Настройка
Современные осциллографы не требуют какой-либо настройки перед использованием, но тем не менее в большинстве осциллографов встроен прибор калибровки (Калибратор). Назначение этого прибора — формировать контрольный сигнал с заведомо известными и стабильными параметрами
Обычно такой сигнал имеет форму прямоугольных импульсов с амплитудой 1 Вольт, частотой 1кГц и скважностью 50% (параметры обычно указаны рядом с выходом сигнала калибратора). В любой момент пользователь осциллографа может подключить измерительный щуп прибора к выходу калибратора, и убедиться, что на экране осциллографа виден сигнал с указанными параметрами. В случае, если сигнал отличается от указанного на калибраторе, что скорее характерно для аналоговых осциллографов, то с помощью подстроечной отвертки пользователь может скорректировать входные характеристики щупа или усилители осциллографа таким образом, чтобы сигнал соответствовал данным калибратора
Стоит отметить, что современные цифровые осциллографы не имеют подстроечных элементов по причине использования цифровой обработки сигнала, но имеют автоматическую настройку по калибратору, когда через меню осциллографа вызывается специальная утилита, которая вносит поправочные коэффициенты в математический блок осциллографа и тем самым настраивает осциллограф на корректное отображение сигналов.
В случае, если сигнал отличается от указанного на калибраторе, что скорее характерно для аналоговых осциллографов, то с помощью подстроечной отвертки пользователь может скорректировать входные характеристики щупа или усилители осциллографа таким образом, чтобы сигнал соответствовал данным калибратора. Стоит отметить, что современные цифровые осциллографы не имеют подстроечных элементов по причине использования цифровой обработки сигнала, но имеют автоматическую настройку по калибратору, когда через меню осциллографа вызывается специальная утилита, которая вносит поправочные коэффициенты в математический блок осциллографа и тем самым настраивает осциллограф на корректное отображение сигналов.
Как пользоваться осциллографом и для чего он вообще нужен. Часть II
Это вторая часть ликбеза по осциллографам, а первая часть здесь.
Эта заметка будет постепенно пополняться простыми, но полезными приёмами работы с осциллографом.
Вступление
Главный вопрос, на который следует ответить: «что можно измерить с помощью осциллографа?» Как ты уже знаешь, этот прибор нужен для изучения сигналов в электрических цепях. Их формы, амплитуды, частоты. По полученным данным можно сделать вывод и о других параметрах изучаемой цепи. Значит с помощью осциллографа в основном можно (я не говорю про супер функции супер-современных приборов):
- Определить форму сигнала
- Определить частоту и период сигнала
- Измерить амплитуду сигнала
- Не напрямую, но измерить ток тоже можно (закон Ома в руки)
- Определить угол сдвига фазы сигнала
- Сравнивать сигналы между собой (если прибор позволяет)
- Определять АЧХ
- Забыл что-то упомянуть? Напомните в комментариях!
Все дальнейшие примеры следует делались с рассчетом на аналоговый осциллограф. Для цифрового всё тоже самое, но больше умеет, чем аналоговый и в определённых вопросах снимает необходимость думать там, где можно просто показать цифру. Хороший инструмент таким и должен быть.
Итак, перед работой следует подготовить прибор: поставить на стол, подключить к сети =) Да ладно, шучу. Но если есть возможность, то следует его заземлить. Если есть встроенный калибратор, то по инструкции к прибору надо его откалибровать. (подсказка: инструкции есть в сети).
Подключать свой осциллограф к исследуемой цепи ты будешь с помощью щупа. Это такой коаксильный провод, на одном конце которого разъем для подключения к осциллографу, а на втором щуп и заземление для подключения к исследуемой цепи. Какой попало провод в качестве щупа использовать нельзя. Только специальные щупы. Иначе вместо реальной картины дел увидишь чушь.
