Какой КПД электродвигателя? Как повысить эффективность электродвигателя?

Электродвигатели появились достаточно давно, но большой интерес к ним возник тогда, когда они стали представлять собой альтернативу двигателям внутреннего сгорания. Особо интересен вопрос КПД электродвигателя, который является одной из главных его характеристик.

Каждая система обладает каким-либо коэффициентом полезного действия, который характеризует эффективность ее работы в целом. То есть он определяет, насколько хорошо система или устройство отдает или преобразовывает энергию. По значению КПД величины не имеет, и чаще всего оно представляется в процентном соотношении или числе от нуля до единицы.

Параметры КПД в электродвигателях

Основная задача электрического двигателя сводится к преобразованию электрической энергии в механическую. КПД определяет эффективность выполнения данной функции. Формула КПД электродвигателя выглядит следующим образом:

  • n = p2/p1

В данной формуле p1 — это подведенная электрическая мощность, p2 — полезная механическая мощность, которая вырабатывается непосредственно двигателем. Электрическая мощность определяется формулой: p1=UI (напряжение умноженное на силу тока), а значение механической мощности по формуле P=A/t (отношение работы к единице времени). Так выглядит расчет КПД электродвигателя. Однако это самая простая его часть. В зависимости от предназначения двигателя и сферы его применения, расчет будет отличаться и учитывать многие другие параметры. На самом деле формула КПД электродвигателя включает намного больше переменных. Выше был приведен самый простой пример.

У какого двигателя самый большой КПД?

Теперь хочу поговорить о бензиновом и дизельном вариантах, и выяснить кто же из них наиболее эффективный.

Если сказать простыми, языком и не лезть в дебри технических терминов то – если сравнить два КПД бензинового и дизельного агрегатов – эффективнее из них, конечно же дизель и вот почему:

1) Бензиновый двигатель преобразует только 25 % энергии в механическую, а вот дизельный около 40%.

2) Если оснастить дизельный тип турбонаддувом, то можно достигнуть КПД в 50-53%, а это очень существенно.

Так почему он так эффективен? Все просто — не смотря на схожей тип работы (и тот и другой являются агрегатами внутреннего сгорания) дизель выполняет свою работу намного эффективнее. У него большее сжатие, да и топливо воспламеняется от другого принципа. Он меньше нагревается, а значит происходит экономия на охлаждении, у него меньше клапанов (экономия на трении), также у него нет, привычных нам, катушек зажигания и свечей, а значит не требуется дополнительные энергетические затраты от генератора. Работает он с меньшими оборотами, не нужно бешено раскручивать коленвал — все это делает дизельный вариант чемпионом по КПД.

Снижение КПД

Механический КПД электродвигателя должен обязательно учитываться при выборе мотора. Очень большую роль играют потери, которые связаны с нагревом двигателя, снижением мощности, реактивными токами. Чаще всего падение КПД связано с выделением тепла, которое естественным образом происходит при работе двигателя. Причины выделения теплоты могут быть разными: двигатель может нагреваться в процессе трения, а также по электрическим и даже магнитным причинам. В качестве самого простого примера можно привести ситуацию, когда на электрическую энергию было потрачено 1 000 рублей, а работы было произведено на 700 рублей. В таком случае коэффициент полезного действия будет равен 70%.

Для охлаждения электрических двигателей применяются вентиляторы, которые прогоняют воздух через созданные зазоры. В зависимости от класса двигателей, нагрев может осуществляться до определенной температуры. Например, двигатели класса A могут нагреваться до 85-90 градусов, класса B — до 110 градусов. В том случае, когда температура превышает допустимую границу, это может свидетельствовать о замыкании статора.

Усовершенствование КПД двигателя

Учитывая повышенный спрос общества на эффективные, экономные и комфортные автомобили, сегодня ученые и эксперты с разных стран участвуют в программах совершенствования автомобильных двигателей с тем, чтобы довести их КПД до уровня 80% и выше.

