Действующее напряжение и амплитудное напряжение — что это, и в чем отличие

Все знают, что действующее напряжение в розетке 220 Вольт (230 по новым нормам, но для данной темы это не имеет особого значения). Это легко проверить при помощи мультиметра, который измерит разность потенциалов между фазой и рабочим нулевым проводником. То есть, при идеальных условиях, потенциал на нулевом проводе 0, а на фазном 220 Вольт. На самом деле все немного не так — переменный ток имеет синусоидальную форму с потенциалом на пиках 310 и -310 Вольт (амплитудное напряжение). Для того чтобы это увидеть, необходимо воспользоваться осциллографом.

Синусоида действующего и амплитудного напряжения

Понятно, что данный материал в большей степени ориентирован на простую аудиторию, у которой не то, что осциллографа нет, даже мультиметр наверняка не у каждого есть. Поэтому все примеры будут браться из среды программы Electronics Workbench, доступной каждому.

И первое, что нам нужно посмотреть — это синусоиду напряжения фазы из розетки. Для этого в программе отрисуем трехфазную сеть и подключим осциллограф к одной из фаз:

Как видно при показании вольтметра 219,4 Вольт между одной из фаз и PEN проводником, осциллограф показал синусоиду с амплитудой 309,1 Вольт. Это значение напряжения называется максимальным (амплитудным). А 219,4 Вольт, которые показывает вольтметр — это действующее напряжение. Его также называют среднеквадратичным или эффективным. И прежде чем перейти к рассмотрению данной особенности, кратко, простыми словами пройдемся по отрисованной схеме трехфазной сети и разберемся в природе синусоиды.

Начнем со схемы:

  • Слева на право — три источника переменного напряжения с фазовыми углами 0, 120, 240 градусов и соединенными звездой.
  • Резистор 4 Ом — это заземление нейтрали трансформатора.
  • Резисторы по 0,8 Ом — условное сопротивление проводов, зависящее от сечения провода и длины линии.
  • Резисторы 15, 10 и 20 Ом — нагрузка потребителей по трем фазам.
  • К одной из фаз подключен осциллограф, показывающий амплитуду 309,1 Вольт.

Теперь рассмотрим синусоиду. Переменное напряжение в отличие от постоянного, график которого прямая на осциллографе, непрерывно изменяется как по величине, так и по направлению. Причем изменения эти происходят периодически, то есть точно повторяются через равные промежутки времени.

Переменное напряжение генерируется на электростанциях и посредством повышающих и понижающих распределительных трансформаторов попадает к конечному потребителю. При этом трансформация по пути никак не сказывается на синусоиде напряжения.

Переменный электрический ток и его характеристики

Кроме постоянного (неизменного во времени) тока есть переменный ток, который со временем меняет свою величину и направление.

Генераторы электричества, в том числе и автомобильные, вырабатывают переменный ток, который затем преобразуется в постоянный.

Как правило, переменный ток изменяется во времени по синусоидальному закону. Для его описания существуют дополнительные параметры — частота и амплитуда.

Рисунок 10.Сила тока

Частота — величина, которая показывает, сколько полных колебаний совершает ток (или напряжение) в секунду. Измеряется частота в Герцах (один Герц равен одному колебанию в секунду).

Таблица 6. Единицы измерения частоты
Для ее определения можно использовать специальный прибор — частотомер, но на практике обычно пользуются осциллографом, который может показать не только частоту, но и форму сигнала.

С частотой связан другой параметр, называемый периодом. Период — это время совершения одного полного колебания. Измеряется период в секундах.

Таблица 7. Единицы измерения периода колебаний
(4)

Амплитуда — это высота синусоиды, то есть максимальное значение тока, измеренное от нулевого уровня. Измеряется амплитуда в тех же единицах, что и основная величина, то есть амплитуда переменного тока измеряется в амперах, амплитуда переменного напряжения — в вольтах.

