Особенности тягового электродвигателя, принцип функционирования

Электрические машины преобразуют механическую энергию в электрический ток и наоборот. Подавляющее большинство электрических устройств работают по простой схеме: под действием механической энергии вырабатывается электричество, которое в свою очередь вызывает движение станков, машин, механизмов, подвижного состава. В транспортной отрасли хорошо известен тяговый электродвигатель, приводящий в действие колесные пары вагонов. Использование их в режиме генератора дает возможность затормозить состав. Процесс торможения происходит за счет нагрузки, образующейся в процессе превращения механической энергии состава, находящегося в движении, в электрический ток.

Появление и развитие тяговых устройств

В самом начале, когда электрический транспорт только начал использоваться, на всех видах подвижного состава устанавливались коллекторные тяговые электродвигатели. При этом передача энергии осуществлялась по самой простой схеме, поэтому агрегатами можно было легко управлять в любом рабочем режиме. Технические и механические характеристики полностью отвечали всем требованиям транспортной специфики.

Тем не менее, в процессе эксплуатации тяговый электродвигатель постоянного тока обнаружил ряд недостатков. В первую очередь, это сам коллектор, оборудованный подвижными контактами – щетками, требующий регулярного технического обслуживания. Принимаемые меры по снижению искрения, повышению надежности коммутации, во многом усложнили устройство двигателя. В результате, его размеры заметно увеличились, а максимальная скорость вращения осталась на прежнем уровне.

Постепенно развивалось направление силовой техники на основе быстродействующих полупроводников. Это позволило заменить реостатную систему, применяемую в коллекторных агрегатах, импульсной, отличающейся повышенной надежностью и экономичностью. В дальнейшем, в вагонных парах стал устанавливаться асинхронный тяговый двигатель в качестве приводного механизма.

Основными проблемами, с которыми пришлось столкнуться при эксплуатации асинхронных двигателей, считаются сложные регулировки. Определенные трудности возникают при использовании электрического торможения, когда для этих целей служат моторы на основе короткозамкнутого ротора. В данный период идет разработка более современных тяговых приводов на основе синхронных агрегатов, в которых установлен ротор на постоянных магнитах.

Поскольку на железнодорожном транспорте до сих пор широко используются именно коллекторные агрегаты, следует более подробно рассмотреть их общее устройство и порядок работы.

Принцип работы тягового электродвигателя

При степенях искрения 2 и 3 тяговые двигатели к эксплуатации не допускаются.

Принцип работы. Если машину постоянного тока подключить к источнику напряжения (контактной сети), то она станет работать как электрический двигатель, т. е. превращать электрическую энергию в механическую, развивая вращающий момент на валу двигателя. Принцип действия электродвигателя постоянного тока основан на взаимодействии тока, протекающего по обмотке якоря, и Магнитного поля, создаваемого полюсами машины.

Вращающий момент двигателя

где с — коэффициент пропорциональности, учитывающий постоянные для данного двигателя величины — число пар полюсов, число проводников и число параллельных ветвей обмотки якоря; I — ток якоря; Ф — магнитный поток.

При вращении якоря его обмотка пересекает магнитное поле главных полюсов, поэтому в ней по закону электромагнитной индукции возникает э.д.с. Направление э.д.с., индуцируемой в проводнике, определяемое правилом правой руки, будет противоположно напряжению сети. Отсюда ток в обмотке якоря двигателя при его работе

напряжение сети; Е- э.д.с.; гя — сопротивление обмотки якоря двигателя.

Рис. 43. Схема, поясняющая возникновение вращающего (а) и тормозного (б) моментов электродвигателя

Значение э.д.с. зависит от частоты вращения п (числа оборотов) двигателя и магнитного потока Ф:

Частота вращения якоря определяется в соответствии с формулами:

Реакция якоря. При работе двигателя ток в обмотке якоря создает свое магнитное поле — поле якоря. Одновременное существование двух магнитных полей — поля полюсов и поля якоря — приводит к образованию результирующего магнитного поля (рис. 44).

Действие магнитного поля якоря на поле полюсов машины называется реакцией якоря. Ось результирующего магнитного поля сдвигается относительно физической нейтрали (линии, перпендикулярной оси магнитного поля) в сторону, противоположную направлению вращения якоря двигателя. Для уменьшения реакции якоря и улучшения коммутации щетки двигателей постоянного тока сдвигают в сторону, обратную направлению вращения

Электромагнитные причины приводят к тому, что даже при идеальном состоянии щеточного контакта при выходе коллекторной пластины из-под щетки разрывается ток и возникает короткая электрическая дуга, повреждающая сбегающие края щетки и коллекторных пластин. Искрение, вызванное электромагнитными причинами, повреждает поверхность коллектора и, как следствие, приводит к вибрации щеток, т. е. способствует возникновению искрения из-за механических причин.

Качество коммутации оценивается степенью искрения под сбегающим краем щетки при вращении коллектора по следующей шкале:

1 — отсутствие искрения (темная коммутация);

1 у — слабое точечное искрение под небольшим числом щеток; почернения на коллекторе и следов нагара на щетках нет;

1 У2 — слабое искрение под половиной щеток; наблюдается появление следов почернения на коллекторе и нагара на щетках, легко Устраняемых протиранием поверхности коллектора бензином;

2 — искрение под всеми щетками; следы почернения на коллекторе и следы нагара на щетках не устраняются при протирании коллектора бензином;

3 — значительное искрение под всеми щетками, наличие крупных вылетающих искр; происходят значительное почернение коллектора, подгар и частичное разрушение щеток.

