Активная и реактивная мощность — потребители электрической энергии на то и потребители, чтобы эту энергию потреблять. Потребителя интересует та энергия, потребление которой идет ему на пользу, эту энергию можно назвать полезной, но в электротехнике ее принято называть активной. Это энергия, которая идет на нагрев помещений, готовку пищи, выработку холода, и превращаемая в механическую энергию (работа электродрелей, перфораторов, электронасосов и пр.).
Кроме активной электроэнергии существует еще и реактивная. Это та часть полной энергии, которая не расходуется на полезную работу. Как понятно из вышесказанного, полная мощность – это активная и реактивная мощность в целом.
В понятиях активная и реактивная мощность сталкиваются противоречивые интересы потребителей электрической энергии и ее поставщиков. Потребителю выгодно платить только за потребленную им полезную электроэнергию, поставщику выгодно получать оплату за сумму активной и реактивной электроэнергии. Можно ли совместить эти кажущиеся противоречивыми требования? Да, если свести количество реактивной электроэнергии к нулю. Рассмотрим, возможно ли подобное, и насколько можно приблизиться к идеалу.
Активная и реактивная мощность
Активная мощность
Существуют потребители электроэнергии, у которых полная и активная мощности совпадают. Это потребители, у которых нагрузка представлена активными сопротивлениями (резисторами). Среди бытовых электроприборов примерами подобной нагрузки являются лампы накаливания, электроплиты, жарочные шкафы и духовки, обогреватели, утюги, паяльники и пр.
Указанная у этих приборов в паспорте, одновременно является активная и реактивная мощность . Это тот случай, когда мощность нагрузки можно определить по известной из школьного курса физики формуле, перемножив ток нагрузки на напряжение в сети. Ток измеряется в амперах (А), напряжение в вольтах (В), мощность в ваттах (Вт). Конфорка электрической плиты в сети с напряжением 220 В при токе в 4,5 А потребляет мощность 4,5 х 220 = 990 (Вт).
Реактивная мощность
Иногда, проходя по улице, можно увидеть, что стекла балконов покрыты изнутри блестящей тонкой пленкой. Эта пленка изъята из бракованных электрических конденсаторов, устанавливаемых с определенными целями на питающих мощных потребителей электрической энергии распределительных подстанциях. Конденсатор – типичный потребитель реактивной мощности. В отличие от потребителей активной мощности, где главным элементом конструкции является некий проводящий электричество материал (вольфрамовый проводник в лампах накаливания, нихромовая спираль в электроплитке и т.п.). В конденсаторе главный элемент – не проводящий электрический ток диэлектрик (тонкая полимерная пленка или пропитанная маслом бумага).
Реактивная емкостная мощность
Красивые блестящие пленки, что вы видели на балконе – это обкладки конденсатора из токопроводящего тонкого материала. Конденсатор замечателен тем, что он может накапливать электрическую энергию, а затем отдавать ее – своеобразный такой аккумулятор. Если включить конденсатор в сеть постоянного тока, он зарядится кратковременным импульсом тока, а затем ток через него протекать не будет. Вернуть конденсатор в исходное состояние можно, отключив его от источника напряжения и подключив к его обкладкам нагрузку. Некоторое время через нагрузку будет течь электрический ток, и идеальный конденсатор отдает в нагрузку ровно столько электрической энергии, сколько он получил при зарядке. Подключенная к выводам конденсатора лампочка может на короткое время вспыхнуть, электрический резистор нагреется, а неосторожного человека может «тряхнуть» или даже убить при достаточном напряжении на выводах и запасенном количестве электричества.
Интересная картина получается при подключении конденсатора к источнику переменного электрического напряжения. Поскольку у источника переменного напряжения постоянно меняются полярность и мгновенное значение напряжения (в домашней электросети по закону, близкому к синусоидальному). Конденсатор будет непрерывно заряжаться и разряжаться, через него будет непрерывно протекать переменный ток. Но этот ток не будет совпадать по фазе с напряжением источника переменного напряжения, а будет опережать его на 90°, т.е. на четверть периода.