Для этого используются различные конструкционные доработки (например, турбо надув), заменяются металлические составляющие основы ДВС на более легкие сплавы, способные держать тепло и сводить уровень трения к минимуму при минимальных необходимых для этого затратах.

Все это становится основой для выпуска более компактных, облегченных двигателей, способных перерабатывать в полезную работу большую часть полученной изначально энергии. Тем самым все это позволяет реально экономить в процессе дальнейшей эксплуатации и обслуживании машины.

При этом уделяется большое внимание усовершенствованию и очистке уже имеющихся элементов (топливо, системы охлаждения, смазки, подачи горючего и отвода газов), ведь, как мы уже обратили внимание ранее, таким образом можно повысить КПД даже не меняя отдельных частей. Достаточно просто заливать правильное топливо, понизить уровень теплоотдачи в процессе работы ДВС, либо же отвода выхлопов

Еще одним моментом эффективного использования транспортного средства, есть оптимальный уровень загрузки транспортного средства. Выдерживая среднюю скорость, правильные передачи, не пытаясь показывать свое излишнее мастерство, вы получите возможность существенно снизить потребление топлива. А также сможете достигнуть оптимальной мощности и скорости автокара в определенных условиях.

Рекомендуем Вам ознакомиться и узнать, что такое вискомуфта в автомобиле.

Поделитесь информацией с друзьями:

Средний КПД электрических двигателей

Стоит отметить, что КПД электродвигателя постоянного тока (и переменного тоже) изменяется в зависимости от нагрузки:

  1. При холостом ходе КПД равен 0%.
  2. При нагрузке 25% КПД равен 83%.
  3. При нагрузке 50% КПД равен 87%.
  4. При нагрузке 75% КПД равен 88%.
  5. При нагрузке 100% КПД равен 87%.

Одна из причин падения коэффициента полезного действия — асимметрия токов, когда подается разное напряжение на каждой из трех фаз. Если, к примеру, на первой фазе будет напряжение 410 В, на второй — 403 В, а на третьей — 390 В, то среднее значение будет равно 401 В. Асимметрия в данном случае будет равна разнице между максимальным и минимальным напряжением на фазах (410-390), то есть 20 В. Формула КПД электродвигателя для расчета потерь будет иметь вид в нашей ситуации: 20/401*100 = 4.98%. Это значит, что мы теряем 5% КПД при работе из-за разности напряжений на фазах.

Как устроен тепловой двигатель

Любой тепловой двигатель состоит из трех основных частей:

  • рабочего тела;
  • нагревателя;
  • холодильника.

В основе работы двигателя лежит циклический процесс.

Нагреватель с помощью, например, сгорания топливной смеси выделяет большое количество теплоты и передает ее рабочему телу.

Рабочее тело, например пар, газ или жидкость, при нагревании расширяется и совершает работу, к примеру, вращает турбину или перемещает поршень.

Холодильник нужен, чтобы вернуть рабочее тело в начальное состояние. Он поглощает часть энергии рабочего тела. Таким образом обеспечивается цикличность, и тепловой двигатель работает непрерывно.

Идеальный тепловой двигатель Карно

Модель двигателя Карно разработал французский физик С. Карно.

Рабочая часть двигателя Карно — поршень в заполненном газом цилиндре. Двигатель Карно — идеальная машина, она возможна только в теории. Поэтому в ней силы трения между поршнем и цилиндром и тепловые потери считаются равными нулю.

Механическая работа максимальна, если рабочее тело выполняет цикл, состоящий из двух изотерм и двух адиабат. При изотермическом расширении работа газа совершается за счет внутренней энергии нагревателя. При адиабатном процессе — за счет внутренней энергии расширяющегося газа. В этом цикле нет контакта тел с разной температурой, поэтому исключена теплопередача без совершения работы. Такой цикл называют циклом Карно.

Адиабатический процесс — это термодинамический процесс, происходящий без теплообмена с окружающей средой (Q=0).

