Частота тока: от чего она зависит, какой период тока


Электрический ток

  • Электрическим током
    называется направленное (упорядоченное) движение заряженных частиц.

Электрический ток в проводниках представляет собой:

в металлах

— направленное движение электронов (проводники первого рода);

в электролитах

— направленное движение положительных и отрицательных ионов (проводники второго рода);

в плазме

— направленное движение электронов и ионов обоих знаков (проводники третьего рода).

За направление электрического тока

условились считать направление движения
положительно заряженных
частиц.

Движение заряженных частиц внутри проводника нельзя наблюдать, но судить о наличии электрического тока можно по его действиям:

  1. тепловому
    — проводник с током нагревается;
  2. магнитному
    — вокруг проводника с током возникает магнитное поле;
  3. световому
    — проводник с током может светиться;
  4. химическому
    — в проводнике с током изменяется химический состав (такие проводники называются проводниками второго класса).

Для продолжительного существования электрического тока в замкнутой цепи необходимо выполнение следующих условий:

  1. наличие свободных заряженных частиц (носителей тока);
  2. наличие электрического поля, силы которого, действуя на заряженные частицы, заставляют их двигаться упорядоченно;
  3. наличие источника тока, внутри которого сторонние силы перемещают свободные заряды против электростатических (кулоновских) сил.

Количественными характеристиками электрического тока являются сила тока I

и плотность тока
j
.

  • Сила тока
    — скалярная физическая величина, равная отношением заряда Δ
    q
    , проходящего через поперечное сечение проводника за некоторый промежуток времени Δ
    t
    , к этому промежутку:

\(~I= \dfrac{\Delta q}{\Delta t}.\)
Единицей силы тока в СИ является ампер (А).

Если сила тока и его направление со временем не изменяются, то ток называется постоянным

.

  • Плотность тока j
    — это векторная физическая величина, модуль которой равен отношению силы тока
    I
    в проводнике к площади
    S
    поперечного сечения проводника:

$$~j = \frac {I}{S}.$$
В СИ единицей плотности тока является ампер на квадратный метр (А/м2).

*Зависимость силы тока от скорости зарядов

Рассмотрим, как зависит сила тока от скорости упорядоченного движения свободных зарядов.

Выделим участок проводника площадью сечения S

и длиной Δ
l
(рис. 1). Заряд каждой частицы
q
0. В объеме проводника, ограниченном сечениями
1
и
2
, содержится
n∙S
∙Δ
l
частиц, где
n
— концентрация частиц. Их общий заряд \(~\Delta q = q_0 \cdot n \cdot S \cdot \Delta l\).

Рис. 1

Если средняя скорость упорядоченного движения свободных зарядов \(~\left\langle \upsilon \right\rangle\), то за промежуток времени \(~\Delta t = \dfrac{\Delta l}{\left\langle \upsilon \right\rangle}\) все частицы, заключенные в рассматриваемом объеме, пройдут через сечение 2

. Поэтому сила тока:
\(~I = \dfrac{\Delta q}{\Delta t} = \dfrac{q_0 \cdot n \cdot \left\langle \upsilon \right\rangle \cdot S \cdot \Delta l}{\Delta l} = q_0 \cdot n \cdot \left\langle \upsilon \right\rangle \cdot S . \qquad (1)\)
Таким образом, сила тока в проводнике зависит от заряда, переносимого одной частицей, их концентрации, средней скорости направленного движения частиц и площади поперечного сечения проводника.

Заметим, что в металлах модуль вектора средней скорости упорядоченного движения электронов \(~\left\langle \upsilon \right\rangle\) при максимально допустимых значениях силы тока ~ 10-4 м/с, в то время как средняя скорость их теплового движения ~ 106 м/с.

Как следует из формулы (1), плотность тока \(~\vec j = q_0 \cdot n \cdot \left\langle \vec \upsilon \right\rangle\).

  • Направление вектора плотности тока \(~\vec j\) совпадает с направлением вектора скорости упорядоченного движения \(~\left\langle \vec \upsilon \right\rangle\) положительно заряженных частиц. Плотность постоянного тока постоянна по всему поперечному сечению проводника.

