Как изменяется сопротивление проводника при повышении температуры


Зависимость сопротивления проводника от температуры

Удельное сопротивление, а следовательно, и сопротивление металлов, зависит от температуры, увеличиваясь с ее ростом. Температурная зависимость сопротивления проводника объясняется тем, что

  1. возрастает интенсивность рассеивания (число столкновений) носителей зарядов при повышении температуры;
  2. изменяется их концентрация при нагревании проводника.

Опыт показывает, что при не слишком высоких и не слишком низких температурах зависимости удельного сопротивления и сопротивления проводника от температуры выражаются формулами:

ho_t = ho_0 (1 + alpha t) ,) (

R_t = R_0 (1 + alpha t) ,)

где ρ

0,
ρ
t — удельные сопротивления вещества проводника соответственно при 0 °С и
t
°C;
R
0,
R
t — сопротивления проводника при 0 °С и
t
°С,
α
— температурный коэффициент сопротивления: измеряемый в СИ в Кельвинах в минус первой степени (К -1 ). Для металлических проводников эти формулы применимы начиная с температуры 140 К и выше.

Температурный коэффициент

сопротивления вещества характеризует зависимость изменения сопротивления при нагревании от рода вещества. Он численно равен относительному изменению сопротивления (удельного сопротивления) проводника при нагревании на 1 К.

mathcal h alpha mathcal i) — среднее значение температурного коэффициента сопротивления в интервале ΔΤ

.

Для всех металлических проводников α

> 0 и слабо изменяется с изменением температуры. У чистых металлов
α
= 1/273 К -1 . У металлов концентрация свободных носителей зарядов (электронов)
n
= const и увеличение
ρ
происходит благодаря росту интенсивности рассеивания свободных электронов на ионах кристаллической решетки.

Для растворов электролитов α

-1 . Сопротивление электролитов с ростом температуры уменьшается, так как увеличение числа свободных ионов из-за диссоциации молекул превышает рост рассеивания ионов при столкновениях с молекулами растворителя.

Формулы зависимости ρ

и
R
от температуры для электролитов аналогичны приведенным выше формулам для металлических проводников. Необходимо отметить, что эта линейная зависимость сохраняется лишь в небольшом диапазоне изменения температур, в котором
α
= const. При больших же интервалах изменения температур зависимость сопротивления электролитов от температуры становится нелинейной.

Графически зависимости сопротивления металлических проводников и электролитов от температуры изображены на рисунках 1, а, б.

При очень низких температурах, близких к абсолютному нулю (-273 °С), сопротивление многих металлов скачком падает до нуля. Это явление получило название сверхпроводимости

. Металл переходит в сверхпроводящее состояние.

Зависимость сопротивления металлов от температуры используют в термометрах сопротивления. Обычно в качестве термометрического тела такого термометра берут платиновую проволоку, зависимость сопротивления которой от температуры достаточно изучена.

Об изменениях температуры судят по изменению сопротивления проволоки, которое можно измерить. Такие термометры позволяют измерять очень низкие и очень высокие температуры, когда обычные жидкостные термометры непригодны.

Сопротивление

Сила тока в проводнике зависит не только от напряжения электрического поля в нём. Она зависит ещё от самого проводника: от его формы, размеров, от того, из какого материала он сделан. При одном и том же напряжении поля токи в разных проводниках будут различными.
Возьмём кусок медной проволоки длиной в 100 метров с поперечным сечением в 4 квадратных миллиметра. Создадим на концах её напряжение в один вольт. Амперметр покажет в этом случае силу тока в 2,2 ампера.

При том же напряжении, в таком же куске железной проволоки ток будет равен только 0,44 ампера, а в такой же проволоке, но сделанной из нихрома (сплав никеля, железа и хрома) — всего лишь 0,03 ампера.

Медь, железо и нихром обладают различным электрическим сопротивлением. Сопротивление меди мало, железа — больше, а нихрома — очень велико.

Сопротивление зависит не только от материала проводника, но и от формы и размеров его. У толстой проволоки сопротивление меньше, чем у тонкой, у длинной — больше, чем у короткой. Чтобы понять, почему это так, надо выяснить, чем вызвано сопротивление проводников электрическому току. Об этом мы расскажем дальше.