Это приведет к тому, что суммарно половину периода переменного напряжения конденсатор потребляет энергию из сети, а половину периода отдает, при этом суммарная потребляемая активная электрическая мощность равна нулю. Но, поскольку через конденсатор течет значительный ток, который может быть измерен амперметром, принято говорить, что конденсатор – потребитель реактивной электрической мощности.
Вычисляется реактивная мощность как произведение тока на напряжение, но единица измерения уже не ватт, а вольт-ампер реактивный (ВАр). Так, через подключенный к сети 220 В частотой 50 Гц электрический конденсатор емкостью 4 мкФ течет ток порядка 0,3 А. Это означает, что конденсатор потребляет 0,3 х 220 = 66 (ВАр) реактивной мощности – сравнимо с мощностью средней лампы накаливания, но конденсатор, в отличие от лампы, при этом не светится и не нагревается.
Реактивная индуктивная мощность
Если в конденсаторе ток опережает напряжение, то существуют ли потребители, где ток отстает от напряжения? Да, и такие потребители, в отличие от емкостных потребителей, называются индуктивными, оставаясь при этом потребителями реактивной энергии. Типичная индуктивная электрическая нагрузка – катушка с определенным количеством витков хорошо проводящего провода, намотанного на замкнутый сердечник из специального магнитного материала.
Активная нагрузка
К устройствам с активной нагрузкой причисляются нагревательные приборы (утюги, электроплиты, лампы накаливания, электрические чайники). Подобные приборы вырабатывают тепло и свет. Они не содержат индуктивности и емкости. Активная нагрузка преобразовывает электроэнергию в свет и тепло.
Реактивная нагрузка содержит емкость и индуктивность. Данные параметры имеют качество собирать энергию, а потом отдавать ее в сеть. Примером может служить электродвигатель, электрическая мясорубка, бытовой инструмент (пылесос, кухонный комбайн). То есть, все устройства, которые содержат электродвигатели.
Что такое реактивная мощность?
Для начала рассмотрим понятие электрической мощности. В широком смысле слова, этот термин означает работу, выполненную за единицу времени. По отношению к электрической энергии, понятие мощности немного откорректируем: под электрической мощностью будем понимать физическую величину, реально характеризующую скорость генерации тока или количество переданной либо потреблённой электроэнергии в единицу времени.
Понятно, что работа электричества в единицу времени определяется электрической мощностью, измеряемой в ваттах. Мгновенную мощность на участке цепи находят по формуле: P = U×I, где U и I – мгновенные значения показателей параметров напряжения и силы тока на данном участке.
Строго говоря, приведённая выше формула справедлива только для постоянного тока. Однако, в цепях синусоидального тока формула работает лишь тогда, когда нагрузка потребителей чисто активная. При резистивной нагрузке вся электрическая энергия расходуется на выполнение полезной работы. Примерами активных нагрузок являются резистивные приборы, такие как кипятильник или лампа накаливания.
При наличии в электрической цепи ёмкостных или индуктивных нагрузок, появляются паразитные токи, не участвующие в выполнении полезной работы. Мощность этих токов называют реактивной.
На индуктивных и ёмкостных нагрузках часть электроэнергии рассеивается в виде тепла, а часть препятствует выполнению полезной работы.
К устройствам с индуктивными нагрузками относятся:
- электромоторы;
- дроссели;
- трансформаторы;
- электромагнитные реле и другие устройства, содержащие обмотки.
Ёмкостными сопротивлениями обладают конденсаторы.
Треугольник мощностей
Чтобы разобраться с реактивной нагрузкой рассмотрим треугольник мощностей.
где Р – активная мощность, которая измеряется в Ватах и используется для совершения полезной работы;
Q – реактивная, которая измеряется в Варах и используется для создания электромагнитного поля;
S – полная мощность используется для расчета электрических цепей.