Изотермический процесс — это термодинамический процесс, происходящий при постоянной температуре. Так как у идеального газа внутренняя энергия зависит только от температуры, то переданное газу количество тепла Q идет полностью на совершение работы A (Q=A).

Функционирует двигатель Карно следующим образом:

  1. Цилиндр вступает в контакт с горячим резервуаром, и газ расширяется при постоянной температуре. На этой фазе газ получает от горячего резервуара тепло.
  2. Цилиндр окружается теплоизоляцией, за счет чего количество тепла, имеющееся у газа, сохраняется. Газ продолжает расширяться, пока его температура не упадет до температуры холодного теплового резервуара.
  3. На третьей фазе теплоизоляция снимается. Газ в цилиндре, будучи в контакте с холодным резервуаром, сжимается, отдавая при этом часть тепла холодному резервуару.
  4. Когда сжатие достигает определенной точки, цилиндр снова окружается теплоизоляцией. Газ сжимается за счет поднятия поршня до тех пор, пока его температура не сравняется с температурой горячего резервуара. После этого теплоизоляция удаляется, и цикл повторяется вновь с первой фазы.

Примечание

Чем больше разница между температурами нагревателя и холодильника, тем больше КПД двигателя Карно.

Общие потери и падение КПД

Негативных факторов, которые оказывают влияние на падение КПД электродвигателя, очень много. Есть определенные методики, позволяющие их определять. К примеру, можно определить, есть ли зазор, через который частично передается мощность из сети к статору и далее — на ротор.

Потери в стартере также имеют место, и они состоят из нескольких значений. В первую очередь это могут быть потери, имеющие отношение к вихревым токам и перемагничиванию сердечников статора.

Если двигатель асинхронный, то имеют место дополнительные потери из-за зубцов в роторе и статоре. Также в отдельных узлах двигателя могут возникать вихревые токи. Все это в сумме снижает КПД электродвигателя на 0,5%. В асинхронных моторах учитываются все потери, которые могут возникать при работе. Поэтому диапазон коэффициента полезного действия может варьироваться от 80 до 90%.

Откуда берётся электричество и КПД электромобилей

Всё больше мировых производителей обещают нам выпустить новые модели электромобилей, даже консервативный Porsche обещает нам Mission E в 2018 году:

Часто при обсуждении электромобилей возникают комментарии, что КПД электродвигателя 95%, а у ДВС КПД всего 55%, но электричество у нас не из розетки же берётся.

Это действительно всё так, но бензин/дизель в двигатель не сам из мирового эфира попадает.

Раз уж мы решили рассматривать потери на полном цикле превращения полезных ископаемых в движение самобеглых повозок, то начнём с самого начала: добычи нефти и газа.

Допущения:

ДВС: рассмотрим дизельный и бензиновый вариант, хотя дизельного транспорта в России в год продаётся не более 7% от общего числа автомобилей, т.к. основной проблемой для владельцев дизельных автомобилей остается плохое качество дизтоплива на российских АЗС. Действительно, примеси в солярке могут вывести из строя дорогостоящую топливную аппаратуру. Из-за этого в России вцелом не более 2-3% дизельных автомобилей (Москва и Питер — привет!), что можно считать статистической погрешностью. Зато у дизеля теоритический КПД выше.
КПД ДВС: заявленные в документации КПД в реальности почти не достигаются из-за узкого диапазона «рабочих» оборотов, и при толкании в городских пробках КПД падает в разы. Но будем оптимистами и применим к идеальным условиям коэффициент 0,5 (Хотя стоило бы взять 0,3). КПД турбированного дизеля (которых ничтожно мало на наших дорогах) составляет 55% в идеальных условиях. КПД бензинового ДВС скромнее и составляет 30% в идеальных условиях. КПД современного электродвигателя достигает 95%. Не плохо, да? Но его ещё зарядить надо, мы это посчитаем.

Топливо:

Для ДВС надодобыть нефть, доставить на НПЗ, переработать, доставить бензин на базу, потом доставить на АЗС, потом наконец продать.

