Максимальной токовой защитой с пуском (блокировкой) по напряжению
Из схемы защиты, представленной на рисунке 3.8 видно, что защита будет действовать на отключение только после срабатывания реле минимального напряжения.
Для обеспечения надёжной работы защиты при всех видах междуфазных и однофазных к.з. устанавливаются три реле минимального напряжения 1, включаемые на линейные напряжения сети и одно реле минимального напряжения 2 реагирующее на появление напряжения нулевой последовательности.
Рисунок 3.8 – Схема МТЗ с блокировкой минимального напряжения.
В сетях с изолированной нейтралью токовая часть схемы МТЗ с пуском по напряжению выполняется двухфазной. В части реле напряжения схема выполняется 3‑х фазной для обеспечения надёжной работы при 2‑х фазных к.з., а реле напряжения, реагирующее на нулевую последовательность, не устанавливается, так как защита должна действовать только при междуфазных к.з.
Ток срабатывания МТЗ с пуском по напряжению отстраивается не от максимального тока нагрузки линии, а от тока нормальной нагрузки Iн. норм, который обычно в 1,52,0 раза меньше Iн. макс., в результате чего резко повышается чувствительность защиты при к.з.
Напряжение срабатывания защиты выбирается исходя из следующих условий:
реле напряжения не должны срабатывать (замкнуть контакты) при минимальном значении рабочего напряжения:
Uс.з. Uкб и обычно принимается равным 15-20 % максимального напряжения на зажимах реле при однофазных к.з.
Токовая направленная защита
Для обеспечения селективности действия максимальных токовых защит в кольцевых сетях с односторонним и радиальных сетях с двухсторонним питанием пусковой орган защиты выполняется в виде двух реле — реле тока и реле направления мощности, контакты которых соединены последовательно. Реле направления мощности замыкает свой контакт при положительном направлении тока. Условились за положительное направление тока считать направление тока от шин в линию. Принцип работы токовой направленной защиты рассмотрим на примере однолинейной схемы
При возникновении короткого замыкания на линии, т.К1
, срабатывают токовое реле
KA1
и реле мощности
KW1
, и защита запускается. При коротком замыкании вне линии, точка
.K2
, ток направлен из линии к шинам , реле мощности не работает и блокирует действие защиты. Введение задержки на срабатывание обеспечивает выполнение требования селективности.
Угол φР
= — α,
при котором вращающий момент максимален, называется
углом максимальной чувствительностиφМЧ
. Угол
α,
определяющий сдвиг вектора тока в обмотке напряжения относительно приложенного напряжения, называется
углом внутреннего сдвига реле
. В зависимости от значения угла внутреннего сдвига характеристика реле меняет свое положение в плоскости координат. При
α = 90
реле называют
реле реактивной мощности
или синусным; при
α = 0
—
релеактивной мощности
или
косинусным
. При промежуточных значениях угла реле реагирует на обе составляющие мощности и называется реле
смешанного типа.
Эти реле имеют наибольшее распространение в схемах релейной защиты. Угол внутреннего сдвига можно менять, включая в цепь обмотки напряжения реле активное или емкостное сопротивление.
Изменение знака момента происходит при изменении направления тока в первичной цепи. Так, при коротком замыкании в точке К1
(рис. 24)
момент положителен, а при коротком замыкании в точке
К2
— отрицателен. В схемах релейной защиты используется способность реле определять направление тока, поэтому такие реле называют
реле направления мощности.
Полупроводниковые реле мощности, по сравнению с индукционными, обладают меньшей потребляемой мощностью, более чувствительны и точны, требуют меньших эксплуатационных затрат.
Расчет параметров заключается в выборе тока срабатывания, выдержки времени и оценке чувствительности.
Выбор тока срабатывания.
Ток срабатывания токовых направленных защит выбирается так же, как для обычных максимальных токовых защит по условиям отстройки от максимальных нагрузочных режимов. При этом отстройка производится от токов, направленных от шин в линию.
Выбор выдержек времени.
