Точный метод определения тока однофазного КЗ
1.1 Точный метод определения тока однофазного КЗ, представлен в ГОСТ 28249-93 формула 24, и рассчитывается по формуле:
Используя данный метод можно с большой степенью точности определять токи КЗ при известных сопротивлениях прямой, обратной и нулевой последовательности цепи фаза-нуль.
К сожалению, на практике данный метод не всегда возможно использовать, из-за отсутствия справочных данных на сопротивления прямой, обратной и нулевой последовательности для кабелей с алюминиевыми и медными жилами с учетом способов прокладки фазных и нулевых проводников.
Расчет тока короткого замыкания в сети 0,4 кВ
Введение
В соответствии с пунктом 3.1.8. ПУЭ электрические сети должны иметь защиту от токов короткого замыкания, обеспечивающую по возможности наименьшее время отключения при этом указано что защита должна проверяться по отношению наименьшего расчетного тока короткого замыкания (далее — тока КЗ) к номинальному току плавкой вставки предохранителя или расцепителя автоматического выключателя. (Подробнее о выборе защиты от токов короткого замыкания читайте статью: Расчет электрической сети и выбор аппаратов защиты)
Приближенный метод определения тока однофазного КЗ
2.1 Приближенный метод определения тока однофазного кз при большой мощности питающей энергосистемы (Хс
где:
- Uф – фазное напряжение сети, В;
- Zт – полное сопротивление трансформатора току однофазного замыкания на корпус, Ом;
- Zпт – полное сопротивление петли фаза-нуль от трансформатора до точки КЗ, Ом.
2.2 Если же питающая энергосистема имеет ограниченную мощность, то тогда ток однофазного кз определяется по формуле 2-26 [ Л3, с 39]:
2.3 Значение Z∑ определяется по таблице 2.9 или можно определить по формуле 2-25 [ Л3, с 39]:
где: х1т и r1т; х2т и r2т; х0т и r0т — индуктивное и активное сопротивления трансформатора токам прямой, обратной и нулевой последовательности, мОм. Принимаются по таблице 2.4 [Л3, с 29].
Значение Zт/3 для различных трансформаторов с вторичным напряжением 400/230 В, можно принять по таблицам 2, 3, 4 [Л1, с 6,7].
Сопротивления контактов шин, аппаратов, трансформаторов тока в данном методе не учитываются, поскольку арифметическая сумма Zт/3 и Zпт создает не который запас.
2.4 Полное сопротивление трансформатора Zт, определяется по формуле 2-24 [Л3, с 39]:
2.5 Полное сопротивление петли фаза-нуль, определяется по формуле 2-27 [Л3, с 40]:
где:
- Zпт.уд. – полное удельное сопротивление петли фаза-нуль для каждого участка от трансформатора до места КЗ определяется по таблицам 2.10 – 2.14 [Л3, с 41,42] или по таблицам [Л2], мОм/м;
- l – длина участка, м.
Ниже представлены справочные таблицы со значениями удельного сопротивления петли фаза-нуль для различных кабелей и шинопроводов согласно [Л3, с 41,42].
Справочные таблицы 7, 10 со значениями активных сопротивления медных и алюминиевых проводов, кабелей [Л1, с 6, 14].
Справочные таблицы 11, 12, 13 со значениями полного расчетного сопротивления цепи фаза-нуль для 3(4) — жильных кабелей с различной изоляций и при температуре жилы +65(+80) С [Л1, с 15, 16].
На практике согласно [Л1, с 5] рекомендуется использовать приближенный метод определения тока однофазного КЗ. При таком методе, допустимая погрешность в расчете тока однофазного КЗ при неточных исходных данных в среднем равна – 10% в сторону запаса; 18-20% — при схеме соединения трансформатора Y/Y0, когда преобладает активная нагрузка и для зануления используется 4-я жила либо оболочка кабеля; 10-12% — при использовании стальных труб для зануления электропроводки.
Из выше изложенного, следует, что при использовании данного метода, создаётся не который запас при расчете, который гарантирует срабатывания защитного аппарата, согласно требованиям ПУЭ.