Подробнее тут… Для электромобиля надо добыть газ, закачать в газопровод, закачать в ТЭЦ, выработанное электричество передать по сети в точку зарядки.

Почему именно газ и газовые ТЭС? Мы не в Сингапуре живём, а в России, и тут их больше всего:

доля ТЭС – 67%, ГЭС – 21%, АЭС – 11%.

Я бы мог взять АЭС и ГЭС (фактически 1/3 от генерации) — там выбросов вообще 0 экологично и практично, можно принимать КПД аж за 100%, но пожалеем ДВС, будем считать сжигание углеводородов на газовых ЭС. Теплоэнергетика. В России насчитывается 358 тепловых электростанций большой и средней электрической мощностью более 25 МВт. Их общая установленная мощность равна 158,6 ГВт.

Список тепловых электростанций России

Структура по топливу. Структура по топливу на ТЭС следующая: природный газ 71%, уголь 27,5%, жидкое топлива 1%, прочее 0,5%.

nnhpe.spbstu.ru/struktura-elektroenergetiki-v-rossii/

Природный газ, как топливо для электростанций доступен практически во всех промышленных зонах городов России.

Электрический КПД современной газовой электростанции достигает 55–60%. При этом капитальные затраты на 1 МВт/час установленной мощности газовой ТЭЦ составляют всего 50% от угольной, 20% от атомной, 15% от ветровой электростанции.

Строительство тепловых электростанций, работающих на природном газе, требует относительно малых инвестиций — в сравнении с электростанциями, работающих на других видах топлива, таких, как уголь, уран, водород.

Строительство газовой электростанции занимает всего 14–18 месяцев.

Газ экономически эффективнее других видов топлива и альтернативных источников энергии.

Потери:

Добыча ископаемых — нефть надо качать, газ чуть проще. Транспортировка: Газ по сети газопроводов до электростанции. Нефть по нефтепроводам, транспортом, иногда даже кораблями. Пусть при перекачке теряется пара процентов. Переработка нефти в бензин отнимает процентов 20 энергии конечного продукта, что весьма оптимистично. Потери в ЛЭП на дальние расстояния, возьмём значения из нормативной документации: ЛЭП на 750 КВольт длинной 2200 км имеет КПД 0,9 (см. treugoma.ru/electric-energy/feature-system/)
Для электромобиля учтём все возможные потери транспортировки электричества:

  • Повышающая подстанция
  • КПД линии электропередачи 750 КВольт длинной 2200 км
  • Понижающая подстанция
  • Потери в городе до зарядного устройства
  • Потери в зарядном устройстве
  • Зарядка батареи с учётом потерь

В трансмиссиях идёт потеря энергии, для АКПП ДВС это коэффициент 0,85. На электромобилях иногда обходятся вообще без редукторов и прямо подключают двигатель к колёсам, в нашем случае возьмём двухступенчатый редуктор зубчатого зацепления имеющий коэффициент 0,95.
Докинем для электромобиля ещё потерь:

  • Нагрев салона/батареи тэном и от охлаждения двигателя и батарей
  • Потери при извлечении энергии из батареи

Будем считать что в ДВС этих потерь нет.
Так вот если учесть все потери, получаем таблицу с коэффициентами:

Итог:

КПД электромобиля: 26,65% КПД дизеля: 13,79% КПД бензинового 7,52%

Бензиновые двигатели просто расточительны с точки зрения эффективности использования природных ископаемых. Турбодизели в 1,83 раза эффективнее бензиновых двигателей, но их мало и они очень чувствительны к качеству топлива. Электричесткие двигатели в 3,54 раза эффективнее бензиновых ДВС и в 1,93 раза эффективнее турбодизелей.

Даже если предположить, что Нефть сама телепортируется из недр на НПЗ, а затем телепортируется сразу на АЗС без потерь, то КПД дизеля будет всего 18,70%, а бензинового ДВС 10,20% Так будет выглядеть расчёт:

То есть даже при таких послаблениях для ДВС, догнать по эффективности электромобили не получается.