При степенях искрения 2 и 3 тяговые двигатели к эксплуатации не допускаются.

Возбуждение. В зависимости от способа создания магнитного поля различают машины постоянного тока с независимым возбуждением и самовозбуждением.

Тот или иной тип возбуждения определяется назначением машины. Тяговые двигатели вагонов метрополитена являются машинами постоянного тока последовательного возбуждения.

Ток, протекающий по обмоткам якоря и возбуждения, одинаков, и магнитный поток, создаваемый обмоткой возбуждения, при малом насыщении стали магнитопровода пропорционален току якоря: Ф = с,/я. Так как вращающий момент на валу двигателя М = с1яФ, то для двигателя последовательного возбуждения можно считать, что М= с21я 2 . В этих формулах с, с„ с2 — коэффициенты, учитывающие параметры двигателя (его размеры, число пар полюсов, число проводников обмотки якоря и т.п.) и размерности величин, входящих в формулу.

Квадратичная зависимость вращающего момента от тока в обмотке якоря позволяет при электродвигателе последовательного возбуждения резко увеличивать силу тяги, вращающий момент при пуске, когда двигатель должен преодолеть инерцию нагрузки на валу.

Контрольные вопросы 1. Поясните принцип работы машины постоянного тока в режиме двигателя.

2. От чего зависит вращающий момент двигателя?

3. Какой формулой определяется частота вращения вала двигателя? От чего зависит частота вращения?

4. Что такое реакция якоря и как она влияет на коммутацию машины?

5. Как оценивается качество коммутации?

6. Как классифицируются машины постоянного тока по способу возбуждения?

7. Почему в качестве тяговых двигателей используются машины постоянного тока с последовательным возбуждением?

Рис. 8.15. Схемы соединений обмоток тяговых электродвигателей:

Тяговые электродвигатели могут работать только при обеспечении эффективной вентиляции. Основные технические данные тяговых электродвигателей для широко эксплуатируемых и осваиваемых новых тепловозов приведены в табл. 8.2. Наиболее типичными по устройству из выпускаемых и осваиваемых на перспективу тяговых электродвигателей являются ЭД118Б, ЭД125БМ, ЭД126А, ЭД900.

Тяговый электродвигатель ЭД118Б.

Электродвигатель (рис. 8.11) состоит из следующих сборочных единиц: якоря, магнитной системы (в корпусе которой также закреплены щеткодержатели со щетками), подшипниковых щитов с якорными подшипниками, съемных крышек и щитков монтажно-смотровых (коллекторных) и вентиляционных люков, выводных проводов концов обмоток, моторно-осевых подшипников.

Укладка и закрепление обмотки в пазах сердечника выполнены по схеме (рис. 8.12).

Частота вращения (наибольшая),

лаждающего воздуха, Па

2ТЭ10, М62, 2ТЭ116, ТЭМ2

Циркуляционная + поль-стерная МОП нет

2ТЭ116, ТЭЮ ТЭП70, ТЭП85

2ТЭ120 (переменного тока)

Рис. 8.11. Тяговый электродвигатель типа ЭД118Б:

Щеткодержатели 5 имеют спиральные ленточные пружины со ступенчатой регулировкой нажатия на щетки и крепятся через изоляторы 7 в разъемных кронштейнах 6, приваренных одной половиной к торцовому фланцу корпуса электродвигателя. Подробно устройство щеткодержателя показано на рис. 8.14, а.

Подшипниковые щиты, кроме опоры и центрирования якоря, служат Рис. 8.13. Устройство полюсов электродвигателя ЭД118Б;

а — главного; б — добавочного; 1, 23- сердечник полюса; 2- стержень крепления полюса; 3, 19- вывод катушкн; 4- корпус электродвигателя; 5, 21- волнистая пружинная рамка; 6, 16- изоляционный каркас; 7, 14- корпусная изоляция катушки; 8, 12, 20- рамка изолирующая; 9- изоляционный заполнитель уступа; 10, 17-межвитковая изоляция; 11, 15-проводники катушки; 13, 24-изоляция сердечника; 18- пластина подпора вывода катушки; 22- немагнитная прокладка; 25- немагнитный опорный уголок Рис. 8.14. Щеткодержатели тяговых электродвигателей:

Электродвигатель устанавливается под кузовом на тележке тепловоза и крепится с одной стороны моторно-осевыми подшипниками на оси колесной пары, а с другой опирается специальными выступами («носиками») корпуса (со сменными накладками 24 повышенной износостойкости) на раму тележки через предварительно сжатые распорные пружины. Такое крепление (подвешивание) электродвигателя называется опорно-осевым.

Выпускаемые на базе ЭД125БМ другие модификации электродвигателей отличаются в основном конструкцией смазочного устройства мо-торно-осевых подшипников или полным отсутствием последних.

Тяговый электродвигатель ЭД126А. Электродвигатель предназначен для грузовых тепловозов.