1. Рекомендации по расчету сопротивления цепи «фаза-нуль». Главэлектромонтаж. 1986 г. 2. ГОСТ 28249-93 – Методы расчета в электроустановках переменного тока напряжением до 1 кВ. 3. Беляев А.В. Выбор аппаратуры, защит и кабелей в сети 0,4 кВ. Учебное пособие. 2008 г.
Поделиться в социальных сетях
Если вы нашли ответ на свой вопрос и у вас есть желание отблагодарить автора статьи за его труд, можете воспользоваться платформой для перевода средств «WebMoney Funding» .
Данный проект поддерживается и развивается исключительно на средства от добровольных пожертвований.
Проявив лояльность к сайту, Вы можете перечислить любую сумму денег, тем самым вы поможете улучшить данный сайт, повысить регулярность появления новых интересных статей и оплатить регулярные расходы, такие как: оплата хостинга, доменного имени, SSL-сертификата, зарплата нашим авторам.
В данной статье речь пойдет о расчете токовой отсечки для электродвигателей напряжением выше 1.
Расчет токов самозапуска электродвигателей производиться для выбора тока срабатывания максимальной.
Выбор мощности трансформатора напряжения сводиться к расчету нагрузки для основной и.
В данной статье я хотел бы рассказать о проверке чувствительности для максимальной токовой защиты (МТЗ).
В данном примере рассмотрим расчет уставок защит для ячейки 6 кВ питающей реакторное устройство плавного.
Отправляя сообщение, Вы разрешаете сбор и обработку персональных данных. Политика конфиденциальности.
ВРЕМЯ-ТОКОВЫЕ ХАРАКТЕРИСТИКИ АВТОМАТИЧЕСКИХ ВЫКЛЮЧАТЕЛЕЙ
Согласно ГОСТа Р 50345-99, п.3.5.17 — это наименьшая величина тока, при котором автоматический выключатель сработает (отключится) без выдержки времени, т.е. его электромагнитная защита.
В этом же ГОСТе Р 50345-99, п.5.3.5., говорится, что всего существует три стандартные характеристики (типы мгновенного расцепления):
B — от 3·In до 5·In C — от 5·In до 10·In D — от 10·In до 20·In (встречаются от 10·In до 50·In) In – номинальный ток автоматического выключателя.
Рассмотрим каждый вид характеристики на примере модульного автоматического выключателя ВА47-29.
Время-токовая характеристика типа В
На графике (кривой) показана зависимость времени отключения автоматического выключателя от протекающего через него тока. Ось Х — это кратность тока в цепи к номинальному току автомата (I/In). Ось У — время срабатывания, в секундах.
График разделен двумя линиями, которые и определяют разброс времени срабатывания тепловой и электромагнитной защит автомата. Нижняя линия — это горячее состояние автомата (после срабатывания), а верхняя линия — это холодное состояние.
Характеристики практически всех автоматов изображаются при температуре +30°С.
На представленных время-токовых характеристиках (сокращенно, ВТХ) пунктирная линия — это верхняя граница (предел) для автоматов с номинальным током меньше 32 (А).
По графику видно:
1. Если через автоматический выключатель будет проходить ток, равный 3·In, то он должен отключиться за время 0,02 секунды в горячем состоянии, до 35 секунд в холодном состоянии (для автоматов менее 32А) и до 80 секунд в холодном состоянии
2. Если через автоматический выключатель будет проходить ток, равный 5·In, то он должен отключиться за 0,01 секунду в горячем состоянии или за 0,04 секунды в холодном.(для автоматов более 32А).
Автоматы с характеристикой В применяются в основном для защиты потребителей с преимущественно активной нагрузкой, например, электрические печи, электрические обогреватели, цепи освещения.
Правда, в магазинах их количество почему то всегда ограничено, т.к. распространенным видом является характеристика С. И кто так решил? Вполне целесообразно на автоматы групповых линий для освещения и розеток ставить именно тип В, а на вводной автомат — тип С. Так будет соблюдена селективность, и при коротком замыкании где нибудь в линии не будет отключаться вводной автомат и «гасить» всю квартиру.