За единицу сопротивления принято сопротивление такого проводника, в котором напряжение в один вольт создаёт ток в один ампер. Такое сопротивление называется один ом.

Итак, сила тока в проводнике зависит от напряжения поля на концах его и от сопротивления проводника. Чем больше напряжение, тем больше сила тока. Чем больше сопротивление, тем сила тока меньше.

Чтобы узнать, какова сила тока, надо разделить напряжение, созданное полем на концах проводника, на сопротивление этого проводника.

На практике силу тока обычно не вычисляют, а измеряют амперметром. Напряжение тоже измеряют. А зная напряжение и силу тока, не трудно уже вычислить сопротивление проводника.

Так как напряжение сила т о к а = напряжение /сопротивление, ТО

сопротивление = напряжение / сила т о к а ,

На зажимах дугового фонаря, изображённого на рис. 12, создано напряжение в 55 вольт. Через дугу идёт ток в 5 ампер. Значит, сопротивление горящей дуги равно

55 / 5 = 11 Ом.

Электрическим сопротивлением обладают не только металлы, но и все другие тела.

Особенно велико сопротивление изоляторов (кварц, резина, стекло, фарфор и др.). Если бы в изоляторах абсолютно не было свободных зарядов (электронов, ионов), то сопротивление их было бы бесконечным. Самое высокое напряжение не вызывало бы в изоляторах тока.

На самом деле таких идеальных изоляторов не существует. В любом изоляторе имеется небольшое число оторвавшихся от своих мест электронов и ионов. Поэтому и в изоляторах при наложении поля возникает ток.

Зависимость сопротивления проводника от температуры

Удельное сопротивление, а следовательно, и сопротивление металлов, зависит от температуры, увеличиваясь с ее ростом. Температурная зависимость сопротивления проводника объясняется тем, что

  1. возрастает интенсивность рассеивания (число столкновений) носителей зарядов при повышении температуры;
  2. изменяется их концентрация при нагревании проводника.

Опыт показывает, что при не слишком высоких и не слишком низких температурах зависимости удельного сопротивления и сопротивления проводника от температуры выражаются формулами:

ho_t = ho_0 (1 + alpha t) ,) (

R_t = R_0 (1 + alpha t) ,)

где ρ

0,
ρ
t — удельные сопротивления вещества проводника соответственно при 0 °С и
t
°C;
R
0,
R
t — сопротивления проводника при 0 °С и
t
°С,
α
— температурный коэффициент сопротивления: измеряемый в СИ в Кельвинах в минус первой степени (К -1 ). Для металлических проводников эти формулы применимы начиная с температуры 140 К и выше.

Температурный коэффициент

сопротивления вещества характеризует зависимость изменения сопротивления при нагревании от рода вещества. Он численно равен относительному изменению сопротивления (удельного сопротивления) проводника при нагревании на 1 К.

mathcal h alpha mathcal i) — среднее значение температурного коэффициента сопротивления в интервале ΔΤ

.

Для всех металлических проводников α

> 0 и слабо изменяется с изменением температуры. У чистых металлов
α
= 1/273 К -1 . У металлов концентрация свободных носителей зарядов (электронов)
n
= const и увеличение
ρ
происходит благодаря росту интенсивности рассеивания свободных электронов на ионах кристаллической решетки.

Для растворов электролитов α

-1 . Сопротивление электролитов с ростом температуры уменьшается, так как увеличение числа свободных ионов из-за диссоциации молекул превышает рост рассеивания ионов при столкновениях с молекулами растворителя.

Формулы зависимости ρ

и
R
от температуры для электролитов аналогичны приведенным выше формулам для металлических проводников. Необходимо отметить, что эта линейная зависимость сохраняется лишь в небольшом диапазоне изменения температур, в котором
α
= const. При больших же интервалах изменения температур зависимость сопротивления электролитов от температуры становится нелинейной.

Графически зависимости сопротивления металлических проводников и электролитов от температуры изображены на рисунках 1, а, б.

При очень низких температурах, близких к абсолютному нулю (-273 °С), сопротивление многих металлов скачком падает до нуля. Это явление получило название сверхпроводимости

. Металл переходит в сверхпроводящее состояние.