Рис. 8.15. Схемы соединений обмоток тяговых электродвигателей:

а — четырехполюсных; б — шестиполюсных; в — асинхронных; н, к — начало и конец катушек полюсов; Я/, Я2- начало и конец обмотки якоря; Д2- конец обмотки добавочных полюсов; С1, С2- начало и конец обмотки последовательного возбуждения у электродвигателей постоянного тока, а у асинхронных электродвигателей С/, С2, СЗ- выводные концы фаз обмотки статора; 0- специальный вывод для системы защиты. Штриховыми линиями показаны соединения катушек со стороны, противоположной коллектору Рис. 8.16. Тяговый электродвигатель типа ЭД125БМ:

Тяговый электродвигатель ЭД900.

Принцип работы электродвигателя основан на том, что создаваемое обмоткой статора вращающееся магнитное поле наводит ток в коротко-замкнутой обмотке ротора и под действием электромагнитных сил приводит ротор во вращение. Принципиальная электрическая схема электродвигателя приведена на рис. 8.15, е.

Рис. 8.18. Тяговый асинхронный электродвигатель типа ЭД900

При эксплуатации электродвигателя требуется регулярный уход за изоляцией и контактными соединениями выводов обмотки статора, а также за подшипниками ротора.

7. установить нормальное нажатие щеток;

Неисправности тягового электродвигателя:

1. круговой огонь по коллектору или чрезмерное искрение под щетками, подгар коллектора;

2. потеки смазки внутри тягового двигателя;

3. перегрев подшипника;

4. перекрытие или пробой кронштейна щеткодержателя;

5. пробой изоляции обмоток якорей и полюсов;

6. сильное искрение под щетками и срабатывание токовой защиты;

7. чрезмерное нагревание коллектора;

8. чрезмерное нагревание якоря;

9. порванные сетки в вентиляционных отверстиях или торчащие из них остатки бандажей;

10. На моторном вагоне срабатывает быстродействующий выключатель во время первой поездки после замены двигателя.

Причины их возникновения:

1. щетки плохо притерты к коллекторным пластинам, неплотное прилегание. Изоляция между коллекторными пластинами выступает над ними, коллектор плохо прошлифован. Недопустимый износ щеток, недостаточное или неравномерное нажатие щеток. Биение коллектора, низкое качество щеток, коллектора и изоляторов. Оборван проводник обмотки якоря, короткое замыкание в обмотке дополнительных полюсов. Заклинивание щетки, коллектор загрязнен, межвитковое замыкание или выпаивание секции обмотки якоря из петушков коллектора;

2. избыток смазки, перекос подшипника;

3. недостаточно смазки, повреждение подшипника;

4. попадание влаги в тяговый двигатель, перенапряжение, грязный изолятор или кронштейн щеткодержателя;

5. механические повреждения, резкое снижение сопротивления изоляции при частых перенапряжениях на двигателях, попадании влаги, пыли и т.д.;

6. механическое повреждение изоляции, старение изоляции, снижение изоляционных свойств, вследствие частых перенапряжений;

7. щетки слишком сильно прижаты к коллекторным пластинам;

8. замыкание между секциями обмоток якоря или коллекторными пластинами;

9. размотаны бандажи якоря и часть обломков отброшена в сторону вентиляционных отверстий;

10. неправильный монтаж проводов.

Способ устранения неполадок тягового электродвигателя:

1. приработать щетки к коллекторным пластинам при малых скоростях движения, продорожить зачистить и отшлифовать коллектор. Заменить щетки, отрегулировать нажатие щеток, проточить и отшлифовать коллектор. Заменить щетки, изоляторы, отремонтировать обмотку в деповских условиях, отыскать поврежденную катушку дополнительного полюса и заменить её (в депо). Обеспечить свободный ход щетки, очистить коллектор, отремонтировать якорь в деповских условиях;

2. снять потеки и наблюдать за подшипниковым узлом. Если повреждение повториться, снять тяговый двигатель с тележки, разобрать подшипниковый узел и заменить подшипник. Устранить перекос, подтянув болты крышки подшипника;

3. добавить смазку. Снять тяговый двигатель с тележки, разобрать подшипниковый узел, заменить подшипник и смазку;

4. протереть тяговый двигатель чистой салфеткой, смоченной бензином, заменить изолятор или кронштейн щеткодержателя;

5. устранить повреждения в депо;

6. отключить тяговый двигатель, по прибытии в депо устранить повреждение;

7. установить нормальное нажатие щеток;

8. отключить тяговый двигатель, по прибытии в депо отремонтировать якорь;

9. отключить тяговый двигатель, по прибытии в депо отремонтировать;

10. пересоединить концы тягового двигателя.

Характеристики коллекторных электродвигателей, применяемых на наземном городском транспорте:

Тяговые двигатели ДАТЭ-170 входят в комплект тягового привода КАТП-1, устанавливаемого на вагонах 81-720.1/721.1 и 81-740/741. Их основные параметры:

Тяговый электродвигатель (рис.1) — устройство, которое способно преобразовывать поступающую электрическую энергию (переменного и постоянного тока) в механическую. Такой тип двигателей используется для приведения в движение следующих видов транспорта:

  • электровоза,
  • тепловоза,
  • троллейбуса,
  • трамвая,
  • электромобиля.