Я не буду рассматривать каждый регулятор осциллографа подробно. В сети есть море таких обзоров. Давай лучше учиться как проводить любительские измерения: будем определять амплитуду, частоту и период сигнала, форму, полосу пропускания усилителя, частоту среза фильтра, уровень пульсаций источника питания и т.д. Остальные хитрости и приёмы придут с практикой. Тебе понадобится осциллограф и генератор сигнала.
Виды сигналов
Буду говорить без барских штучек, по-мужицки. На экране осциллографа ты будешь видеть либо синусоидальный сигнал, либо пилу, либо прямоугольнички, либо треугольный сигнал, либо просто какой-нибудь безымянный график.
Все виды сигналов не перечесть. Да и сами сигналы не знают, что относятся к какому-то там виду. Так что твоя задача не названия запоминать, а смотреть на экран и быстро соображать, что означает увиденное на нём, какой процесс идёт в цепи.
Амплитуда, частота, период
Осциллограф умеет измерять как постоянное, так и переменное напряжение. У всех приборов для этого есть два режима: измерение только переменного сигнала, измерение постоянного и переменного одновременно.
Это значит, что если ты выберешь измерение переменного сигнала и подключишь щуп к батарейке, то на экране прибора ничего не изменится. А если выберешь второй режим и проделаешь тоже самое, то линия на экране прибора сместится приблизительно на 1.6В вверх (величина ЭДС пальчиковой батарейки). Зачем это нужно? Для разделения постоянной и переменной составляющей сигнала!
Пример. Решил ты измерить пульсации в только что собранном источнике постоянного напряжения на 30В. Подключаешь к осциллографу, а луч убежал далеко вверх. Для того, чтобы удобно наблюдать сигнал придется выбрать максимальное значение В/дел на клетку. Но тогда ты пульсаций точно не увидишь. Они слишком малы. Что делать? Переключаешь режим входа на измерение переменного напряжения и крутишь ручку В/Дел на масштаб в разы поменьше. Постоянная составляющая сигнала не пройдет и на экране будут показываться только только пульсации источника питания.
Амплитуду переменного напряжения легко определить зная цену деления В/дел и просто посчитать число клеток по оси ординат, которые занимает этот сигнал от нулевого значения (среднего), до максимального.
Если посмотреть на экран осциллографа на картинке выше и предположить, что В/дел = 1В, тогда амплитуда синусоиды будет 1.3В.
А если предположить, что Время/дел (развертка) установлено в 1 миллисекунду, тогда период этой синусоиды будет занимать 4 клетки, а зачит период T = 4 мс. Легко? Давай теперь вычислим частоту этой синусоиды. Частота и период связаны формулой: F = 1/T (Т в секундах). Следовательно F = 1/ (4*10 -3 ) и равняется 250 Гц.
Конечно, это очень грубая прикидка, которая годится только для вот таких чистеньких и красивых сигналов. А если подать вместо чистой синусоиды какую-нибудь музыкальную композицию, то в ней будет множество разных частот и на глазок уже не прикинешь. Чтобы определить какие частоты входят в эту композицию потребуется анализатор спектра. А это уже другой прибор.
Измерение частоты
Как я уже писал выше, с помощью осциллографа можно измерять и частоту. А ещё можно не просто измерить частоту какого-нибудь синусоидального сигнала, а даже сравнить частоты двух сигналов, к примеру, с помощью фигур Лиссажу.
Измеряем напряжение
Для уменьшения погрешности, так как наблюдение визуальное, рекомендовано, чтобы график занимал 80–90 % монитора. Когда делают замеры напряжения и по частоте (есть временный интервал), надо регуляторы усиления и скорости развертки разместить в крайние правые позиции.
Порядок действий
Напряжение измеряется масштабированием по вертикали. Алгоритм:
- Перед началом замыкают сигнал щупа на свой же земляной проводок (иглу на «крокодил») или выставляют тумблер режима входа в позицию «земля».
- Высветится «пульс трупа», если нет, то надо подвигать смещение, стабилизацию и уровень — возможно изображение спряталось, не запустилось.