Премиум

Вся часть 2 на ЕГЭ по математике, от задачи 13 до задачи 19. То, о чем не рассказывают даже ваши репетиторы. Все приемы решения задач части 2. Оформление задач на экзамене. Десятки реальных задач ЕГЭ, от простых до самых сложных.

Видеокурс «Премиум» состоит из 7 курсов для освоения части 2 ЕГЭ по математике (задачи 13-19). Длительность каждого курса — от 3,5 до 4,5 часов.

  1. Уравнения (задача 13)
  2. Стереометрия (задача 14)
  3. Неравенства (задача 15)
  4. Геометрия (задача 16)
  5. Финансовая математика (задача 17)
  6. Параметры (задача 18)
  7. Нестандартная задача на числа и их свойства (задача 19).

Здесь то, чего нет в учебниках. Чего вам не расскажут в школе. Приемы, методы и секреты решения задач части 2.

Каждая тема разобрана с нуля. Десятки специально подобранных задач, каждая из которых помогает понять «подводные камни» и хитрости решения. Автор видеокурса Премиум — репетитор-профессионал Анна Малкова.

Источник тока

Для поддержания в цепи электрического тока необходимо, чтобы на концах ее (рис. 2) существовала постоянная разность потенциалов φ1 – φ2. Пусть в начальный момент времени φ1 > φ2, тогда перенос положительного заряда q

от клеммы источника «+» к клемме «–» приведет к уменьшению разности потенциалов между ними . Для сохранения постоянной разности потенциалов необходимо перенести точно такой же заряд от клеммы «–» к клемме «+». Если в направлении от «+» к «–» положительные заряды движутся под действием сил кулоновских сил
Fk
, то в направлении от «–» к «+» перемещение зарядов происходит против направления действия кулоновских сил, т.е. под действием другой силы
F
ст, которая называется сторонней силой.
Рис. 2

  • Сторонние силы
    — это любые силы, действующие на электрически заряженные частицы, за исключением электростатических (кулоновских) сил.

Сторонние силы возникают в источнике тока.

  • Источник тока
    — это устройство, способное поддерживать разность потенциалов между концами электрической цепи и обеспечивать упорядоченное движение электрических зарядов во внешней цепи.

Источники электрического тока могут быть различны по своей конструкции, но в любом из них совершается работа по разделению положительно и отрицательно заряженных частиц. Разделение зарядов происходит под действием сторонних сил. Перечислим наиболее распространенные источники тока:

  1. гальванические элементы
    (батарейки) (рис. 3, а) и
    аккумуляторы
    — сторонние силы используют энергию химических реакций;
  2. генераторы
    (динамо-машины) — сторонние силы используют механическую энергию падающей воды, ветра, пара и т.п.;
  3. фотоэлементы
    (солнечные батареи) (рис. 3, б) — сторонние силы используют энергию электромагнитных излучений (света).
  • а
  • б

Рис. 3
Источник электрического тока имеет два полюса (две клеммы), к которым присоединяются концы проводов.

Проводник, соединяющий клеммы источника снаружи, называют внешним участком цепи

. Сопротивление этого источника обозначают
R
и называют
внешним сопротивлением
.

Внутри самого источника заряды движутся по внутреннему участку цепи

. Сопротивление источника обозначают
r
и называют
внутренним сопротивлением
.

Сумма внешнего и внутреннего соспротивлений (R + r

) называют
полным сопротивлением цепи
.

На электрических схемах источник тока обозначается так, как показано на рис. 4. Положительный полюс (клемма) источника условно изображается более длинной чертой, чем отрицательный.

Рис. 4

Любой источник тока характеризуют электродвижущей силой — ЭДС.

  • ЭДС (Электродвижущей силой) ε источника тока называют физическую скалярную величину, численно равную работе сторонних сил Ast
    по перемещению единичного положительного заряда внутри источника тока:

\(~\varepsilon = \dfrac{A_{st}}{q} .\)
Единицей электродвижущей силы в СИ является вольт (В).

ЭДС является энергетической характеристикой источника тока.

  • Термин «электродвигающая сила
    » был введен Ампером в 1822 г. Аббревиатуру ЭДС принято читать без расшифровки.

См. также

Все о химических источниках тока

Энергетические превращения в колебательном контуре

Продолжаем рассматривать незатухающие колебания в контуре, считая сопротивление катушки нулевым. Конденсатор имеет ёмкость , индуктивность катушки равна .