Главное отличие таких силовых агрегатов от электродвигателей больших мощностей состоит в том, что им необходимы определенные условия для монтажа, а также достаточно ограниченное место для размещения. В результате этого и возникла спецификация конструкции, которой характеризуется тяговый электродвигатель.

В отличие от электродвигателей общего назначения тяговые способны вести свою работу во множестве режимов. Данные режимы сопровождаются изменением в частоте вращения ротора.

Классификация тяговых двигателей

Существуют следующие разновидности данных устройств:

  • по используемому току (постоянные и переменные),
  • по конструкции (линейные и вращающиеся),
  • по типу (синхронные и асинхронные),
  • по системе передачи усилия (индивидуальный и групповой),
  • по способу питания (от контакной сети и от аккумулятора).

Зачастую эксплуатация такого устройства, как тяговый электродвигатель, может быть связана с механическими и тепловыми перегрузками, толчками и тряской. Именно поэтому его конструкция отличается повышенной прочностью узлов и деталей — как в механической, так и электрической части. Также токовые части обладают специальной влагостойкой и теплостойкой изоляцией.

Использование тяговых двигателей в
электротранспорте
В связи с активным внедрением в жизнь человека экологичных машин возникла потребность в использовании такого устройства, как тяговый электродвигатель для автомобиля. Именно он является главной движущей силой в такого рода транспортных средствах. В основе его работы лежит электромагнитная индукция. Движущая сила возникает в замкнутом контуре в результате изменения магнитного потока.

Чаще всего сам двигатель размещается между продольными балками спереди от батареи. В качестве конструкции передачи к ведущим колесам используется задний мост с карданной передачей. Допустимо использование цепной передачи в случае трехколесных моделей электромобилей. В такой ситуации монтаж осуществляет на подрамнике на задней оси.

Тяговый электродвигатель для автомобиля может быть как переменного, так и постоянного тока. Главная его задача состоит в передаче крутящего момента. Такой двигатель несколько отличается от классической электромеханической машины за счет своих компактных размеров и большой мощности.

Тяговый электродвигатель для электромобиля допустимо использовать в системе «мотор–колесо» (рис. 2), которая еще не нашла активного применения и чаще всего ее можно заметить только в концепт-карах. В качестве исключения можно назвать электромобиль Volage, который поступит в продажу в скором времени.

Тяговый электродвигатель постоянного тока обладает рядом преимуществ, а именно:

  • компактные размеры и малый вес,
  • простота эксплуатации,
  • длительный срок службы,
  • отсутствие вредного воздействия на окружающую среду,
  • отличный КПД,
  • возможность рекуперации.

Стоит заметить, что существенные недостатки попросту отсутствуют, но один из них состоит в несовершенстве источников тока, которые и не позволяют внедрить эту технологию в массовое производство. Однако технический прогресс не стоит на месте, а значит, в скором времени практически каждый крупный производитель транспортных средств наладит производство автомобилей на электрических двигателях.

Можно говорить и о такой неисправности как, распайка петушков коллектора, которая возникает в период чрезмерного перегрева машины (длительные перегрузки, нарушение вентиляции ) или как в следствии перекрытия. Данную проблему можно исправить только отремонтировав якорь.

  • Тяговый электродвигатель — где он применяется?
  • 1. Устройство тягового электродвигателя
  • 2. Как работает тяговой электродвигатель
  • 3. Неисправности тягового электродвигателя
  • 1. Устройство тягового электродвигателя
  • 2. Как работает тяговой электродвигатель
  • 3. Неисправности тягового электродвигателя

Исходя из вышеперечисленных транспортных средств, тяговой электродвигатель является мощным силовым агрегатом. Так к чему же мы упоминали электромобили? Как оказалось, они тоже оборудуются данной силовой установкой, которая «зажила» среди конструкторов электромобилей довольно высокую популярность. Что ж, давайте познакомимся с конструкцией данного мотора, а также рассмотрим принцип его работы и возможные неисправности. Итак начнем…

Устройство тягового электродвигателя

Теперь обо всех деталях по порядку. Якорь тягового электродвигателя состоит из сердечника, обмотки, коллектора и вала. Вал якоря, как правило, изготавливают из специальной стали с повышенным качеством. Но, как показывает практика, валы тоже «стареют» и их приходится менять. Исходя из этого, листы сердечника собирают не на валу, а непосредственно на специальной втулке. В таком случае, данная конструкция способствует выпрессовыванию вала из втулки, при этом не разбирая сердечник, обмотку и коллектор.

Как правило, одним из основных и достаточно важных и ответственных узлов в данном двигателе является коллектор.

Он является частью, которая терпит наибольшие нагрузки в электрическом отношении. В основном условиями его надежной работы ограничиваются предельные мощности тяговых двигателей. Коллекторы современных тяговых двигателей имеют в диаметре свыше 800 мм, число пластин составляет 600.

В свою очередь, конструкция щеткодержателя включает в себя корпус и кронштейн, соединённые между собой с помощью болта.

Для того чтобы крепление и электрический контакт корпуса и кронштейна был более надежным и тесным, соприкасающиеся поверхности имеют рифлёную поверхность. Очень важно, чтобы щеткодержатель находился в изоляции от остова электродвигателя. Поэтому кронштейны щеткодержателей крепятся к остову или подшипниковым щитам с использованием изоляторов.