Зависимость сопротивления металлов от температуры используют в термометрах сопротивления. Обычно в качестве термометрического тела такого термометра берут платиновую проволоку, зависимость сопротивления которой от температуры достаточно изучена.

Об изменениях температуры судят по изменению сопротивления проволоки, которое можно измерить. Такие термометры позволяют измерять очень низкие и очень высокие температуры, когда обычные жидкостные термометры непригодны.

Жидкости

Проводники тока в жидкости – это анионы и катионы, которые движутся за счет электрического внешнего поля. Электроны обеспечивают незначительную проводимость. Рассмотрим зависимость сопротивления от температуры в жидкостях.

где:

  1. Электролит
  2. Батарея
  3. Амперметр

Зависимость воздействия электролитов от нагревания прописывает формула:

Где а – отрицательный температурный коэффициент.

Как зависит R от нагрева (t) показано на графике ниже:

Такая зависимость должна учитываться, когда осуществляется зарядка аккумуляторов и батарей.

Класс допуска

Приведенные ниже данные соответствуют международным и российским стандартам. Допустимо использование уникальных температурных диапазонов, утвержденных в ТУ определенного предприятия производителя.

Допуски

Классификация по ГОСТДопустимое отклонение, °CНормированный температурный диапазон для разных видов ТС (минимум/ максимум в °C)
Платиновый проволочный (пленочный)МедныйНикелевый
АА±(0,1 + 0,0017)-50/+250 (-50/+150)
А±(0,15 + 0,002)-100/+450(-30/+300)-50/+120
В±(0,3 + 0,005)-196/+660 (-50/+500)-50/+200
С±(0,6 + 0,01)-196/+660 (-50/+600)-180/+200-60/+180

Виды

Проводником называют среду или предмет, который способен проводить электрический ток. Внутри него, при подключении к источнику энергии, начинает активно двигаться заряженная частица. Амперметр показывает возрастание электрического напряжения в цепи. Рассматривая проводники разных типов, учитывается удельная электропроводность и тип материала:

  • медь;
  • алюминий;
  • метал;
  • золото;
  • сплав никеля и хрома.

Вам это будет интересно Особенности проекта электроснабжения

В научной среде есть понятие сверхпроводника, который считается идеальным. Он обладает значительным углом диэлектрической потери. Когда ток идёт от цепи, учитывается процент смещения. У сверхпроводника данный параметр минимален.

Из меди

Медь относится к компонентам 11 группы из таблицы химических элементов. По классификации он является пластинчатым, встречается в разных видах. Зачастую вещество имеет розовый оттенок. В электротехнике медь отличается низким удельным сопротивлением и лежит на одной нише с серебром, золотом.

Материал применим при изготовлении проводки, а также печатных плат. Ещё вещество востребовано при изготовлении электроприводов. Рассматривая сложные управляемые, электромеханические системы, заметно, что у них используются обмотки с низким удельным сопротивлением.

Если оценивать силовые трансформаторы, у них также применяется данный металл, однако он зачастую используется с примесями. Это необходимо, чтобы снизить показатель электропроводимости. В печатных платах медь используется на пару с алюминием. Рассматривая радиодетали, востребованными остаются сплавы на основе меди, которые также отличаются низким сопротивлением.

Разбирая персональные компьютеры, вещество встречается с бронзой либо латунью. Также используются добавки из цинка либо никеля. Чтобы повысить упругость проводника, применяются другие материалы, такие как олово, цинк. По таблице удельного сопротивления, веществу присвоен показатель 0,0157 Ом.

Из алюминия

Среди элементов 13 группы в таблице выделяется алюминий. Он является отличным проводником в цепи, изготовлен из парамагнитного металла. По цвету наблюдается серебристый оттенок. Проводник хорошо поддается механической обработке. Помимо значительной электропроводимости, отмечается коррозийная стойкость.

При термической обработке образуется оксидная пленка, которая защищает поверхность. В природе предусмотрены различные соединения алюминия. Если рассматривать стандартную проволоку небольшого сечения, она востребована в электрических катушках. Вещество обладает низкой плотностью, а также массой, поэтому аналоги сложно подобрать. Используя алюминий в движущихся элементах, можно повысить их производительность.