Пока электромобили остаются дорогой и экологичной игрушкой для городских пробок и любителей максимального ускорения в любой момент.

Надеюсь было интересно и если есть мотивированные уточнения по формулам или коэффициентам — с удовольствием рассмотрю варианты.

Автомобильные двигатели

История развития электрических двигателей начинается с момента открытия закона электромагнитной индукции. Согласно ему, индукционный ток всегда движется таким образом, чтобы противодействовать вызывающей его причине. Именно эта теория легла в основу создания первого электрического двигателя.

Современные модели основаны на этом же принципе, однако кардинально отличаются от первых экземпляров. Электрические моторы стали намного мощнее, компактнее, но самое главное — их КПД значительно увеличился. Мы уже писали выше о том, какой КПД электродвигателя, и по сравнению с двигателем внутреннего сгорания это потрясающий результат. К примеру, максимальный КПД двигателя внутреннего сгорания достигает 45%.

Устройство электромотора

КПД двигателя внутреннего сгорания располагается в пределах от 40 до 60%. В то время как у электрического он достигает 96%. Это довольно высокий показатель которого добиваются с помощью усовершенствования конструкции и использования сверхпроводниковых материалов. Существует несколько типов двигателей, работающих от электричества. Но в их конструкции используются одинаковые основные части.

Так, в состав устройства электрического двигателя входит:

  1. Вал — элемент на который устанавливаются остальные детали.
  2. Якорь — часть, состоящая из сердечника, набираемого из набора пластин из специальной электротехнической стали.
  3. Якорная обмотка — состоит из катушек индуктивности, в которых наводится электродвижущая сила.
  4. Коллектор — система изолированных проводящих пластин, к которым припаяны якорные обмотки.
  5. Главный полюс — изготавливается из постоянных магнитов.
  6. Обмотка возбуждения — располагается на роторе и подключена к контактным кольцам, через которые подаётся на устройство ток.
  7. Втулки — подшипники, с помощью которых осуществляется скольжение ротора по валу. Их качество во многом определяет КПД эл. двигателя.
  8. Роторные полюсы — используются четыре отделённых друг от друга полоски.

Неподвижная часть двигателя называется стартером, а вращающаяся — ротором. В пазы сердечника укладывают согнутые в форме рамки провода. Их концы соединяют с коллектором. К его пластинам поджимают через пружины две положительные щётки, подключённые через обмотки возбуждения и две отрицательные, соединённые с массой стартера. В задней крышке последнего устанавливаются щёткодержатели и втулка якоря.

От плюсовой клеммы источника питания провод идёт на входной контакт стартера. Ток проходит по нему, поступает на обмотку возбуждения и попадает на положительную щётку. С коллектора заряды переходят на рамки якоря, а после — на отрицательную щётку и на минус источника тока. В результате взаимодействия магнитного поля с обмотками возбуждения и рамками с током якорь начинает вращаться.

Это классическое устройство электродвигателя. Но техника не стоит на месте.

Поэтому в современных электрических моторах не используют обмотки возбуждения. А ток сразу подаётся на отрицательные щётки якоря. Это позволяет избежать дополнительного нагрева, что приводит в целом к увеличению качества системы.

Преимущества электрического двигателя

Высокий КПД — это главное достоинство подобного мотора. И если двигатель внутреннего сгорания тратит более 50% энергии на нагрев, то в электрическом моторе на нагрев уходит небольшая часть энергии.

Вторым преимуществом является небольшой вес и компактные размеры. Например, компания Yasa Motors создала мотор с весом всего 25 кг. Он способен выдавать 650 Нм, что очень приличный результат. Также такие моторы долговечные, не нуждаются в коробке передач. Многие владельцы электрокаров говорят об экономичности электрических двигателей, что логично в некоторой степени. Ведь при работе электромотор не выделяет никаких продуктов сгорания. Однако многие водители забывают о том, что для производства электроэнергии необходимо использовать уголь, газ или обогащенный уран. Все эти элементы загрязняют окружающую среду, поэтому экологичность электродвигателей — это очень спорный вопрос. Да, они не загрязняют воздух в процессе работы. За них это делают электростанции при производстве электроэнергии.