Теперь поговорим об остове. В составе тягового электродвигателя остов одновременно выполняет роль магнитопровода, так как к нему крепятся главные и дополнительные полюса. Как правило, остов должен проделывать минимальное сопротивление прохождению магнитного потока. Исходя из этого, его изготавливают из стали, которая обладает хорошими магнитными свойствами.

Как работает тяговой электродвигатель

Куда будет направлено действие этой силы (а следовательно, и направление вращения) можно определить воспользовавшись правилом левой руки. Следуя правилу, если расположить левую руку так, чтобы в ладонь входили магнитные силовые линии (из северного полюса магнита в южный), а пальцы разместить в сторону направления движения тока, проходящего через проводник, то отставленный в сторону большой палец покажет направление движения проводника.

Если бы его не было, то рамка, после того как она займет определенное положение, должна будет сделать остановку, так как, согласно правилу левой руки, сила взаимодействия магнитных полей рамки и магнита будет стремиться возвратить рамку в определенную позицию. В интернете существует много схем, на которых этот процесс представлен наглядно. Теперь давайте разбираться, каких неисправностей и поломок тягового электродвигателя нужно ждать и как провести разумную диагностику поломки. Читаем ниже.

3. Неисправности тягового электродвигателя

Прежде, чем детализировать примеры неисправностей тягового электродвигателя, важно сказать, что все неисправности электрических автомобилей, можно в целом разделить на поломки электрических и механических частей. Нас более всего интересует электрическая часть, поэтому говоря о неисправностях, мы должны обязательно упомянуть понижение сопротивления изоляции, механические разрушения, старение изоляции, пробои.

В следствии загрязнения и увлажнения поверхности, а также попадания в электромобиль, влаги, пыли и масла, часто происходит снижение сопротивления изоляции токопроводящих частей. Для восстановления защитных свойств изоляции нужно проделать качественную очистку поверхности изоляции, а затем вскрыть эмалью. Также нужно всегда помнить, что достаточно глубокое проникновение влаги затребует дополнительного обсушивания.

С какой стороны обойти данную проблему? Для начала эксперты советуют про диагностировать уровень интенсивности перекрытия. Как правило, в некоторых случаях можно обойтись только очисткой и промывкой коллектора и щеточного аппарата, а также заменой щеток, которые вышли уже из строя. В этом же случае возможен и продув коллекторной камеры сухим сжатым воздухом. В других, более сложных случаях, потребуется ремонт и замена всех деталей и узлов, которые вышли из строя.

Можно говорить и о такой неисправности как, распайка петушков коллектора, которая возникает в период чрезмерного перегрева машины (длительные перегрузки, нарушение вентиляции ) или как в следствии перекрытия. Данную проблему можно исправить только отремонтировав якорь.

Подписывайтесь на наши ленты в таких социальных сетях как, Facebook, Вконтакте, Instagram, Pinterest, Yandex Zen, Twitter и Telegram: все самые интересные автомобильные события собранные в одном месте.

Источники

Источник — https://www.poezdvl.com/electropoezda-metropolitena/rabota-tyagovogo-dvigatelya.html Источник — https://www.dieselloc.ru/books/kuzmich/page_37.html Источник — https://mobile.studbooks.net/2546296/tovarovedenie/printsip_raboty_tyagovogo_elektrodvigatelya Источник — https://wiki.nashtransport.ru/wiki/%D0%A2%D1%8F%D0%B3%D0%BE%D0%B2%D1%8B%D0%B9_%D1%8D%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%BE%D0%B4%D0%B2%D0%B8%D0%B3%D0%B0%D1%82%D0%B5%D0%BB%D1%8C Источник — https://studref.com/518697/tehnika/printsip_raboty_tyagovogo_dvigatelya Источник — https://pomogala.ru/teplovoz/teplovoz_28.html Источник — https://rcit.su/techinfoL5.html Источник — https://works.doklad.ru/view/miilfgstS_s.html Источник — https://cable.ru/articles/id-1643.php Источник — https://auto.today/bok/3276-tyagovyy-elektrodvigatel-gde-on-primenyaetsya1.html

Назначение и устройство станины

Каждый тяговый электродвигатель оборудуется станиной, используемой прежде всего в качестве магнитопровода, по которому осуществляется прохождение магнитных потоков основных и дополнительных полюсов. Еще она служит местом расположения и крепления полюсов и подшипниковой защиты.

При наличии больших нагрузок станина обычно бывает отлита из стали или сварена из толстых электротехнических стальных листов. Благодаря такой конструкции создается требуемая механическая устойчивость и высокая магнитная проницаемость. Стенки обычно имеют толщину, обеспечивающую установленный уровень магнитной индукции, а ее размеры ориентированы на поперечное сечение главных полюсов и составляют не ниже 50% этого размера.

На представленном рисунке отмечено расположение станины (1), относительно других деталей и компонентов – сердечника полюса (2), катушки обмотки возбуждения (3) и полюсного башмака (4). Между всеми элементами и якорем существует воздушная прослойка (5). Размеры диаметра изнутри станины рассчитываются так, чтобы в этом пространстве мог разместиться якорь, полюса главные и дополнительные и их обмотки.