В бытовой электросети обычно используют частоту 50Гц. Величину напряжения сети оценивают не по амплитуде, а по его эффективному значению, которое позволяет просто рассчитывать мощность переменного тока. Эффективное значение можно рассчитать по амплитуде напряжения и тока, используя соотношение 11э = 0,707 Urn.

Какая амплитуда напряжения в бытовой электросети? 220 Вольт? Нет! Оказывается 311 Вольт, а эффективное значение напряжения равно 220 Вольт.

Термин «эффективное» часто опускают. Все приборы при измерении в цепях переменного тока показывают эффективные значения.

В зависимости от значения частоты колебания получили различные названия, приведенные ниже.

Обратите внимание, что только начиная с частоты 100 кГц, колебания могут свободно излучаться в воздушной среде. Однако, эти же колебания прекрасно передаются и по проводам, что обеспечивает их широкое использование в автомобильных иммобилайзерах.

Если говорить кратко, сигнал от ключа-транспондера, вставленного в замок зажигания, передается в воздушной среде на антенну приемника, установленную на этом замке. С другой стороны, при использовании модуля обхода штатного иммобилайзера, сигнал от ключа-транспондера, спрятанного в подкапотном пространстве, идет по проводам к той же антенне.

Таблица 8. Диапазон частот различных колебаний
Ознакомиться с областью применения радиочастот Вам поможет еще одна таблица.
Таблица 9. Применимость радиосигналов
Средние волны (СВ) 1000 — 100 м 300 — 3000 кГц радиовещание
Короткие волны (KB) 100 —10 м 3 —30 МГц — радиовещание;

— любительская радиосвязь (27 МГц).

Ультракороткие волны (УКВ)
А) метровые 10—1 м 30 —300 МГц — радиовещание;

— телевидение.

Б) дециметровые 10 — 1 дм 300 — 3000 МГц — радиовещание;

— сотовая связь (900 МГц; 1800 МГц);

— GPS-навигация;

— частота брелков автосигнализа- ций 433, 92 МГц и 867,8 МГц

В) сантиметро- вые 10 — 1 см 3—30 ГГц — радиолокация;

— Bluetooth (2,4 — 2,48 ГТц);

— датчики объема;

— иммобилайзеры.

Г) миллиметро- вые 10 — 1 мм 30 — 300 ГГц радиолокация
Рисунок 11. Схема-памятка «Закон Ома»

Основные элементы электрической цепи

С теорией электричества почти закончено, осталось рассмотреть основные элементы электрической цепи, которые могут понадобиться при монтаже охранного оборудования.

Работа генератора трехфазного переменного тока

Рассмотрим упрощенно работу генератора трехфазного переменного тока. Обмотки статора (фазы А, В и С) генератора расположены под углом 120 градусов относительно друг друга. Ротор с магнитом вращаясь индуцирует в обмотках статора периодически изменяющиеся ЭДС. Выглядит это следующим образом:

Такое вращение происходит с частотой 50 оборотов в секунду, то есть с частотой 50 Герц. Это значит, что электроны движутся в течение 1 секунды 50 раз в одном направлении (положительный полупериод синусоиды), и 50 — в обратном (отрицательный полупериод), 100 раз проходя чрез нулевое значение. Получается, что к примеру обычная лама накаливания, включенная в сеть с такой частотой, будет затухать и вспыхивать примерно 100 раз за секунду, однако мы этого не замечаем в силу особенностей своего зрения.

Колебания в резонансном контуре

Электромагнитные колебания в контуре – одна из сложных тем ЕГЭ. Энергия переходит из одной формы в другую и концентрируется то в конденсаторе, то в катушке. Период колебаний энергии – вдвое меньше, чем период колебаний в контуре (энергия колеблется с двойной частотой).

Задача 1. Колебательный контур состоит из катушки индуктивности и двух одинаковых конденсаторов, включенных параллельно. Период собственных колебаний в контуре мкс. Чему будет равен период ‚ если конденсаторы включить последовательно?