Поскольку тепловых потерь нет, энергия из контура не уходит: она постоянно перераспределяется между конденсатором и катушкой.

Возьмём момент времени, когда заряд конденсатора максимален и равен , а ток отсутствует. Энергия магнитного поля катушки в этот момент равна нулю. Вся энергия контура сосредоточена в конденсаторе:

Теперь, наоборот, рассмотрим момент, когда ток максимален и равен , а конденсатор разряжен. Энергия конденсатора равна нулю. Вся энергия контура запасена в катушке:

В произвольный момент времени, когда заряд конденсатора равен и через катушку течёт ток , энергия контура равна:

Соотношение (1) применяется при решении многих задач.

Закон Ома для замкнутой цепи

Рассмотрим простейшую полную электрическую цепь, содержащую источник ЭДС ε с внутренним сопротивлением r

подключенный к ним резистор сопротивлением
R
(рис. 5).
Рис. 5
Тогда

\(~I = \dfrac{\varepsilon}{R + r} . \qquad (2)\)

  • Данная формула представляет собой закон Ома для полной цепи
    : Сила тока в полной цепи прямо пропорциональна ЭДС источника и обратно пропорциональна полному сопротивлению цепи.

Заметим, что максимально возможный ток в цепи с данным источником тока возникает в том случае, если сопротивление внешней цепи стремится к нулю.

Подключение к полюсам источника тока проводника с ничтожно малым сопротивлением называется коротким замыканием

, а максимальную для данного источника силу тока называют
током короткого замыкания
:
\(~I_{kz} = \dfrac{\varepsilon}{r} .\)
У источников с малым значением r

(например, у свинцовых аккумуляторов
r
= 0,1 — 0,01 Ом) сила тока короткого замыкания очень велика. Особенно опасно короткое замыкание в осветительных сетях, питаемых от подстанций (
ε
> 100 В),
I
kz может достигнуть тысячи ампер. Чтобы избежать пожаров, в такие цепи включают предохранители.

*Вывод закона Ома

Рассмотрим простейшую полную электрическую цепь, содержащую источник ЭДС ε с внутренним сопротивлением r

подключенный к ним резистор сопротивлением
R
(см. рис. 5).

Из определений силы тока и ЭДС источника тока следует, что совершаемая источником работа

\(A_{st} =\varepsilon \cdot \Delta q=\varepsilon \cdot I\cdot \Delta t.\)

При прохождении тока проводники нагреваются, при этом выделяется энергия как во внешней цепи Q1, так и во внутренней цепи Q2. Тогда количество теплоты Q, выделившаяся во всей полной цепи, равна сумме этих энергий. По закону Джоуля-Ленца

\(Q=Q_{1} +Q_{2} =I^{2} \cdot R\cdot \Delta t+I^{2} \cdot r\cdot \Delta t=I^{2} \cdot \left(R+r\right)\cdot \Delta t.\)

Из закона сохранения энергии получаем, что в такой цепи работа сторонних сил за промежуток времени Δt равна выделившемуся в цепи количеству теплоты:

\(\begin{array}{c} {A_{st} =Q,\; \; \; \varepsilon \cdot I\cdot \Delta t=I^{2} \cdot \left(R+r\right)\cdot \Delta t,} \\ {\varepsilon =I\cdot \left(R+r\right),\; \; \; I=\dfrac{\varepsilon }{R+r} .} \end{array}\)

Получи пятерку

Видеокурс «Получи пятерку» включает все темы, необходимые для успешной сдачи ЕГЭ по математике на 60-65 баллов. Полностью все задачи 1-13 Профильного ЕГЭ по математике. Подходит также для сдачи Базового ЕГЭ по математике. Если вы хотите сдать ЕГЭ на 90-100 баллов, вам надо решать часть 1 за 30 минут и без ошибок!

Курс подготовки к ЕГЭ для 10-11 класса, а также для преподавателей. Все необходимое, чтобы решить часть 1 ЕГЭ по математике (первые 12 задач) и задачу 13 (тригонометрия). А это более 70 баллов на ЕГЭ, и без них не обойтись ни стобалльнику, ни гуманитарию.

Вся необходимая теория. Быстрые способы решения, ловушки и секреты ЕГЭ. Разобраны все актуальные задания части 1 из Банка заданий ФИПИ. Курс полностью соответствует требованиям ЕГЭ-2018.