Тяговый электродвигатель локомотива может иметь стальную литую станину с уменьшенной массой и пониженным поперечным сечением, ориентированным на оси главных полюсов. Это дает возможность равномерно распределить магнитный поток, поступающий к станине от главного полюса.

ТЭД пульсирующего тока

ТЭД пульсирующего тока

питается от однофазного выпрямителя ЭПС; пульсация тока частотой 100 Гц при номинальной нагрузке 20-30%. Номинальное напряжение на коллекторе 750-1000 В, максимальное 1200 В. На электровозах сила тока ТЭД — до 1200 А, мощность — до 1000 кВт, на моторных вагонах — до 400-600 А и 300 кВт. Напряжение ТЭД регулируется переключением обмоток тягового трансформатора или изменением угла открытия тиристоров (при питании от управляемого выпрямителя).

Недостатком любых конструкций коллекторных ТЭД является ненадежный в работе коллекторно-щеточный узел, ограничивающий мощность и частоту вращения (допустимая линейная скорость на поверхности коллектора 50-60 м/с) и требующий регулярного обслуживания при эксплуатации. Основные технические данные ТЭД, применяемых на ЭПС локомотивного парка России и других стран СНГ, приведены в таблице.

Главные полюса

Тяговый электродвигатель, работающий на постоянном токе, включает в свою конструкцию обмотку возбуждения, где и появляется магнитодвижущая сила, создающая, в свою очередь, магнитное поле. В состав обмотки входят катушки, надеваемые на сердечники основных полюсов. На стороне сердечника, направленной к якорю, устанавливается полюсный наконечник, он же башмак. С его помощью осуществляется равномерное распределение магнитного потока по всей поверхности якоря. Перечисленные детали отмечены на предыдущем рисунке вместе со станиной.

На практике довольно редко используется схема, включающая в себя полюсный сердечник и полюсный башмак. Как правило, они объединяются в единое целое и образуют главный полюс. За счет этого в сердечнике полюса наступает снижение вихревых потоков, вызываемых действием пульсаций магнитной индукции в наконечниках из-за зубчатой поверхности якоря.

Для сборки полюса используются стальные лакированные листы, которые затем попадают под пресс высокого давления. Сквозь сердечник пропускаются болты или специальные заклепки, чтобы стянуть всю конструкцию. Их равномерное распределение позволяет успешно выдерживать упругость сжатых полос. Крепление полюсов к станине осуществляется с помощью болтов или шпилек.

Особенности, плюсы и минусы автомобильных ТЭД

Прорыв в сфере производства тяговых аккумуляторов существенно повысил спрос на электрокары, приводимые в движение тяговыми электромоторами переменного тока.

В большинстве случаев это асинхронные двигатели, у которых частота вращения ротора не соответствует частоте изменения потенциала напряжения и, соответственно, магнитного поля. Достаточно сказать, что Tesla S и Х оснащаются именно трёхфазными асинхронными тяговыми электромоторами. Их ещё называют индукционными, поскольку электромагнитная сила у них индуцируется в роторе по закону Ленца. Индукционные моторы устанавливаются на БЕЛАЗ-549 грузоподъёмностью 75т.

Синхронные электродвигатели в автомобилестроении используются реже, хотя в целом они достаточно востребованы. Например, климатическая техника и многие насосные системы базируются на синхронных моторах.

Но есть моменты, в которых синхронные ТЭД лучше асинхронных аналогов. В частности, они лучше используют энергию торможения автомобиля в целях рекуперации, и такие транспортные средства вполне безопасно буксировать, чего не скажешь о машине с асинхронным мотором.

Пример использования синхронного ТЭД – модель Renault Zoe. Здесь на электромагниты поступает постоянный ток, а электродвижущая сила возникает за счет изменения полярности магнитов статора (у ротора она неизменная).

Разговоры о том, что за электрокарами будущее, не лишены основания. Большинство технических сложностей успешно преодолено, инфраструктура подзарядки аккумуляторов развивается быстрыми темпами, конструкция самих двигателей постоянно совершенствуется.

Преимущества автомобильных электродвигателей

Рассмотрим, чем ТЭД лучше бензиновых/дизельных моторов:

  • в отличие от ДВС, в тяговом электромоторе не требуется раскрутка вала по мере возрастания числа оборотов: максимальный крутящий момент возникает сразу после включения электрического мотора. Так что чистому электрокару не нужен стартер, да и сцепление тоже, а двигатель внутреннего сгорания без них работать не сможет;
  • второй момент – простота реализации реверса в тяговом электромоторе. Чтобы включить задний ход, достаточно поменять полярность подключения тягового электродвигателя. И никаких коробок передач;
  • у авто с электромотором КПД достигает 95%, что даже теоретически недостижимо для ДВС;
  • автомобильный тяговый электропривод во много раз компактнее и легче двигателя внутреннего сгорания, что в наш век миниатюризации весомый плюс;
  • у машин, оснащённых двигателем на бензине или дизтопливе, при торможении вся кинетическая энергия расходуется даже не попусту, а во вред, нагревая колодки и способствуя их более быстрому износу. Возможность использования электромотора как генератора в режиме рекуперации идёт во благо, поскольку при торможении электроэнергия не тратится, а преобразуется в форму, способную подпитывать тяговой аккумулятор. Особенно сильно этот эффект проявляется в гористой местности;

  • для зарядки батарей тягового мотора требуется меньше денег, чем тратится на углеводородное топливо, и эта тенденция со временем будет только усиливаться;
  • электромотор работает практически бесшумно;
  • принудительное охлаждение тягового электродвигателя в большинстве случаев не востребовано, хотя допускается;
  • нельзя не упомянуть и экологический фактор, который многими преподносится как основной.