Емкость цепи равна , так как конденсаторы включены параллельно. Тогда период колебаний:

Теперь, если мы включим конденсаторы последовательно, то емкость будет равна

Тогда

То есть подкоренное выражение стало меньше в 4 раза, а значит, период стал меньше вдвое.

Ответ: мкс.

Задача 2. В колебательном контуре емкость конденсатора мкФ, индуктивность катушки Гн, амплитуда напряжения на конденсаторе В. В некоторый момент времени напряжение на конденсаторе В. Найдите энергию магнитного поля в этот момент. Амплитуда напряжения позволяет найти полную энергию:

Так как напряжение на конденсаторе в некоторый момент времени равно 1 В, то в этот момент его энергия равна

Следовательно, энергия магнитного поля равна

Ответ: мкДж

Задача 3. Чему равен период свободных электрических колебаний в контуре, если максимальный заряд конденсатора Кл, а максимальная сила тока в контуре А?

Полная энергия поля равна

Откуда

Тогда период равен

Ответ: c.

Задача 4. Колебательный контур состоит из конденсатора емкостью пФ и катушки индуктивности мГн (см. рис.). Какова амплитуда колебаний силы тока , если амплитуда колебаний напряжения В?

К задаче 4

Определим угловую частоту:

Ток может быть найден по формуле:

Ответ: 0,12 А Задача 5. Колебательный контур состоит из конденсатора емкостью 1 мкФ и катушки индуктивности 4 Гн. Амплитуда колебаний заряда конденсатора 100 мкКл. Напишите уравнение зависимости напряжения на конденсаторе от времени .

Общий вид зависимости напряжения от времени

То есть нужно определить угловую частоту и амплитуду напряжения.

Полная энергия поля равна

Откуда

Тогда

Записываем зависимость напряжения от времени:

Задача 6. Два конденсатора мкФ, мкФ и катушка индуктивности Гн соединены по схеме (см. рис.). В начальный момент ключ в цепи конденсаторов разомкнут, конденсатор не заряжен, ток в катушке отсутствует, хотя конденсатор заряжен до напряжения В. Какова амплитуда силы тока в катушке при установившихся колебаниях после замыкания ключа?

К задаче 6

На конденсаторе накоплен заряд, которым он «поделится» с конденсатором . «Дележ» произойдет так, что

Но напряжение на конденсаторах одно и то же:

Тогда

Откуда:

То есть .

Определяем ток:

Емкость двух конденсаторов, соединенных параллельно, равна мкФ.

Ответ: 0,01 А. Задача 7. По условию предыдущей задачи определите период изменения энергии магнитного поля катушки. Он вдвое меньше периода колебаний.

Ответ: c Задача 8. Конденсатор емкостъю 1 мкФ зарядили до максимапьного заряда 4 мкКл и замкнули на катушку с индуктивностью 0,12 Гн. Пренебрегая активным сопротивлением соединительных проводов контура, определите, каким будет мгновенное значение тока в контуре в тот момент, когда энергия контура будет распределена между электическим и магнитным полем в соотношении .

Определим амплитуду напряжения:

Полная энергия поля равна

Откуда

Ответ: 0,01 А

Определение действующего напряжения

Теперь непосредственно о том, почему произошел переход от максимального, амплитудного значения напряжения 310 Вольт к действующему 220 Вольт. Ответ можно найти в самом определении.

Действующее (эффективное или среднеквадратичное) значение напряжения — это такое напряжение постоянного тока, которое на такой же резистивной нагрузке выделит такую же мощность, как измеряемое переменное напряжение. Соответственно, действующее значение силы тока — такое значение силы постоянного тока, при прохождении которого через резистивную нагрузку выделится такая же мощность, что и при прохождении измеряемого тока.

Можно сформулировать и немного иначе. Действующее значение переменного тока равно величине такого постоянного тока, который за время, равное одному периоду переменного тока, произведет такую же работу (тепловой или электродинамический эффект), что и рассматриваемый переменный ток.

Общая формула расчета действующего напряжения произвольной формы следующая:

Рейтинг
( 1 оценка, среднее 5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]