Для расчета полной мощности применяем теорему Пифагора: S 2 =P 2 +Q 2 . Или с помощью формулы: S=U*I, где U – это показание напряжения на нагрузке, I — показание амперметра, которое включается последовательно с нагрузкой. В расчетах также используется коэффициент мощности – cosφ. На приборах, которые относятся к реактивной нагрузке, обычно указаны активная мощность и cosφ. С помощью этих параметров также можно получить полную мощность.
Иногда на приборах указывается полная мощность, а cosφ не указан. В этом случае применяется коэффициент 0,7.
Активная и реактивная электроэнергия
При расчете электрической мощности, потребляемой любым электротехническим или бытовым устройством, обычно учитывается так называемая полная мощность электрического тока, выполняющего определённую работу в цепи данной нагрузки. Под понятием «полная мощность» подразумевается вся та мощность, которая потребляется электроприбором и включает в себя как активную составляющую, так и составляющую реактивную, которая в свою очередь определяется типом используемой в цепи нагрузки. Активная мощность всегда измеряется и указывается в ваттах (Вт), а полная мощность приводится обычно в вольт-амперах (ВА). Различные приборы — потребители электрической энергии могут работать в цепях, имеющих как активную, так и реактивную составляющую электрического тока.
Активная составляющая потребляемой любой нагрузкой мощности электрического тока совершает полезную работу и трансформируется в нужные нам виды энергии (тепловую, световую, звуковую и т.п.). Отдельные электроприборы работают в основном на этой составляющей мощности. Это — лампы накаливания, электроплиты, обогреватели, электропечи, утюги и т.п. При указанном в паспорте прибора значении активной потребляемой мощности в 1 кВт он будет потреблять от сети полную мощность в 1кВА.
Реактивная составляющая электрического тока возникает только в цепях, содержащих реактивные элементы (индуктивности и ёмкости) и расходуется обычно на бесполезный нагрев проводников, из которых составлена эта цепь. Примером таких реактивных нагрузок являются электродвигатели различного типа, переносные электроинструменты (электродрели, «болгарки», штроборезы и т.п.), а также различная бытовая электронная техника. Полная мощность этих приборов, измеряемая в вольт-амперах, и активная мощность (в ваттах) соотносятся между собой через коэффициент мощности cosφ, который может принимать значение от 0,5 до 0,9. На этих приборах указывается обычно активная мощность в ваттах и значение коэффициента cosφ. Для определения полной потребляемой мощности в ВА, необходимо величину активной мощности (Вт) разделить на коэффициент cosφ.
Пример: если на электродрели указана величина мощности в 600 Вт и cosφ = 0,6, то отсюда следует, что потребляемая инструментом полная мощность составляет 600/0,6=1000 ВА. При отсутствии данных по cosφ можно брать его приблизительное значение, которое для домашнего электроинструмента составляет примерно 0,7.
При рассмотрении вопроса об активной и реактивной составляющих электроэнергии (точнее — её мощности), обычно имеются в виду те явления, которые происходят в цепях переменного тока. Оказалось, что различные нагрузки в цепях переменного тока ведут себя совершенно по-разному. Одни нагрузки используют передаваемую им энергию по прямому назначению (т.е. — для совершения полезной работы), а другой тип нагрузок сначала эту энергию запасает, а потом снова отдаёт её источнику электропитания.
По виду своего поведения в цепях переменного тока, различные потребительские нагрузки делятся на следующие два типа:
1. Активный тип нагрузки поглощает всю получаемую от источника энергию и превращает её в полезную работу (свет от лампы, например), причём форма тока в нагрузке в точности повторяет форму напряжения на ней (сдвиг фаз отсутствует).