Зачастую проводник встречается в жестких дисках, а также аудиосистемах. Востребованными остаются проволоки, покрытые слоем лака. Встречаются эмалированные аналоги, отличающиеся повышенной защищенностью. В качестве изоляции используется резина, берилл. Производители выпускают проводники с сечением от 0.003 мм.

Помимо катушек индуктивности проволока может устанавливаться в индукторах, громкоговорителях, наушниках. Касательно соединений, встречаются варианты с алунитами. Дополнительная информация о физических свойствах:

  • низкая температура плавления;
  • высокая теплоемкость;
  • значительная твёрдость;
  • слабый парамагнетик;
  • широкий температурный диапазон.

Вам это будет интересно Как рассчитать заземление

Алюминий встречается в печатных платах, поскольку поддается в штамповке. Коррозионная стойкость — дополнительное преимущество. Алюминиевые проводники являются популярными и востребованными в промышленности. Удельное сопротивление — 0,028 Ом. Также необходимо рассмотреть недостаток — значительное содержание примесей.

Из металла

Среди металлов, распространенными типами проводников считаются следующие:

  • свинец;
  • олово;
  • платина;
  • никель;
  • вольфрам.

Свинец — это элемент из 14 группы, который может использоваться в качестве проводника. У него предельная плотность 11.35 грамм на кубический метр. Область применения ограничена, поскольку материал токсичен и относится к тяжелым металлам. История происхождения формулы неясна, есть лишь догадки.

Если говорить о проводниковых элементах, то зачастую применяется нитрат свинца. В источниках тока, резервных блоках встречается версия с хлоридом. Рассматривая неорганические соединения, выделяется материал теллурид. Он подходит в качестве термоэлектрического проводника, поэтому используется в электростанциях разной мощности. Ещё металлический элемент востребован в холодильниках.

Если детально рассматривать теллурид, к числу особенности стоит приписать значительную диэлектрическую проницаемость. В составе помимо свинца имеется олово и теллур. По отдельности вещества встречаются в фоторезисторах и диодах. Если разбирать полупроводниковые приборы, элементы содержатся в стабилизаторах и указывают направление тока.

Важно! Олово — это проводник из 14 группы химических элементов. Материал безопасен, не содержит токсичных веществ.

Наравне с золотом, олово обладает отличными антикоррозионными свойствами. Зачастую в технике применяется дисульфид. Наиболее высокий показатель сопротивления показывает двуокись олова. В аккумуляторах он используется в чистом виде. Рассматривая гальванические элементы, стоит упомянуть про марганцево-оловянный диоксид.

Платина — это проводника с десятой группы химических элементов. Представленный металл имеет электросопротивление 0,098 Ом, и отличается повышенной плотностью. Если рассматривать сферу применения, то зачастую вещество встречается в лазерной технике. Речь идет о принтерах, а также измерительных приборах.

Дополнительно платина используется в электромагнитных реле. В представленных автоматических устройствах он выступает проводником. Речь идет о механических, тепловых либо оптических реле. В электронных датчиках платина содержится в меньшем количестве, однако используется за счёт широкого диапазона температур. В частности, можно рассмотреть электронный термометр сопротивления. Резистивный элемент по большей части состоит из платины.

Вам это будет интересно Особенности расчета мощности по току и напряжению

Из золота

Удельное сопротивление золота 0,023 Ом. Материал относится к первой группе металлов и по физическим свойствам является мягким. Золото встречается с примесями и в чистом виде. Плотность составляет 19,32 г/см³, сфера применения широка. В промышленности проводник востребован в качестве припоя.

Его разрешается наносить на различные поверхности, он служит отличным материалом для соединения заготовок, поскольку наблюдается низкая температура плавления. Также золото востребовано для защиты от коррозии.

Недостатки:

  • мягкость материала;
  • подвержен точечной коррозии.

Если использовать материал с добавками, то снижается температура плавления. Также это оказывает воздействие на механические свойства вещества.

Медные датчики (ТСМ)

Применение этого материала обеспечивает ценовую доступность датчиков. Для корректного анализа специалисты рекомендуют уточнять, как зависит сопротивление проводника от температуры. Электротехническая медь содержит менее 0,1% посторонних примесей, что позволяет поддерживать линейные характеристики во всем рабочем диапазоне.

