансформаторы типа НОЛ).

Испытания ТН.

Объём испытаний трансформаторов напряжения:

1) измерение сопротивления изоляции обмоток первичной и вторичной (вторичных) (К, М)

2) испытание повышенным напряжением трансформаторов напряжения с литой изоляцией (К, М).

3) испытание трансформаторного масла (К, М). Сразу отмечу, что в ТН до 35кВ трансформаторное масло допускается не испытывать

Примечание: К – капитальный ремонт, испытание при приёмке в эксплуатацию; М – межремонтные испытания

для трансформаторов напряжения 3-35кВ

– при проведении ремонтных работ в ячейках, где они установлены, если работы не проводятся – не реже 1 раза в 4 года.

Измеренные значения сопротивления изоляции при вводе в эксплуатацию и в эксплуатации должны быть не менее значений, приведённых в таблице 5.

Испытания повышенным напряжением следует проводить согласно таблицы 6 или требований заводов изготовителей.

На этом у меня на сегодня все. Если есть вопросы, задавайте, будем вместе искать ответы.

Успехов!

Рейтинг
( 2 оценки, среднее 4 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]