В чем плюсы электромотора

Существует много преимуществ электрических двигателей над двигателями внутреннего сгорания. Вот некоторые из них:

  1. Высокий КПД.
  2. ДВС тратит примерно половину энергии на нагрев мотора. В случае с электрическим двигателем на это затрачивается совсем небольшое количество энергии.
  3. Электромотор гораздо меньше весит и более компактен. Новый двигатель фирмы Yasa Motors весит всего двадцать пять кг, при этом являясь достаточно мощным.
  4. Долгий срок эксплуатации.
  5. Автомобилям с электрическим двигателем не нужна коробка передач.
  6. Экологичность: машина не производит вредных выбросов в атмосферу. Однако это лишь отчасти правдиво, потому что для получения энергии электростанции используют природные ресурсы — газ, уголь, атомные реакции, и это является вредоносным фактором.

Повышение эффективности электродвигателей

Электрические двигатели обладают некоторыми недостатками, которые плохо влияют на эффективность работы. Это слабый пусковой момент, высокий пусковой ток и несогласованность механического момента вала с механической нагрузкой. Это приводит к тому, что КПД устройства снижается.

Для повышения эффективности стараются обеспечить нагрузку двигателя до 75% и выше и увеличивать коэффициенты мощности. Также есть специальные приборы для регулирования частоты подаваемого тока и напряжения, что тоже приводит к повышению эффективности и росту КПД.

Одним из самых популярных приборов для увеличения КПД электродвигателя является устройство плавного пуска, которое ограничивает скорость роста пускового тока. Также уместно использовать и частотные преобразователи для изменения скорости вращения мотора путем изменения частоты напряжения. Это приводит к снижению расхода электроэнергии и обеспечивает плавный пуск двигателя, высокую точность регулировки. Также увеличивается пусковой момент, а при переменной нагрузке стабилизируется скорость вращения. В результате эффективность электродвигателя повышается.

В стали

Такой вид потерь в стали, в свою очередь, может быть гистерезисным или расходом вихревого электротока. Второй типа можно эффективно минимизировать, если использовать наслоение на сердечник. С применением наслоения сокращается участок, что ведет к увеличению сопротивления, а значит сокращение вихревых токов неизбежно.

Первый же тип, гистерезисный, уменьшают, пользуясь высококачественной сталью, в составе которой есть кремний. Почему? Любая потеря связана с частотой напряжения, поступающего в двигатель. Статорная частота всегда подающая, обозначается как f, а вот частотность якоря – это проскальзывание s. Оно умножается на подающую (sf). Якорная частота, в асинхронной машине, надо заметить, всегда будет ниже статорной.

Показатель подающей частоты равен 50 Гц, а вот якорная составляет приблизительно 1,5 Гц. Так получается по той простой причине, что величина проскальзывания равна лишь 3% для нормального рабочего состояния привода. Поэтому и расход в роторе относительно малы, в сравнении с потерей в статоре. Потерями роторного сердечника, обычно, можно спокойно пренебречь.

Максимальный КПД электродвигателя

В зависимости от типа конструкции, коэффициент полезного действия в электрических двигателях может варьироваться от 10 до 99%. Все зависит от того, какой именно это будет двигатель. Например, КПД электродвигателя насоса поршневого типа составляет 70-90%. Конечный результат зависит от производителя, строения устройства и т. д. То же самое можно сказать и про КПД электродвигателя подъемного крана. Если он равен 90%, то это значит, что 90% потребляемой электроэнергии пойдет на выполнение механической работы, остальные 10% — на нагрев деталей. Все же есть наиболее удачные модели электродвигателей, коэффициент полезного действия которых приближается к 100%, но не равен этому значению.