- Регулируем селекторами смещение полосы на ноль и регулятором «вверх-вниз» выставляем развертку на горизонталь сетки, так можно будет корректно рассчитать высоту осциллограммы. Если осциллограф старый или аналоговый, то надо ему дать прогреться минут 5.
- Выставляем предел измерений по напряжению, рекомендовано брать с запасом, потом можно уменьшить.
- На вход дают сигнал (или его переключатель переводится в одно из рабочих позиций). На мониторе появится график.
- Проиллюстрируем процесс: батарейка имеет 1.5 V, если прикоснуться земляным отростком щупа к ее минусу, а сигнальным — к плюсу, то появится скачок графика на 1.5 Вольта.
Для нахождения высоты графика осциллограмму подвигают селектором, чтобы отметка, по которой исчисляется амплитуда, была на центральной вертикали с долями. Получим чувствительность отклонения — 1 в/дел, размер осциллогр. — 2.6 дел., а отсюда ампл. = 2.6 В.
Ниже иллюстрация на аналоговом аппарате: 3.4 дел. — макс. напряжения. На соседнем рисунке — масштабирование по вертикали. Регулятор «плавно» (часть с зеленой риской) – в правой предельной позиции, черточка тумблера чувствительности — 0.5 в/дел. Множитель по масшт. — ×10. Расчет напряжения:
Принцип функционирования
Общий принцип работы прибора прост. Он регистрирует любое изменение напряжения испытуемого сигнала и выводит его на дисплей. Со времён самописца, придуманного Андре Блондалем, где индуктивная катушка управляла колебаниями маятника, идея претерпела изменения. После изобретения электронно-лучевой трубки (ЭЛТ) прибор стал полноценным измерителем. Органы управления находятся на передней панели.
Осциллограф своими руками
Поданный на вход сигнал может иметь разную амплитуду. Расположенный на передней панели регулятор «В/дел», позволяет растягивать или уменьшать получаемую картинку по оси Y. Ручка «длительность» изменяет скорость движения луча по дисплею. Это частота развёртки.
К сведению. Луч постоянно перемещается слева на право, вертикальное отклонение ему задаёт импульс, приходящий на вход. В результате на дисплее получается синусоида или иные колебания.
С помощью частоты развёртки добиваются остановки картинки. Когда она близка или совпадает с частотой сигнала, то картинка замирает и становится статичной. Вот главный принцип работы прибора.
Ошибки при выборе и работе с осциллографом
Понимание, как пользоваться осциллографом, приходит только с практическим опытом работы, теоретических знаний недостаточно – нужно руками произвести все настройки, коммутацию и измерения. Цифровой прибор сильно облегчает процесс, но стоимость аппаратуры очень высока.
Важно! Не стоит приобретать старый советский прибор, т.к. погрешности измерений не дадут достоверных данных, откалибровать его уже не получится. Обязательно необходимо соблюдать технику безопасности: напряжение на ЭЛТ, как на кинескопе телевизора, – убить не убьет, но покалечить может
Обязательно необходимо соблюдать технику безопасности: напряжение на ЭЛТ, как на кинескопе телевизора, – убить не убьет, но покалечить может
Паспорт и руководство описывают, как работать с осциллографом, но здравый смысл никто не отменял: экспериментировать нужно осторожно
Устройство и основные технические параметры
Каждый прибор имеет ряд следующих технических характеристик:
- Коэффициент возможной погрешности при измерении напряжения (у большинства приборов это значение не превышает 3%).
- Значение линии развёртки устройства — чем больше эта характеристика, тем дольше временной промежуток наблюдения.
- Характеристика синхронизации, содержащая в себе: диапазон частот, максимальные уровни и нестабильность системы.
- Параметры вертикального отклонения сигнала с входной ёмкостью оборудования.
- Значения переходной характеристики, показывающие время нарастания и выброс.
Помимо перечисленных выше основных значений, у осциллографов присутствуют дополнительные параметры, в виде амплитудно-частотная характеристики, демонстрирующей зависимость амплитуды от частоты сигнала.