2. Реактивный тип нагрузки характеризуется тем, что сначала (в течение некоторого промежутка времени), в нём происходит накопление энергии, поставляемой источником питания. Затем запасённая энергия (в течение определённого промежутка времени) отдаётся обратно в этот источник. К подобным нагрузкам относятся такие элементы электрических цепей, как конденсаторы и катушки индуктивности, а также устройства, содержащие их. При этом в такой нагрузке между напряжением и током присутствует сдвиг фаз, равный 90 градусам. Поскольку основной целью существующих систем электроснабжения является полезная доставка электроэнергии от производителя непосредственно к потребителю (а не перекачивание её туда и обратно) — реактивная составляющая мощности обычно считается вредной характеристикой цепи.
Потери на реактивную составляющую в сети напрямую связаны с величиной рассмотренного выше коэффициента мощности, т.е. чем выше cosφ потребителя, тем меньше будут потери мощности в линии и дешевле обойдётся передача электроэнергии потребителю. Таким образом, именно коэффициент мощности указывает нам на то, насколько эффективно используется рабочая мощность источника электроэнергии. В целях повышения величины коэффициента мощности (cosφ) во всех видах электрических установок применяются специальные приёмы компенсации реактивной мощности. Обычно для увеличения коэффициента мощности (за счёт уменьшения сдвига фаз между током и напряжением — угла φ) в действующую сеть включают специальные компенсирующие устройства, представляющие собой вспомогательные генераторы опережающего (емкостного) тока. Кроме того, очень часто для компенсации потерь, возникающих из-за индуктивной составляющей цепи, в ней используются батареи конденсаторов, подключаемые параллельно рабочей нагрузке и используемые в качестве синхронных компенсаторов.
Нелинейная нагрузка
Имеет особенность в том, что напряжение и ток не пропорциональны. К нелинейной нагрузке относятся телевизоры, музыкальные центры, настольные электронные часы, компьютеры и его компоненты. Сама нелинейность обусловлена тем, что данное электронное устройство использует импульсные блоки питания. Для подзарядки конденсатора, которые стоят в импульсном блоке питания, достаточно вершины синусоиды.
В остальное время энергию из сети конденсатор не потребляет. В этом случае ток имеет импульсное качество. К чему это все приводит? Это приводит к тому, что синусоида искажается. Но не все электронные устройства работают с искаженной синусоидой. Эта проблема решается за счет применения стабилизаторов двойного преобразования, где сетевое питание преобразуется в постоянное. Затем из постоянного преобразуется в переменное нужной формы и амплитуды.
2.4. Нагрузки в цепях переменного тока
Активное сопротивление ( r) – нагрузка, аналогичная той, которая использовалась в цепях постоянного тока.
Реактивные сопротивления (X) – нагрузки, которые не использовались в цепях постоянного тока. Они используются только в цепях переменного тока и не потребляют активную мощность.
Индуктивность
Индуктивность (первый вариант определения) – это свойство физического объекта (катушки) запасать в себе энергию магнитного поля и отдавать её при следующих условиях: если ток и напряжение катушки одного знака, энергия запасается, если же разного знака, то энергия катушкой отдается.
Индуктивность (второй вариант определения) – это коэффициент пропорциональности между потокосцеплением и током, вызвавшем это потокосцепление.
Индуктивность на схемах обозначается буквой L и измеряется в генри (Гн).
Пусть дана катушка (рис. 2.5). Если контур интегрирования (k) направить по силовой линии так, чтобы он охватывал все витки катушки, то закон полного тока при Н = const, можно записать: H k = w i
Магнитная индукция связана с напряженностью: В = m m0Н, где m – относительная величина, показывающая, во сколько раз проницаемость данной среды больше магнитной проницаемости вакуума; m0 – магнитная проницаемость вакуума.
Потокосцепление (y) определяется потоком: , где .
Если Н = const, то, и индуктивность, как коэффициент пропорциональности между потокосцеплением и током, равна:
Тогда становится очевидным, что L – это параметр, зависящий от числа витков, геометрических размеров катушки и магнитной проницаемости среды.
Электрическая ёмкость
Этот элемент так же, как и индуктивность не потребляет активной мощности, его мгновенная мощность лишь колеблется: то запасается, то отдается.