Технические параметры серийных изделий:

  • измерение температуры – от -50°C до +150°C;
  • Тк = 0,00617 °C-1.

Условия, определяющие сопротивление проводников

При определении сопротивления учитывается ряд характеристик:

  • сечение элемента;
  • длина проводника;
  • удельное сопротивление;
  • тип материала.

Предметы с высоким сопротивлением практически не проводят ток. Также есть обратная зависимость, которая прописана в законе Ома. Для расчета показателя учитывается электрическая проводимость. Она показывает возможность проводника принимать электрический ток.

Контрольная работа “Электрический ток в различных средах”

Контрольная работа “Электрический ток в различных средах”

ВАРИАНТ 1

Часть А

А1. При мгновенной остановке быстро вращающейся катушки доказали, что в металлах по инерции движутся

1) положительные и отрицательные ионы

2) отрицательные ионы 3) свободные электроны

4) положительные ионы

А2. Наиболее выгодно использовать металлические проводники с малым удельным сопротивлением для изготовления …

1) резисторов 2) соединительных проводов

3) спирали электроплиток 4) нагревательных элементов

A3. При нагревании металлического проводника его сопротивление …

1) не изменяется т.к. оно от температуры не зависит

2) увеличивается т.к. увеличивается длина проводника

3) уменьшается т.к. увеличивается площадь сечения провода

4) увеличивается т.к. возрастают столкновения электронов с ионами

А4. Выражение позволяющее рассчитать скорость упорядоченного движения электронов в проводнике под действием электрического поля:

А 5. Смещение электронного пучка, влетающего

в электрическое поле, происходит…

1) к наблюдателю 2) от наблюдателя

3)вправо 4)влево

А6. Зависимости сопротивления от температуры для полупроводников соответствует линия графика

1) 1 2) 2 3)3 4)4

А7. Чтобы получить полупроводник
n-типа . надо добавить к четырехвалентному германию элемент (в скобках указана валентность) …
1) индий (3) 2) германий (4) 3) мышьяк (5) 4) олово(4)

А8. Полупроводниковый прибор, преобразующий переменный ток в пульсирующий, одновременно усиливая его, называется …

1)
диод 2) реостат
3) резистор 4) транзистор

А9. Прямому току полупроводникового

диода соответствует участок графика …

1) 0 – 1 2) 0 – 2 3) 0 – 4 4) 2 – 4

А10. Процесс выделения на электродах веществ, связанный с окислительно-восстановительной

реакцией называется

1) электролитическая диссоциация 2) рекомбинация

3) гидролиз 4) электролиз

А11. Изображена ванна для электролиза с раствором медного купороса. Медь выделится на … электроде

1) 1 2) 2 3) на 1 и на 2 4) выделение не происходит

А12. Среда, в которой прохождение электрического тока не сопровождается переносом вещества — …

1)газ 2) раствор соли 3) расплав сахара 4) металл

Часть В

В1. Чтобы сопротивление проводника увеличилось в 4 раза, при начальном значении 20 Ом, на какое количество градусов его необходимо нагреть?

Температурный коэффициент сопротивления 2,5 10-4
1/K
В2.
Источник с ЭДС = 11 В и внутренним сопротивлением1 Ом подключен к сопротивлениям 7 Ом и 3 Ом, соединенными последовательно. Нарисовать электрическую схему соединения. Найти показания вольтметра на обоих сопротивлениях.
В3. При оцинковке металлического листа пропускали ток 10 А в течение 20 минут. При этом какая масса цинка выделится?