Время-токовая характеристика типа С
Вот ее график:
1. Если через автоматический выключатель будет проходить ток, равный 5·In, то он должен отключиться за время 0,02 секунды в горячем состоянии, до 11 секунд в холодном состоянии (для автоматов менее 32А) и до 25 секунд в холодном состоянии (для автоматов более 32А).
2. Если через автоматический выключатель будет проходить ток, равный 10·In, то он должен отключиться за 0,01 секунду в горячем состоянии или за 0,03 секунды в холодном.
Автоматы с характеристикой С применяются в основном для защиты трансформаторов и двигателей с малыми пусковыми токами. Также их можно использовать для питания цепей освещения. Нашли они достаточно широкое распространение в жилом фонде, хотя свое мнение об этом я высказал чуть выше.
Время-токовая характеристика типа D
График:
1. Если через автоматический выключатель будет проходить ток, равный 10·In, то он должен отключиться за время 0,02 секунды в горячем состоянии, до 3 секунд в холодном состоянии (для автоматов менее 32А) и до 7 секунд в холодном состоянии (для автоматов более 32А).
2. Если через автоматический выключатель будет проходить ток, равный 20·In, то он должен отключиться за 0,009 секунд в горячем состоянии или за 0,02 секунды в холодном.
Автоматы с характеристикой D применяются в основном для защиты электрических двигателей с частыми запусками или значительными пусковыми токами (тяжелый пуск).
Что такое петля фаза-ноль простым языком – методика проведения измерения
Электроприборы должны работать без нареканий, если электрическая цепь соответствует всем нормам и стандартам. Но в линиях электропитания происходят изменения, которые со временем сказываются на технических параметрах сети. В связи с этим необходимо проводить периодическое измерение показателей и профилактику электропитания. Как правило, проверяют работоспособность автоматов, УЗО, а также параметры петли фаза-ноль. Ниже описаны подробности об измерениях, какие приборы использовать и как анализировать полученные результаты.
Что подразумевается под термином петля фаза-ноль?
Согласно правилам ПУЭ в силовых подстанциях с напряжением до 1000В с глухозаземленной нейтралью необходимо регулярно проводить замер сопротивления петли фаза-ноль. Электроэнергия, подаваемая потребителям, поступает с выходных обмоток трехфазного трансформатора, который подключен по схеме звезда. В результате естественного перекоса фаз по цепи нейтрали может протекать ток, поэтому для предотвращения проблемы измеряют фазу-ноль.
Петля фаза-ноль образуется в том случае, если подключить фазный провод к нулевому или защитному проводнику. В результате создается контур с собственным сопротивлением, по которому перемещается электрический ток. На практике количество элементов в петле может быть значительно больше и включать защитные автоматы, клеммы и другие связующие устройства. При необходимости, можно провести расчет сопротивления вручную, но у метода есть несколько недостатков:
- сложно учесть параметры всех коммутационных элементов, в том числе выключателей, автоматов, рубильников, которые могли измениться за время эксплуатации сети;
- невозможно рассчитать влияние аварийной ситуации на сопротивление.
Наиболее надежным способом считается замер значения с помощью поверенного аппарата, который учитывает все погрешности и показывает правильный результат. Но перед началом измерения необходимо совершить подготовительную работу.
Что такое короткое замыкание?
Многие знают такое устойчивое выражение – “короткое замыкание”. Кроме названия известного блокбастера из 90-х, эти слова ассоциируются у обывателя с частой причиной пожаров. На эту тему гуляет множество мифов и штампов. Я решил разобраться, что тут к чему и зачем всё это нужно.
Короткое замыкание (КЗ) – это такой режим работы электросети, или явление, при котором в цепи в месте замыкания протекает максимально возможный ток. Это событие – трудно предсказуемое и аварийное, и чем быстрее оно прекратится, тем лучше. При возникновении КЗ вся энергия источника питания тратится только на нагрев проводов. Кроме того, возможны динамические (механические) последствия. Процесс этот обычно очень скоротечный и взрывообразный, поскольку тепловая энергия выделяется колоссальная. Если не прекратить это безобразие как можно быстрее (какими способами это делается – разберёмся ниже), то КЗ может привести к большим материальным и человеческим потерям.