Аналогично индуктивности емкость также имеет два определения:
1) электрическая ёмкость – это свойство физического объекта (в данном случае конденсатора) запасать в себе энергию электрического поля и отдавать её во внешнюю цепь при определенных соотношениях напряжения и тока. Если мгновенное напряжение (u) и мгновенный ток (i) конденсатора одного знака, энергия им запасается, если u и i разных знаков, энергия отдается;
2) электрическая ёмкость – это коэффициент пропорциональности между зарядом (q) и напряжением (u) на обкладках конденсатора, вызвавшем этот заряд.
Это определение вытекает из формулы: q = Cu.
Ток (i) через конденсатор возникает тогда, когда изменяется заряд на его обкладках во времени: , и аналогичен возникновению напряжения на индуктивности:.
Запишем основные величины и формулы для определения ёмкости конденсатора (рис. 2.6):
диэлектрическая проницаемость:
;
теорема Гаусса:
;
формула связи электрического смещения с напряженностью электрического поля:
.
Если напряженность магнитного поля неизменна во всем объеме конденсатора, то . Напряжение на обкладках с учетом поставленных условий равно:
,
тогда , а емкость конденсатора:
В рассматриваемых выводах: D – электрическое смещение; H- напряженность электрического поля; e- диэлектрическая проницаемость среды; S – площадь пластин конденсатора; d – расстояние между пластинами.
Таким образом, ёмкость линейного конденсатора не зависит от заряда, от напряжения, а определяется геометрическими размерами и средой между его обкладками.
Пусковой ток
При расчете необходимо учитывать и пусковые токи устройства. Например, сопротивление нити накаливания в лампочке в момент включения в 10 раз меньше, чем в рабочем режиме. Следовательно, пусковой ток этой лампочки в 10 раз больше. Через некоторое время она начнет потреблять ту мощность, которая записана в данных этой лампочки. Поэтому, при включении она перегорает за счет больших пусковых токов.
В радиоэлектронной аппаратуре пока не зарядится конденсатор в блоке питания, также образуется пусковой ток.
В электродвигателях тоже образуется пусковой ток, пока двигатель не наберет номинальные обороты.
В нагревательных приборах пусковой ток образуется, пока спираль не нагреется до дежурной температуры.
Смысл реактивной нагрузки
В электрической цепи с реактивной нагрузки фаза тока и фаза напряжения не совпадают во времени. В зависимости от характера подключенного оборудования напряжение либо опережает ток (в индуктивности), либо отстаёт от него (в ёмкости). Для описания вопросов используют векторные диаграммы. Здесь одинаковое направление вектора напряжения и тока указывает на совпадение фаз. А если вектора изображены под некоторым углом, то это и есть опережение или отставание фазы соответствующего вектора (напряжения или тока). Давайте рассмотрим каждый из них.
В индуктивности напряжение всегда опережает ток. «Расстояние» между фазами измеряется в градусах, что наглядно иллюстрируется на векторных диаграммах. Угол между векторами обозначается греческой буквой «Фи».
В идеализированной индуктивности угол сдвига фаз равен 90 градусов. Но в реальности это определяется полной нагрузкой в цепи, а в реальности не обходится без резистивной (активной) составляющей и паразитной (в этом случае) емкостной.
В ёмкости ситуация противоположна – ток опережает напряжение, потому что индуктивность заряжаясь потребляет большой ток, который уменьшается по мере заряда. Хотя чаще говорят, что напряжение отстаёт от тока.
Если сказать кратко и понятно, то эти сдвиги можно объяснить законами коммутации, согласно которым в ёмкости напряжение не может изменится мгновенно, а в индуктивности – ток.
Активно-емкостная нагрузка
⇐ ПредыдущаяСтр 3 из 5Следующая ⇒
Рисунок 11 – Схема с активно-емкостной нагрузкой
Рассмотрим влияние активно-емкостной нагрузки на примере работы однофазного мостового выпрямителя.