Недостатки

Хотя история электрокаров насчитает не одно десятилетие, их массовое распространение сдерживалось несовершенством аккумуляторов – их требовалось много, что увеличивало вес автомобиля, садились они быстро и подзаряжались медленно.

Но технологии производства автомобильных гелевых аккумуляторных батарей постоянно совершенствовались, и нынешнее поколение вполне может обеспечить суммарный пробег в районе 150-200 тысяч километров. Что касается мощности электромоторов, то они уже давно не аутсайдеры и практически не уступают по этому показателю ДВС.

На сегодня главным минусом электрокаров считается недостаточно развитая инфраструктура подзарядки аккумуляторов, но в США, странах Скандинавии и многих государствах Западной Европы она уже де-факто решена.

В странах бывшего СССР с этим дела обстоят гораздо хуже. Даже троекратное увеличение количества таких заправок в России за два года, с 2022 по 2022, ситуацию не изменило. И если в Москве подзарядить аккумуляторную батарею уже сегодня не проблема, то даже в других городах-миллионниках это сделать намного сложнее, не говоря о регионах.

Назначение и устройство добавочных полюсов

Каждый тяговый электродвигатель мощностью более 1 кВт оборудуется дополнительными полюсами, для того чтобы снизить количество искр, появляющихся на щетках. Их устройство очень простое, включающее в себя сердечник (1) и катушку (2), где использован медный проводник в изоляции. Его сечение рассчитывается по рабочему току двигателя, поскольку эта катушка и обмотка якоря последовательно подключаются друг к другу.

Стальной сердечник изготавливается в виде монолитной конструкции, по причине отсутствия в нем вихревых токов, так как магнитная индукция имеет очень малую величину. Местом монтажа дополнительных полюсов определен промежуток между главными полюсами, а крепление к станине выполняется специальными болтами. Величина воздушной прослойки под ними существенно превышает зазор под главными полюсами. Его регулировка выполняется при помощи специальных пластин из материалов магнитного или немагнитного типа, а окончательная величина определяется, когда тяговый двигатель постоянного тока настраивается на коммутацию при достижении минимального количества искр.

Классификация тяговых электромоторов

В настоящее время активно используются как электродвигатели, работающие от постоянного тока, так и разновидности, у которых источник электроэнергии – переменный ток. Есть также тяговые моторы, функционирующие от пульсирующего тока.

Рассмотрим другие классификаторы ТЭД.

По типу:

  • синхронные электродвигатели;
  • ТЭД последовательного возбуждения;
  • Асинхронные тяговые моторы.

По источнику электроэнергии:

  • автономный (батарея, ТЭ, генератор);
  • контактная сеть (электропоезда, метро, троллейбусы).

По преобладающему режиму работы:

  • кратковременный (один рабочий цикл – 20-80 минут);
  • продолжительный;
  • повторно-кратковременный.

По конструкции:

  • бесколлекторные (вентильные или двигатели бесконтактного типа) тяговые двигатели;
  • коллекторные ТЭД;
  • вращающиеся;
  • линейные.

По типу охлаждения:

  • обдуваемые;
  • автономная вентиляция;
  • естественная вентиляция;
  • самовентиляция.

Кроме того, тяговые электромоторы классифицируются по климатическому исполнению (стандарты приведены в ГОСТ 15150/15543) и по степени защиты.

Якорь и коллектор

В состав якоря входит вал, сердечник, обмотки и коллектор. Конфигурация сердечника выполнена в форме цилиндра, а сам он изготовлен из тонких штампованных листов электротехнической стали. Для изоляции листов используется лак или бумага. В сжатом виде после сборки сердечник фиксируется нажимными шайбами. Благодаря устройству сердечника, удается компенсировать влияние вихревых токов и снизить в нем утечку электроэнергии. Охлаждение ТЭД выполняется за счет специальных каналов вентиляции, устроенных в сердечнике.

Для якорных обмоток используется медный проводник круглого или прямоугольного сечения. Он закладывается в выемки сердечника и качественно изолируется от него. Вся обмотка делится на секции, концы каждой из них соединяются с коллектором путем пайки.

В конструкцию каждого коллектора входит активная составляющая и система крепления. Изоляция медных коллекторных пластинок (7) выполняется с помощью специальных прокладок. Провода якорной обмотки припаиваются к выступу в конце элемента (5). Край пластин, расположенный снизу (6) после сборки зажимается с помощью двух нажимных колец (3). Эти кольца также изолируются, а сама изоляция утапливается на 1,5 мм внутрь скользящей поверхности коллектора.