Выбор выдержек времени производится по встречно-ступенчатому принципу, применение которого показано на
рис.
Стрелками на рисунке показано направление тока, при котором срабатывают пусковые органы защит. При коротком замыкании в точке K1
сработают пусковые органы защит
1, 3, 5,6.
Наиболее удаленной защитой от источника питания в этом режиме является защита
5,
поэтому принимается . Для других защит
; — из двух значений выбирается большее;
; ; — из двух значений выбирается большее.
При коротком замыкании в точке K2
сработают пусковые органы защит
1, 2, 4, 6.
Наиболее удаленной защитой от источника питания в этом режиме является защита
2,
поэтому принимается . Для других защит
Выдержка времени защиты МТЗ
Для ее нахождения проводится следующий расчет. Узнается время работы первой из защит при замыкании:
T1=tп1+to1+tв1,
где:
- Т1 – искомое время,
- tп1 – погрешность выдержки,
- to1 – время вырубания выключателя,
- tв1 – выдержка для этого реле.
Вторая защита не сработает при условии, что время выдержки для нее будет больше Т1, т.е. tв2>T1.
Tв2=Т1+tп2+tз,
где:
- tп2 – погрешность второго реле,
- tз – запасное время.
Таким образом, ступень будет равна Т=tв2-tв1=tп1+tо1+tп2+tз (для независимой время-токовой характеристики).
Схемы защиты МТЗ
Применяется несколько вариантов конструкций, различающихся устройством.
Трехфазная схема защиты МТЗ на постоянном оперативном токе
Трехфазная конструкция
В главный блок входят два реле: времени и пуска. Используются также указательное реле и еще одно добавочное, ставящееся тогда, когда временное реле неспособно замкнуть цепочку катушки выключения.
Двухфазные схемы защиты МТЗ на постоянном оперативном токе
Они применяются, когда нужно, чтобы система включалась лишь при замыкании между фазами. Существуют схемы с одиночным реле и с парой.
Двухрелейная схема
Ее плюс – реагирование на любые межфазовые замыкания. Минус – меньшая восприимчивость при двухфазных замыканиях за трансформатором. Повысить ее вдвое можно, поставив третье реле. Схема в основном используется для конструкций с изолированной нейтралью – случающиеся в них замыкания происходят только между фазами. Возможно применение при глухом заземлении, но тогда для предотвращения однофазного замыкания ставится добавочная конструкция, срабатывающая при токе нулевой последовательности.
Одно-релейная схема МТЗ
Плюс схемы – легкость конструирования. Минусы – наименее высокая чувствительность, несрабатывание при некоторых типах замыканий с двумя фазами.
Отличия от токовой отсечки
Логическая защита шин
В МТЗ используются реле времени, позволяющие игнорировать скачки напряжения, что невозможно при отсечке (которая срабатывает не только при эпизоде короткого замыкания, но и при повышении тока любой другой природы и продолжительности). Кроме того, использование механизма отсечки требует задействования оператора для возобновления нормального функционирования системы. Реле сами приходят в первоначальное состояние, когда причина размыкания будет ликвидирована.
МТЗ линии 6-35 кВ
Я уже рассматривал МТЗ, но, повторение — мать ученья. Максимальная токовая защита с выдержкой времени выступает в качестве первой ступени трехступенчатой защиты линии. Для расчета необходимо рассчитать ток срабатывания защиты, ток уставки, выдержку времени и отстроиться от соседних защит.
1) На первом этапе определяем ток срабатывания защиты с учетом токов самозапуска и других сверхтоков, которые протекают при ликвидации КЗ на предыдущем элементе:
в данной формуле мы имеем следующие составляющие:
Iс.з.