Рисунок 12 – Зависимость токов и напряжений
На рисунке представлены графические зависимости токов и напряжений, поясняющие переходные процессы в схеме в момент подключения выпрямителя к источнику U1.
На интервале tзар U1>UС и при этом происходит заряд емкости C сглаживающего фильтра через внутреннее сопротивление выпрямительного звена. При этом появляется большой импульсный ток, значения которого в 20…40 раз выше установившегося значения средневыпрямленного тока вентиля. Особенно это выражено в источниках питания с бестрансформаторным входом. Для ограничения этого тока вводят резисторы, терморезисторы или резисторы шунтированные управляемыми ключами, выполненные на симисторах, тиристорах или динисторах. Ключи позволяют с учетом времени установления переходного процесса производить ограничение тока только в момент пуска источника питания, следовательно, повышаются КПД и надежность выпрямителя.
На интервале tраз, когда напряжение на емкости уравнивается с напряжением источника, конденсатор разряжается на нагрузку. С увеличением тока нагрузки увеличивается уровень пульсации выпрямленного напряжения из- за уменьшения постоянной цепи разряда tраз =RНС. При этом ухудшаются сглаживающие действия фильтра.
При расчете выпрямителя с емкостной нагрузкой используют метод Терентьева – метод номограмм. Он основан на расчете вспомогательных коэффициентов зависящих от угла протекания тока через вентиль. Вводят коэффициент А=f(q), где q — угол протекания тока через вентиль. Для различных схем выпрямителей приводятся номограммы, которые получены экспериментальным путем для различных мощностей и схем выпрямителей. Расчет параметров Uобр, Iаср, Iад, U2, I2 выполняют через вспомогательные коэффициенты: В, С, D=f(A). Для получения связи среднего тока через вентиль с параметром А проведем интегрирование на интервале q. При выводе соотношения примем емкость конденсатора, близкую к бесконечности (СÞ¥ ), а пороговое напряжение диода равным нулю. Для получения среднего значения тока через вентиль переместим оси координат в середину импульса тока и воспользуемся уравнением для среднего значения тока: (1)
, (2).
Нижеприведенные диаграммы поясняют вывод соотношений для Ud.
Рисунок 13 – Диаграммы соотношений для Ud
На интервале 2q ток вентиля совпадает с током нагрузки. Приравняем (1) и (2) и поделим внутреннюю скобку в выражении (1) на cosq, получим: .
Схема удвоения напряжения
Классическая (симметричная) схема удвоения состоит из двух однотактных выпрямителей, каждый из которых использует свою полуволну напряжения.
Рисунок 14 – Схема удвоение напряжения
Рисунок 15 – График напряжения
Напряжение на нагрузке складывается из напряжений на конденсаторах С1 и С2. Если пульсации малы, то постоянная составляющая на каждом конденсаторе U01 ≈ U2m , а напряжение на нагрузке U0 ≈ 2U2m . Кроме того, при сложении компенсируется первая и все нечетные гармоники пульсаций. Поэтому схема ведет себя как двухтактная, хотя и состоит из двух однотактных схем. Недостатком симметричной схемы удвоения, с точки зрения безопасности, является отсутствие общей точки нагрузки и трансформатора.
Используется также и несимметричная схема удвоения, её отличием от предыдущей является то, что нагрузка имеет общую точку с трансформатором. Поэтому их можно соединить с корпусом, при этом основная частота пульсаций равна частоте сети.
Рисунок 16 – Несимметричная схема удвоения напряжения
Рисунок 17 – График напряжения несимметричной схемы
В этой несимметричной схеме конденсатор С1 выполняет функцию промежуточного накопителя, не участвует в сглаживании пульсаций, поэтому её массогабаритные показатели хуже, чем у симметричного удвоителя. Однако есть и достоинства. Схему можно изобразить так:
Рисунок 18 – Альтернативная несимметричная схема
Получилась регулярная структура, которую можно наращивать и получить умножитель напряжения.