Время отключения автоматических выключателей бытовых серий при КЗ на землю – менее 0,1 с. Если выключение происходит посредством устройств, реагирующих на дифференциальный ток (УЗО, АВДТ), время реакции будет менее 0,04 с.
Замыкание может происходить между любыми точками электрической цепи, обладающими разным потенциалом. Вот как это выглядит в трехфазном варианте:
Короткие замыкания в системе питания с системой заземления TN-S
На рисунке условно показана вторичная обмотка понижающего трансформатора, установленного в трансформаторной подстанции (ТП), пятипроводная линия электропередачи и трехфазная электроустановка. Электроустановкой может быть частный или многоквартирный дом, а может и что-то промышленное.
Замыкания могут быть в разных вариантах:
- двух- и трехфазные (межфазные),
- одно- двух- или трехфазные на нейтральный N или защитный РЕ проводник.
Если рассматривать наиболее безопасную систему заземления TN-S с глухозаземленной нейтралью трансформатора, то наиболее часто (на практике – около 90%) встречается однофазное замыкание между фазным проводом и нейтралью N (либо защитным проводником РЕ). Поэтому далее будет рассматривать более простой, однофазный вариант:
Короткое замыкание на нейтральный и защитный проводники
Рекомендую мою статью: Чем трехфазное напряжение отличается от однофазного. А линейное от фазного.
Замыкание может произойти где угодно – хоть около трансформаторной подстанции (ТП) из-за невнимательности экскаваторщика, хоть в квартире из-за кота, уронившего ёлку. В любом случае, защита должна отработать чётко, сведя к минимуму последствия КЗ.
Кстати, у нас однажды кошка уронила ёлку. Выкинули её с 5-го этажа.
Для чего проверяют сопротивление петли фаза-ноль
Проверка необходима для профилактических целей, а также обеспечения корректной работы защитных устройств, включая автоматические выключатели, УЗО и диффавтоматы. К примеру, распространенная проблема, когда в розетку включается чайник или другой электроприбор, а автомат отключает нагрузку.
Важно! Большое сопротивление является причиной ложного срабатывания защиты, нагрева кабелей и пожара.
Причина может заключаться во внешних факторах, на которые сложно повлиять, а также в несоответствии номинала защиты действующим параметрам. Но в большинстве случаев, дело во внутренних проблемах. Наиболее распространенные причины ошибочного срабатывания автоматов:
- неплотный контакт на клеммах;
- несоответствие тока характеристикам провода;
- уменьшение сопротивления провода из-за устаревания.
Использование измерений позволяет получить подробные данные про параметры сети, включая переходные сопротивления, а также влияние элементов контура на его работоспособность. Другими словами, петля фаза-ноль используется для профилактики защитных устройств и корректного восстановления их функций.
Зная параметры автомата защиты конкретной линии, после проведения измерения, можно с уверенностью сказать, сможет ли автомат сработать при коротком замыкании или начнут гореть провода.
Периодичность проведения измерений
Надежная работа электросети и всех бытовых приборов возможна только в том случае, если все параметры соответствуют нормам. Для обеспечения нужных характеристик требуется периодическая проверка петли фазы-ноль. Замеры проводятся в следующих ситуациях:
- После ввода оборудования в эксплуатацию, ремонтных работ, модернизации или профилактики сети.
- При требовании со стороны обслуживающих компаний.
- По запросу потребителя электроэнергии.
Справка! Периодичность проверки в агрессивных условиях — не менее одного раза в 2 года.
Основной задачей измерений является защита электрооборудования, а также линий электропередач от больших нагрузок. В результате роста сопротивления кабель начинает сильно нагреваться, что приводит к перегреву, срабатыванию автоматов и пожарам. На величину влияет множество факторов, включая агрессивность среды, температура, влажность и т.д.
Какие приборы используют?