Предельный показатель функциональности

Исходя из разновидности конструкции, коэффициент ПД в электродвигателях может колебаться в пределах 10 — 99 процентов. Все зависит от конкретного типа двигателя. К примеру, отдача двигателя насоса поршневого вида достигает 70−90%. Окончательный эффект зависит от изготовителя, структуры устройства и проч.

То же самое справедливо будет отнести и к КПД двигателя подъемного крана. Когда это значение повышается до 90%, означает, что 90% расходуемой электроэнергии уходит на совершение машинной работы, а оставшиеся проценты — на нагревание деталей. Все же есть особенно успешные модели двигателей, коэффициент ПД которых доходит практически до 100%, однако не равен указанному значению.

Возможен ли КПД свыше 100%?

Ни для кого не секрет, что электрические двигатели, КПД которых превышает 100%, не могут существовать в природе, так как это противоречит основному закону о сохранении энергии. Дело в том, что энергия не может взяться из ниоткуда и точно так же исчезнуть. Любой двигатель нуждается в источнике энергии: бензине, электричестве. Однако бензин не вечен, как и электроэнергия, ведь их запасы приходится пополнять. Но если бы существовал источник энергии, который не нуждался в пополнении, то вполне возможно было бы создать мотор с КПД свыше 100%. Российский изобретать Владимир Чернышов показал описание двигателя, который основан на постоянном магните, и его КПД, как уверяет сам изобретатель, составляет более 100%.

Трение

В двигателе есть много движущихся частей, которые создают трение . Некоторые из этих сил трения остаются постоянными (пока приложенная нагрузка постоянна); некоторые из этих потерь на трение увеличиваются с увеличением частоты вращения двигателя, например, силы со стороны поршня и усилия в соединительных подшипниках (из-за увеличения сил инерции от качающегося поршня). Некоторые силы трения уменьшаются при более высокой скорости, например сила трения на выступах кулачка , используемая для приведения в действие впускных и выпускных клапанов ( инерция клапанов на высокой скорости имеет тенденцию оттягивать толкатель кулачка от выступа кулачка). Помимо сил трения, работающий двигатель имеет насосные потери

, которые представляют собой работу, необходимую для перемещения воздуха в цилиндры и из них. Эти насосные потери минимальны при низкой скорости, но возрастают примерно как квадрат скорости, пока при номинальной мощности двигатель не использует около 20% общей выработанной мощности для преодоления потерь на трение и накачку.

Гидроэлектростанция как пример вечного двигателя

Для примера возьмем гидроэлектростанцию, где энергия вырабатывается за счет падения с большой высоты воды. Вода вращает турбину, и та производит электричество. Падение воды осуществляется под действием гравитации Земли. И хотя работа по производству электроэнергии совершается, гравитация Земли не становится слабее, то есть сила притяжения не уменьшается. Далее вода под действием солнечных лучей испаряется и снова поступает в водохранилище. На этом цикл завершается. В результате электроэнергия выработана, затраты на ее производство возобновлены.

Конечно, можно сказать, что Солнце не вечно, это так, но пару-тройку миллиардов лет оно протянет. Что касается гравитации, то она постоянно совершает работу, вытягивая влагу из атмосферы. Если сильно обобщить, то гидроэлектростанция — это двигатель, который преобразует механическую энергию в электрическую, и его КПД составляет более 100%. Это дает понять, что искать пути создания электродвигателя, КПД которого может быть более 100%, прекращать не стоит. Ведь не только гравитацию можно использовать в качестве неисчерпаемого источника энергии.

Гидроэлектростанция — прототип вечного механизма

Если рассмотреть принцип работы гидроэлектростанции, то можно увидеть, что электричество вырабатывается в ней за счет воды, которая падает с большой высоты. Электроэнергия производится турбиной, которую вращает падающая вода. Вода стремится вниз благодаря земному притяжению.

Оно действует постоянно, не ослабевая и не пропадая. После того как вода выработала некоторое количество энергии, она превращается в пар и естественным образом возвращается в водохранилище. Это может повторяться много раз. Как следствие — электрическая энергия вырабатывается без потери ресурсов.