Цифровые осциллографы также обладают величиной внутренней памяти. Этот параметр отвечает за количество информации, которую аппарат может записать.
Методика измерений
Осциллограф измеряет электрическое напряжение и формирует амплитудный график электрических колебаний. Цифровые приборы могут запоминать полученный график, возвращаться к нему.
Колебания отображаются на экране в двухмерной системе координат (напряжение – вертикальная ось, время – горизонтальная ось), формируя график — осциллограмму. Есть ещё третий компонент исследований – интенсивность сигнала (или яркость).
При отсутствии входных импульсов на экране горизонтальная линия – «нулевая», обозначающая отсутствие напряжения. Как только на вход (или входы) прибора подаётся напряжение, на экране становятся видны один или несколько графиков одновременно (зависит от количества измеряемых сигналов).
График электрических колебаний по форме может представлять собой:
- синусоиду;
- затухающую синусоиду;
- прямоугольник;
- меандр;
- треугольники;
- пилообразные колебания;
- импульс;
- перепад;
- комплексный сигнал.
Для получения стабильного графика колебаний в приборе стоит блок синхронизации. Получить цикличное отображение колебаний можно только после установки значения синхронизации. Оно принимается за «стартовое», служит отправной точкой графика. Все скачки отображаются по отношению к этой точке.
Что такое осциллограф
Осциллограф — это прибор для визуального отображения и измерений параметров сигналов различной формы (процесс называется «осциллографирование»). Сигналы подаются на вход и отображаются на экране. Экран разбит на квадраты, по центру проходят две оси координат. По горизонтали измеряется время. По вертикали — амплитуда и/или напряжение. Цена деления задается при помощи ручек калибровки. Режим отображения подстраивается под каждый сигнал. Выбирается такой режим, который наиболее удобен в данном случае (в пределах возможностей прибора).
Осциллограф — это не обязательно большая, громоздкая вещь. Есть портативные цифровые модели, есть приставки. Есть даже программы, которые можно с адаптером установить на стационарный компьютер или ноутбук.
Так выглядит цифровой осциллограф Tektronix DPO 3054. На дисплее отображает сигнал, регуляторами выбираются параметры
По количеству одновременно отслеживаемых сигналов осциллографы есть однолучевые (одноканальные/моноканальные) и многолучевые (многоканальные). Однолучевые могут одновременно принимать только один сигнал, многолучевые — два, три, четыре и больше — до 16. Зависит от прибора.
Какой тип лучше? Многолучевой. Вы одновременно можете отслеживать сигнал в нескольких точках схемы. Изменяя параметры будете видеть реакцию устройства не только на выходе, но и в разных точках схемы.
Как определяется сдвиг фаз
А теперь о том, как пользоваться осциллографом С1-112А для измерения сдвига фаз. Но для начала – определение. Сдвиг фаз – это характеристика, показывающая, как располагаются относительно друг друга два процесса (колебательных) в течение некоторого времени. Причем измерение происходит не в секундах, а в частях периода. Другими словами, единица измерения – это единицы угла. Если сигналы будут одинаково располагаться взаимно, то у них сдвиг фаз будет также одинаков. Причем это не зависит от частоты и периода – реальный масштаб графиков на горизонтальной (временной) оси может быть любым.
Максимальная точность измерения будет в том случае, если растянуть график на всю длину экрана. В аналоговых осциллографах график сигнала для каждого канала будет иметь одну яркость и цвет. Чтобы отличить эти графики друг от друга, необходимо сделать для каждого свою амплитуду
И напряжение, которое подается на первый канал, важно делать максимально большим. При этом получится намного лучше удерживать синхронизацией изображение на экране
Вот как пользоваться осциллографом С1-112А. Другие приборы отличаются в эксплуатации незначительно.
Сайт Виктора Королева
Измерения осциллографом, как пользоваться осциллографом
Осциллограф — это эффективный современный прибор, предназначенный для измерения частотных параметров электрического тока во времени и позволяющий отображать их в графическом виде на мониторе, либо фиксировать их с помощью самопишущих устройств. Он позволяет измерять такие характеристики электрического тока внутри цепи, как его сила, напряжение, частота и угол фазового сдвига.