— ток срабатывания защиты 2РЗ, величина, которую мы и определяем
kн
— коэффициент надежности, который на самом деле можно считать скорее коэффициентом отстройки для увеличения значения уставки; для микропроцессорных равен 1,05-1,1, для электромеханических 1,1-1,4.
kсзп
— коэффициент самозапуска, его смысл в том, что при КЗ происходит просадка напряжения и двигатели самозапускаются. Если нет двигателей 6(10) кВ, то коэффициент принимается 1,1-1,3. Если нагрузка есть, то производится расчет при условии самозапуска ЭД из полностью заторможенного состояния. Коэффициент самозапуска определяется, как отношение расчетного тока самозапуска к максимальному рабочему току. То есть зная ток самозапуска, можно не узнавать максимальный рабочий ток, хотя без этого знания не получится рассчитать ток самозапуска — в общем, сократить формулу не удастся особо.
kв
— коэффициент возврата максимальных реле тока; для цифровых — 0,96, для механики — 0,65-0,9 (зависит от типа реле)
Iраб.макс.
— максимальный рабочий ток с учетом возможных перегрузок, можно узнать у диспетчеров, если есть телефон и полномочия. Для трансформаторов до 630кВА = 1,6-1,8*Iном, для трансформаторов двухтрансформаторных подстанций 110кВ = 1,4-1,6*Iном.
2) На втором этапе определяем ток срабатывания защиты, согласуя защиты Л1 и Л2:
Iс.з.посл.
— ток срабатывания защиты 2РЗ
kн.с.
— коэффициент надежности согласования, величина данного коэффициента от 1,1 до 1,4. Для реле РТ-40 — 1,1, для РТВ — 1,3…1,4.
kр
— коэффициент токораспределения, при одном источнике питания равен единице. Если источников несколько, то рассчитывается через схемы замещения и сопротивления элементов.
Первая сумма в скобках
— это наибольшая из геометрических сумм токов срабатывания МТЗ параллельно работающих предыдущих элементов.
Вторая сумма
— геометрическая сумма максимальных значений рабочих токов предыдущих элементов, кроме тех, с которыми происходит согласование.
3) На третьем этапе выбираем наибольший из токов, определенных по условиям 1) и 2) и рассчитываем токовую уставку:
kсх
— коэффициент схемы, данный коэффициент показывает во сколько раз ток в реле больше, чем ток I2 трансформатора тока при симметричном нормальном режиме работы; при включении на фазные токи (звезда или разомкнутая звезда) равен 1, при включении на разность фазных токов (треугольник) равен 1,73.
nт
— коэффициент трансформации трансформатора тока.
4) Далее определяется коэффициент чувствительности, который должен быть больше или равен значения, прописанного в ПУЭ.
Отношение минимального тока, протекающего в реле, при наименее благоприятных условиях работы, к току срабатывания реле (уставке). Для МТЗ значение kч должно быть не менее 1,5 при кз в основной зоне защиты и не менее 1,2 при кз в зонах дальнего резервирования.
5) Определяемся с уставкой по времени
Смысл уставок по времени в следующем: если у нас КЗ как на рисунке выше, то сначала должен отключиться выключатель Л1 (находящийся ближе к КЗ), это необходимо, чтобы оставить в работе неповрежденные участки системы.
То есть tс.2рз=tс.1рз+dt
, где дельта t — ступень селективности. Эта величина зависит от быстродействия защит (в частности точности работы реле времени) и времени включения-отключения выключателей.
Если предыдущая РЗ является токовой отсечкой или же РЗ выполнена на электронных (полупроводниковых) реле — dt можно принять 0,3с. Если же в РЗ используются электромеханические реле, то dt может быть 0,5…1,0. Для различных реле эта величина может доходить до нескольких секунд.
Как было написано выше, особенностью МТЗ является накапливание выдержек времени от элемента к элементу. И чем больше величина dt, тем большей будет отдаленная уставка. Для решения этой проблемы следует устанавливать цифровые РЗ (dt=0,15…0,2с) и одинаковые выключатели. Ведь, если выключатели одного типа, то и время срабатывания у всех одинаковое. А если, оно невелико, то и суммарная величина будет мала.
В общем выбор мтз состоит из трех этапов:
- несрабатывание 2РЗ при сверхтоках послеаварийных режимов
- согласование 2РЗ с 1РЗ
- обеспечение чувствительности при КЗ в конце Л1(рабочая зона) и в конце Л2 (зона дальнего резервирования)
Принцип действия
МТЗ – это разновидность защитного механизма электросети с использованием реле, применяемая при угрозе короткого замыкания на некотором отрезке электроцепи.