Солнце нагревает землю, участвуя в испарении воды, гравитация совершает двойную работу, участвуя в падении воды, а также в производстве осадков — ведь именно из-за притяжения земли вода из облаков стремится упасть вниз. В целом получается, что гидроэлектростанция — это механизм, преобразующий энергию падения воды в электрическую с коэффициентом полезного действия больше ста процентов.

Из этого видно, что поиски двигателя с КПД больше 100% небеспочвенны, потому что есть и другие ресурсы, кроме гравитации, которые невозможно исчерпать.

Постоянные магниты как источники энергии для двигателей

Второй интересный источник — постоянный магнит, который ниоткуда не получает энергию, а магнитное поле не расходуется даже при совершении работы. Например, если магнит что-либо притянет к себе, то он выполнит работу, а его магнитное поле слабее не станет. Это свойство уже не раз пытались использовать для создания так называемого вечного двигателя, но пока что ничего более-менее нормального из этого не получилось. Любой механизм износится рано или поздно, но сам источник, которым является постоянный магнит, практически вечен.

Впрочем, есть специалисты, которые утверждают, что со временем постоянные магниты теряют свои силы в результате старения. Это неправда, но даже если бы и было правдой, то вернуть его к жизни можно было бы всего лишь одним электромагнитным импульсом. Двигатель, который бы требовал перезарядку раз в 10-20 лет, хоть и не может претендовать на роль вечного, но очень близко к этому подходит.

Уже было много попыток создать вечный двигатель на базе постоянных магнитов. Пока что не было удачных решений, к сожалению. Но учитывая тот факт, что спрос на такие двигатели есть (его просто не может не быть), вполне возможно, что в скором будущем мы увидим что-то, что очень близко подойдет к модели вечного мотора, который будет работать на возобновляемой энергии.

Общие сведения

Для того чтобы механизм привести в действие, нужно затратить работу. Если при этом нет трения деталей, то он считается идеальным. В этом случае его полезная работа, выполненная самим двигателем, будет равняется затраченной. Под последней же понимают ту, что совершается для приведения механизма в действие при приложении внешней силы. О такой работе говорят, что она полная.

В реальных же устройствах детали не являются невесомыми, они имеют вес из-за чего существует трение. Поэтому полезная работа (Ап) будет меньше затраченной (Аз). При этом если одну увеличить в несколько раз, то вторая возрастёт на то же значение. Другими словами, отношение Ап / Аз является постоянной величиной для конкретно рассматриваемого устройства. Но так как механизм неидеальный, то это отношение всегда будет меньше единицы.

Значение выражения Ап / Аз, по сути, описывает качество устройства, являясь важной для него характеристикой. Поэтому ему присвоили отдельное имя — коэффициент полезного действия (КПД). Для его обозначения решили использовать букву греческого алфавита «эта» (η). Часто формулу записывают так: η = (Ап / Аз) * 100%, считая его в процентах. Для электродвигателя коэффициент находят как отношение работы, выполненной самим устройством к действию по его запуску.

КПД электрического прибора, впрочем, как и любого другого, всегда будет меньше единицы. Если представить, что это не так, то в этом случае получался бы источник новой энергии. А согласно законам природы, она не может взяться ниоткуда. То есть такого устройства не существует. Ещё в XIX веке французская академия наук отказалась принимать проекты так называемых вечных двигателей из-за противоречия фундаментальному явлению природы — закону сохранения энергии.

Работа электродвигателя основана на преобразовании механической энергии в электрическую.

Изобретателем устройства считается физик-экспериментатор из Англии Майкл Фарадей. Именно он придумал способ, как заставить намагниченную стрелку оборачиваться вокруг магнита. Это послужило основой для открытия Ампером соленоида и Барлоу электрического колеса, ставшего родоначальником униполярного электродвигателя.

Рейтинг
( 2 оценки, среднее 4.5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]