Рисунок 19 – Множитель напряжения
Нагрузку можно подключить к любой группе конденсаторов и получить чётное или нечётное умножение. На схеме показано чётное умножение — напряжение на нагрузке U0 ≈ 6Um2 . Обычно такие умножители собирают в виде единого блока и заливают компаундом. Число конденсаторов в схеме равно коэффициенту умножения.
Расчетные соотношения для рассмотренных схем можно найти в справочнике. Недостатком схем умножения является их высокое внутреннее сопротивление и низкий коэффициент полезного действия вследствие большого числа перезарядов.
Более высоким КПД обладают бестрансформаторные высоковольтные выпрямители с одновременным зарядом n штук накопительных конденсаторов С1.
Рисунок 20 – Бестрансформаторный высоковольтный выпрямитель
Управляемые зарядный и разрядные ключи Кз и Кр работают синхронно и в противофазе. конденсаторы С1 параллельно заряжаются от сети и последовательно разряжаются на нагрузку через разрядные ключи Кр. При этом, напряжение на нагрузке в n раз больше амплитуды напряжения сети.
Лекция 4. Управляемые выпрямители.
Режимы работы выпрямителей
В зависимости от вида выпрямленного тока существует три режима. Обозначим угол проводимости вентилей– λ.
Режим работы, при котором токи вентилей следуют друг за другом без пауз, но выпрямленный ток спадает до нуля, называется граничным (рис. 5.1 а). В граничном режиме угол проводимости вентилей mπ = λ 2 гр. (5.1)
Режим работы, при котором токи вентилей следуют друг за другом с паузой, называется прерывистым (рис. 5.1 б). В прерывистом режиме угол проводимости вентилей mπ < λ 2 пр. (5.2)
Режим работы, при котором выпрямленный ток не спадает до нуля, а анодные токи соседних вентилей перекрываются или следуют без пауз, называется непрерывным(рис. 5.1 в). В непрерывном режиме угол проводимости вентилей mπ ≥ λ 2 н. (5.3)
Режим работы существенно влияет на все характеристики выпрямителя.
⇐ Предыдущая3Следующая ⇒
Рекомендуемые страницы:
Воспользуйтесь поиском по сайту:
Треугольник мощностей и косинус Фи
Если взять всю цепь, проанализировать её состав, фазы токов и напряжений, затем построить векторную диаграмму. После этого изобразить активную по горизонтальной оси, а реактивную – по вертикальной и соединить результирующим вектором концы этих векторов – получится треугольник мощностей.
Он выражает отношение активной и реактивной мощности, а вектор, соединяющий концы двух предыдущих векторов – будет выражать полную мощность. Всё это звучит слишком сухо и запутано, поэтому посмотрите на рисунок ниже:
Буквой P – обозначена активная мощность, Q – реактивная, S – полная.
Формула полной мощности имеет вид:
Самые внимательные читатели наверняка заметили подобие формулы теореме Пифагора.
- P – Вт, кВт (Ватты);
- Q – ВАр, кВАр (Вольт-амперы реактивные);
- S – ВА (Вольт-амперы);
Расчёты
Для вычисления полной мощности используют формулу в комплексной форме. Например, для генератора расчет имеет вид:
А для потребителя:
Но применим знания на практике и разберемся как рассчитать потребляемую мощность. Как известно мы, обычные потребители, оплачиваем только за потребление активной составляющей электроэнергии:
P=S*cosФ
Здесь мы видим, новую величину cosФ. Это коэффициент мощности, где Ф – это угол между активной и полной составляющей из треугольника. Тогда:
cosФ=P/S
В свою очередь реактивная мощность рассчитывается по формуле:
Q = U*I*sinФ
Для закрепления информации, ознакомьтесь с видео лекцией:
Всё вышесказанное справедливо и для трёхфазной цепи, отличаться будут только формулы.