Курс содержит 5 больших тем, по 2,5 часа каждая. Каждая тема дается с нуля, просто и понятно.

Сотни заданий ЕГЭ. Текстовые задачи и теория вероятностей. Простые и легко запоминаемые алгоритмы решения задач. Геометрия. Теория, справочный материал, разбор всех типов заданий ЕГЭ. Стереометрия. Хитрые приемы решения, полезные шпаргалки, развитие пространственного воображения. Тригонометрия с нуля — до задачи 13. Понимание вместо зубрежки. Наглядное объяснение сложных понятий. Алгебра. Корни, степени и логарифмы, функция и производная. База для решения сложных задач 2 части ЕГЭ.

Сразу после оплаты вы получите ссылки на скачивание видеокурсов и уникальные ключи к ним.

Задачи комплекта «Математические тренинги — 2019» непростые. В каждой – интересные хитрости, «подводные камни», полезные секреты.

Варианты составлены так, чтобы охватить все возможные сложные задачи, как первой, так и второй части ЕГЭ по математике.

КПД источника тока

Для замкнутой цепи, мощность Pp

, выделяемая на внешнем участке цепи, называется
полезной мощностью
. Она равна
\(~P_p = I^2 \cdot R\) .
С учетом закона Ома для участка цепи \(~I = \dfrac{U}{R}\) полезную мощность можно найти, если известны любые две величины из трех: I

,
U
,
R
.
\(~P_p = U \cdot I\) , \(~P_p = I^2 \cdot R\) , \(~P_p = \dfrac{U^2}{R}\) .
Для замкнутой цепи, мощность Pt

, выделяемая на внутреннем сопротивлении источника, называется
теряемой мощностью
. Она равна
\(~P_t = I^2 \cdot r\) .
Полная мощность
P
источника тока равна
\(~P = P_p + P_t = I^2 \cdot R + I^2 \cdot r = I^2 \cdot \left( R + r \right). \)
КПД источника тока

\(~\eta = \dfrac{P_p}{P}= \dfrac{I^2 \cdot R}{I^2 \cdot \left( R + r \right)} = \dfrac{R}{R + r}\).

Как пользоваться?

  1. Не надо сразу просматривать задачи (и решения) всех вариантов. Такое читерство вам только помешает. Берите по одному! Задачи решайте по однойи старайтесь довести до ответа.
  2. Если почти ничего не получилось – начинать надо не с решения вариантов, а с изучения математики. Вам помогут книга для подготовки к ЕГЭи Годовой Онлайн-курс.
  3. Если вы правильно решили из первого варианта Маттренингов 5-7 задач – значит, знаний не хватает. Смотри пункт 1: Книгаи Годовой Онлайн-курс!
  4. Обязательно разберите правильные решения. Посмотрите видеоразбор – в нем тоже много полезного.
  5. Можно решать самостоятельно или вместе с друзьями. Или всем классом. А потом смотреть видеоразбор варианта.

Стоимость комплекта «Математические тренинги – 2019» — всего 1100 рублей. За 5 вариантов с решениями и видеоразбором каждого.

Это пробная версия онлайн курса по профильной математике.

Вы получите доступ к 3 темам, которые помогут понять принцип обучения, работу платформы и оценить ведущую курса Анну Малкову.

— 3 темы курса (из 50). — Текстовый учебник с видеопримерами. — Мастер-класс Анны Малковой. — Тренажер для отработки задач.

Регистрируйтесь, это бесплатно!

Нажимая на кнопку, вы даете согласие на обработку своих персональных данных

Литература

  1. Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н.Ракина, К. С. Фарино; Под ред. К. С. Фарино. — Мн.: Адукацыя i выхаванне, 2004. — C. 252-253, 259-260, 262-264, 267-269.
  2. Жилко, В. В. Физика: учеб. пособие для 11-го кл. общеобразоват. учреждений с рус. яз. обучения с 12-летним сроком обучения (базовый и повышенный уровни) /В. В. Жилко, Л. Г. Маркович. — 2-е изд., исправленное. — Минск: Нар. асвета, 2008. — С. 118-123, 132-141.
Рейтинг
( 1 оценка, среднее 4 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]