(К = 3,4
.10-7кг/Кл)
Контрольная работа
“Электрический ток в различных средах”
ВАРИАНТ 2

Часть А

А1. Пропуская электрический ток через

систему проводников установили, что …

1) металлы пропускают ток

2) носителями заряда являются ионы

3) носителями заряда в металле являются электроны

4) перенос заряда происходит за счет диффузии молекул

A2. Зависимость силы тока металлических проводников от изменения заряда через поперечное сечение характери­зуется выражением:

А3. Явление выхода электронов с поверхности катода называется

1) диссоциация 2) ионизация

3) термоэлектронная эмиссия 4) гидролиз

А4. Смещение электронного пучка, движущегося

перпендикулярно плоскости к наблюдателю,

направлено
1) влево 2) вправо 3) вниз 4) вверх
А5. Зависимости сопротивления металлических проводников от температуры соответствует линия графика

1)1 2) 2 3) 3 4) 4

А6. Ток в полупроводнике — это упорядоченное движение

1) положительных и отрицательных ионов

2) электронов и положительных и отрицательных ионов

3) электронов и дырок в противоположных направлениях

4) свободных электронов

А7. Для усиления дырочной проводимости полупроводника необходимо

1)
нагреть полупроводник2)добавить примесь большей валентности
3)
охладить полупроводник4)добавить примесь меньшей валентности
А8. Участок графика соответствующего обратному току полупроводникового диода.

1) 0 – 3 2) 1 – 2

3) 0 – 2 4) 0 – 4

А9. Физическая величина, определяемая отношением массы выделившегося вещества при электролизе к величине проходящего заряда — …

1) молярная масса 2) число Авогадро

3) электрохимический эквивалент 4) число Фарадея

А10. Что происходит с силой тока в цепи при коротком

замыкании?

1) Сила тока становится равной нулю.

2) Сила тока резко возрастает.

3) Сила тока не изменяется.

4) Сила тока равна напряжению.

А11. Изображена ванна для электролиза с раствором медного купороса. Ванна включена к источнику переменного напряжения. На каком электроде выделится медь?

1) 1 2) 2 3) 1 и 2 4) ни на 1 ни на 2 не выделится

А12. Среда, сопротивление которой возрастает при нагревании

1) вакуум 2) полупроводник 3) металл 4) газ

Часть В

В1. При нагревании проводника с сопротивлением 50 Ом на 600 К каким становится его сопро­тивление ? (температурный коэффициент сопротив­ления 2,5.10
-41/K).
В2. Гальванический элемент с ЭДС 15 В и внутренним сопротивлением 0,2 Ом замкнут на внешнее сопротивление 20 Ом. Чему рав­но напряжение на внешнем сопротивлении?

В3. При силе тока 1,6 А на катоде электролитической ванны

за 10 минут отло­жилась медь массой 0,316 г.

Найдите электрохимический эквивалент меди.

Закон Джоуля-Ленца. Определение, формула, физический смысл

Количество теплоты, выделяемой при протекании тока, зависит от следующих параметров:

  1. Величины силы тока. Сила тока определяет количество заряда, прошедшего через поперечное сечение проводника за единицу времени. Следовательно, чем больше сила тока в цепи, тем большее количество свободных электронов столкнется со связанными частицами и тем большее количество теплоты выделится.
  2. Напряжения в цепи. Напряжение прямо пропорционально работе поля по перемещению заряда. То есть чем больше напряжение, тем большую работу совершило поле и тем большую кинетическую энергию получили свободные электроны, а значит, и выделяемое количество теплоты будет больше.
  3. Сопротивление проводника. Сопротивление характеризует способность проводника пропускать ток. Зависимость количества выделяемой теплоты от сопротивления также прямо пропорциональна. Чем большим сопротивлением обладает проводник, тем большая работа затрачивается на перемещение зарядов, при этом количество выделенной теплоты увеличится.
  4. Время. Количество произошедших ударов свободных и связанных электронов будет расти с увеличением времени, как и количество теплоты.

Описать зависимость количества выделяемой теплоты от параметров цепи и проводника удалось двум ученым: английскому физику Дж. Джоулю и русскому физику Э. Ленцу. В XIX веке они независимо друг от друга сформулировали закон о тепловом воздействии поля на проводник. Впоследствии закон назвали в честь его первооткрывателей — закон Джоуля-Ленца.

Закон Джоуля-Ленца гласит, что количество теплоты, выделяемой при протекании тока через проводник, прямо пропорционально квадрату силы тока, сопротивлению и времени прохождения тока.

Используя закон Ома для участка цепи, преобразуем формулу записи закона Джоуля-Ленца:

Рейтинг
( 1 оценка, среднее 4 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]