Принцип действия максимальной токовой защиты достаточно схож с таковым у механизма отсечки. Если при использовании последней ток вырубается сразу же, то при применении МТЗ выключение происходит по истечении некоторого временного отрезка. Он называется выдержкой времени. То, какое значение он примет, определяется близостью места, где происходит инцидент, к поставщику питания. Чем дальше располагается отрезок, тем меньше число. Значение, на которое показатель близлежащего участка отличается от такового для удаленного (ступень селективности), описывает период, по истечении которого защита включается на ближнем участке (отключая и дальний), если она не активизировалась на дальнем, на котором случился инцидент КЗ.
Важно! Показатель ступени надо делать небольшим, чтобы система успела включиться до причинения инцидентом серьезных повреждений электросети.
Разновидности максимально-токовых защит
Дуговая защита
Ориентируясь на условия работы в конкретной электросети, можно выбрать один из четырех типов системы.
МТЗ с независимой от тока выдержкой времени
Параметр задержки здесь неизменен, период активации зависит только от ступени селективности: на каждом последующем отрезке время увеличивается на эту величину.
МТЗ с зависимой от тока выдержкой времени
Используется расчет выдержки по нелинейной формуле. Параметр зависит от величины тока на обмотках. Используется в системах, где предохранение от избыточных нагрузок имеет особенную значимость для безопасности.
МТЗ с ограниченно-зависимой от тока выдержкой времени
Здесь совмещены две компоненты: не зависящая от тока часть и зависящая, причем у последней время-токовая характеристика имеет вид гиперболы. Чем больше перегрузка, тем более пологий вид имеет графическое представление. Такая установка используется в высокомощных электромоторах.
МТЗ с пуском (блокировкой) от реле минимального напряжения
Здесь инициатором размыкания контактов становится разность потенциалов. Уставка привязывается к падению напряжения ниже определенной границы.
Примеры и описание схем МТЗ
Для защиты разных компонентов сетей с питанием, поступающим с одной стороны, используются схемы различных типов.
Однорелейная на оперативном токе
Схема с одним реле на оперативном токе
Применяется реле пуска, реагирующее на изменения разности фазовых потенциалов. Плюсами являются ее простота и малый расход ресурсов – нужны только одно реле и два кабеля. Минусы – невысокая восприимчивость и то, что, если отказал какой-то элемент, фрагмент линии теряет предохранение. Схема подойдет для сетей с напряжением до 10 кВ.
Двухрелейная на оперативном токе
Схема с парой реле
Эта схема, как и предыдущая, защищает электролинии от последствий короткого замыкания между фазами. Цепи в ней формируют усеченную звезду. Она надежна, но, как и предыдущая, не очень чувствительна.
Трехрелейная
Это наиболее надежная и единственная подходящая для конструкций с заземленной наглухо нейтралью схема.
Хотя отсечка тока эффективнее предотвращает короткие замыкания, применение обозреваемого метода больше подходит для предохранения разветвленных электролиний. Для максимально эффективной работы необходимо правильно задать в схеме уставки.
Выбор тока срабатывания защиты МТЗ
Выбор осуществляется с расчетом, чтобы установка уверенно срабатывала при повреждающих воздействиях, но не проявляла активности при недолгих толчках (к примеру, когда запускается электродвигатель) или высоком токе нагрузки. Дифференциация последнего от ситуации, когда должна активизироваться защита, является основной задачей. Также установка не должна быть излишне восприимчивой, иначе цепь будет отключаться, когда это не нужно.
Должны соблюдаться условия:
- реле не должны активизироваться нагрузочным током, поэтому параметр, при котором срабатывает МТЗ, должен быть больше максимального нагрузочного показателя;
- возвратный ток реле должен превышать нагрузочное значение, идущее по защите после окончания замыкания – это нужно для возврата реле в начальное положение.