Питание

Питание

ТЭД осуществляется от контактной сети (ЭПС) и от находящегося на подвижном составе источника энергии (электромашинного генератора, аккумулятора). По роду тока различают ТЭД коллекторные постоянного тока (пульсация тока до 10%), коллекторные пульсирующего тока с питанием от однофазного выпрямителя, и бесколлекторные переменного тока асинхронные (однофазные, многофазные) и синхронные (вентильные) с преобразованием однофазного тока в многофазный (обычно в трехфазный). Выпрямители и преобразователи размещены на подвижном составе, что позволяет регулировать напряжение на ТЭД. При питании током постоянного напряжения от контактной сети регулировка напряжения на ТЭД до 1970-х гг. осуществлялась переключением двигателей на последовательное или параллельное соединение и включением в цепь пусковых резисторов. С нач. 70-х гг. на электровозах ВЛ80Р и в дальнейшем осуществляется обычно бесступенчатая плавная регулировка напряжения расположенными на ЭПС полупроводниковыми управляемыми выпрямителями или преобразователями.

Асинхронный ТЭД

Асинхронный ТЭД

имеет ротор с короткозамкнутой обмоткой без изоляции; обмотка статора выполнена с изоляцией. На ЭПС асинхронный ТЭД получает питание от статических преобразователей, построенных на базе автономных инверторов напряжения или тока. Регулирование режимов работы электродвигателя, осуществляемое изменением напряжения и его частоты (два независимых канала регулирования), может проводиться индивидуально для каждого электродвигателя или одновременно для нескольких. Рабочие тяговые характеристики двигателя показаны на рис. 5.58.

Характеристики ТЭД

Характеристики ТЭД делятся на электромеханические, тепловые и аэродинамические. К электромеханическим характеристикам

относят зависимости частоты вращения якоря n, вращающего момента двигателя М и кпд на его валу ηд от силы тока якоря Iа, а также отношения напряжения в обмотках якоря (эдс) к частоте вращения Е/n в зависимости от силы тока возбуждения Iв. Последняя зависимость нелинейна из-за насыщения магнитной цепи машины при большом токе возбуждения (рис. 5.57).

Основные расчетные зависимости для любой электрической машины постоянного тока следующие:

Рэ = Elа= 1,028 Мэ*n; Е=с*Ф8n; U = Е + IаR; η=Р2/Р1,

где Рэ, Мэ — электромагнитная мощность и момент (в воздушном зазоре), Р1 = U*Iа, Р2 = Р1-ΣΔP -мощность на выводах (зажимах) и валу, U — напряжение на выводах машины.

Инструкция по техническому обслуживанию и текущим ремонтам

Ремонт и диагностика ПК
I. Указания мер безопасности. II. Виды и периодичность технического обслуживания

Механическое оборудование ТО-2 Электрические машины ТО-2 Трансформаторы, дроссели ТО-2 Электрические аппараты ТО-2 Пневматическое оборудование ТО-2 Система вентиляции ТО-2

Механическое оборудование ТР-1 Электрические машины ТР-1 Трансформаторы, дроссели ТР-1 Электрические аппараты ТР-1 Пневматическое оборудование ТР-1 Установка оборудования ТР-1 Монтаж проводов и шин ТР-1 Система вентиляции ТР-1

Механическое оборудование ТР-2 Элетрические машины ТР-2 Трансформаторы, дроссели ТР-2 Электрические аппараты ТР-2 Пневматическое оборудование ТР-2 Установка оборудования ТР-2 Монтаж проводов и шин ТР-2 Система вентиляции ТР-2

Механическое оборудование ТР-3 Электрические машины ТР-3 Трансформаторы, дроссели ТР-3 Электрические аппараты ТР-3 Пневматическое оборудование ТР-3 Установка оборудования ТР-3 Монтаж проводов и шин ТР-3 Система вентиляции ТР-3 Испытания электровоза после текущего ремонта ТР-3

Перечень машин и аппаратов Перечень технической документации по комплектуюшям изделиям Перечень инструкций и правил МПС СССР Перечень проверок технического состояния узлов и деталей механической части электровоза Карта смазки узлов электровоза Устранение неисправностей в тяговом двигателе НБ-418К6 после переброса и кругового огня Характерные неисправности тягового двягателя НБ-418К6 в эксплуатации и методы их устранения Определение натяжения щеток иа коллектор тягового двигателя НБ-418К6 Установка щеток в нейтральное положение на тяговом двигателе НБ-418К6 Сушка увлажненной изоляции обмоток тягового двигателя НБ-418К6 Нормы допусков и износов тягового двигателя НБ-418К6 Особенности технического обслуживания тяговых двигателей НБ-418К6 в зимнее время Сушка вспомогательных электрических машин Подготовка вспомогательных электрических машин к работе Особенности эксплуатации вспомогательных электрических машин зимой Нормы допусков и износов вспомогательных электрических машин Характерные неисправности вспомогательных машин и методы их устранения Нормы допусков и износов деталей электрических аппаратов Характерные неисправности электрических аппаратов и методы их устранения Перечень аппаратов распределительного щита Подготовка вентиляторов к работе Сопротивление катушек аппаратов Перечень пломбируемых аппаратов и оборудования Технические данные резисторов Технические данные конденсаторов Перечень предохранителей Уставки срабатывания аппаратов защиты и контроля Нормы значений испытательного напряжения и сопротивления изоляции для проверки электрической прочности оборудования и его цепей Назначение контактов электрических аппаратов в цепях управления электровозом

Рейтинг
( 1 оценка, среднее 5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]