Для измерения параметров фазы используют специальные поверенные устройства. Аппараты отличаются методиками замеров, а также конструктивными особенностями. Наибольшей популярностью среди электриков пользуются следующие измерительные приборы:
- М-417. Проверенное опытом и временем устройство, предназначенное для измерения сопротивления без отключения источника питания. Из особенностей выделяют простоту использования, габариты и цифровую индикацию. Прибор применяют в любых сетях переменного тока напряжением 380В и допустимыми отклонениями 10%. М-417 автоматически размыкает цепь на интервал до 0,3 секунды для проведения замеров.
- MZC-300. Современное оборудование для проверки состояния коммутационных элементов. Методика измерений описаны в ГОСТе 50571.16-99 и заключается в имитации короткого замыкания. Устройство работает в сетях с напряжением 180-250В и фиксирует результат за 0,3 секунды. Для большей надежности работы предусмотрены индикаторы низкого или высокого напряжения, а также защита от перегрева.
- ИФН-200. Устройство с микропроцессорным управлением для измерения сопротивления петли фаза-ноль без отключения питания. Надежный прибор гарантирует точность результата с погрешностью до 3%. Его используют в сетях с напряжением от 30В до 280В. Из дополнительных преимуществ следует выделить измерение тока КЗ, напряжения и угла сдвига фаз. Также прибор ИНФ-200 запоминает результаты 35 последних замеров.
Важно! Точность результатов измерения зависит не только от качества прибора, но и от соблюдения правил выполнения выбранной методики.
Как измеряется сопротивление петли фаза ноль
Измерение характеристик петли зависит от выбранной методики и прибора. Выделяют три основных способа:
- Короткое замыкание. Прибор подключается к рабочей цепи в наиболее отдаленной точке от вводного щита. Для получения нужных показателей устройство производит короткое замыкание и замеряет ток КЗ, время срабатывания автоматов. На основе данных автоматически рассчитываются параметры.
- Падение напряжения. Для подобного способа необходимо отключить нагрузку сети и подключить эталонное сопротивление. Испытание проводят с помощью прибора, который обрабатывает полученные результаты. Метод считается одним из наиболее безопасных.
- Метод амперметра-вольтметра. Достаточно сложный вариант, который проводят при снятом напряжении, а также используют понижающий трансформатор. Замыкая фазный провод на электроустановку, измеряют параметры и делают расчеты характеристик по формулам.
Краткое описание MZC-300
Рассмотрим внешний вид и основные элементы измерителя MZC-300.
- Информационный дисплей. Полное описание его полей можно найти в руководстве по эксплуатации.
- Кнопка «Старт». Запускает следующие процессы измерений:
- ZП, напомним, это общее сопротивление цепи Ф-Н.
- IКЗ – ожидаемый ток КЗ.
- Активного сопротивления, необходимо для калибровки прибора.
Старт каждого измерения сопровождается характерным звуковым сигналом.
- Кнопка «SEL». Служит для последовательного вывода на информационный дисплей всех характеристик петли, полученных в результате последнего замера. В частности отображается следующая информация:
- Параметры ZП.
- Ожидаемый IКЗ.
- Уровень активного и реактивного сопротивления (R и Х).
- Фазный угол ϕ.
- Кнопка «Z/I». По окончании испытаний переключает на дисплее отображение характеристик между ожидаемым IКЗ и ZП.
- Кнопка отключения/включения измерительного устройства. Если при запуске прибора одновременно с данной кнопкой нажать «SEL», то измеритель перейдет в режим автокалибровки. Его подробное описание можно найти в руководстве пользования.
- Разъем для подключения щупа, контактирующего с рабочим нулем, проводником РЕ или, PEN. Соответствующее обозначение нанесено на корпус прибора.
- Разъем щупа, подключаемого к одному из фазных проводов. Как правило, помечен литерой «L».
- Как и разъем i, в отличии от гнезд для измерительных проводов, используется только в режиме автоматической калибровки. На корпусе прибора обозначаются как «К1» и «К2».
Полезные советы Схемы для подключения Принципы работы устройств Главные понятия Счетчики от Энергомера Меры предосторожности Лампы накаливания Видеоинструкции для мастера Проверка мультиметром