Зачем нужен осциллограф?
Нет лаборатории, которая смогла бы функционировать долго без измерительных приборов или источников сигналов, токов и напряжения. Если же в планах заняться проектированием или созданием высокочастотных устройств (особенно серьёзной вычислительной техники, скажем, инверторных блоков питания), тогда осциллограф — это отнюдь не роскошь, а необходимость.
Особенно же хорош он тем, что помогает визуально определить форму у сигнала. Чаще всего именно такая форма хорошо показывает, что именно происходит в измеряемой цепи.
Центром всяких осциллографов выступает электронно-лучевая трубка. Можно сказать, что она вроде радиолампы, внутри, соответственно, вакуум.
Катод осуществляет выброс электронов. Установленная фокусирующая система создаёт тоненький луч из излучаемых заряженных частиц. Специальный слой люминофора покрывает весь экран внутри. Под воздействием заряженного пучка электронов возникает свечение. Наблюдая снаружи, можно заметить по центру светящуюся точку. Лучевая трубка укомплектована двумя парами пластин, которые управляют созданным таким образом лучом. Работа электронного луча осуществляется в направлениях, находящихся перпендикулярно. В итоге получаются две управляющие системы, которые создают на экране синусоиду, в которой вертикаль обозначает величину напряжения, а горизонталь — период времени. Таким образом, можно наблюдать параметры поданного на прибор напряжения в определённых временных промежутках. В зависимости от типа подаваемого на осциллограф сигнала с его помощью возможно измерение не только параметров напряжения, но и других величин того или иного тестируемого агрегата.
Какими они бывают
В настоящее время распространены осциллографы двух типов — аналоговый и цифровой (последний отличается большим удобством, расширенными функциями и зачастую более точен). Оба они работают по одинаковому принципу, и указанные ниже способы измерения физических величин могут применяться на любых моделях этого прибора.
Правильное подключение
При проведении измерений важно правильное подключение прибора к измеряемому участку цепи. Осциллограф имеет два выхода с подключаемыми к ним клеммами или щупами. Одна клемма — фазовая, она соединена с усилителем вертикального отклонения луча. Другая — земля, соединенная с корпусом прибора. На большинстве современных приборов фазовый провод заканчивается щупом либо миниатюрным зажимом, а земля — небольшим зажимом типа «крокодил» (см. фото)
На осциллографах советского производства и некоторых российских моделях оба щупа одинаковы, различить их можно либо по значку «земля» на соответствующем проводе, либо по длине — фазовый провод короче. Подключаются они к входам осциллографа, как правило, стандартным штекером (см. рисунок)
Если маркировка отсутствует, а по внешним признакам выяснить, где какой щуп, не удалось, то проводят простой тест. Одной рукой дотрагиваются до одного щупа, при этом другую руку держат в воздухе, не прикасаясь ни к чему. Если этот щуп идет на фазовый вход, то на мониторе появятся заметные помехи (см. рисунок). Они представляют собой значительно искаженную синусоиду с частотой 50 Герц. Если щуп идет к «земле», то монитор останется без изменений.
При подключении осциллографа на измеряемый участок цепи, не имеющий общего провода, щуп «земля» может быть подключен к каждой из измеряемых точек. Если общий провод имеется (это точка, соединенная с корпусом прибора либо заземленная и условно имеющая «нулевой» потенциал), то «землю» предпочтительнее подключать к ней. Если этого не сделать, то точность измерений сильно упадет (в некоторых случаях такие измерения окажутся очень далеки от истинных значений и доверять им будет нельзя).
Измерение напряжения осциллографом
За основу измерения напряжения берется известное значение вертикального масштаба. Перед началом измерений надлежит закоротить оба щупа прибора либо переключить регулятор входа в положение. Нагляднее см. следующую картинку.
После чего рукояткой вертикальной регулировки надлежит выставить линию развертки на горизонтальную ось экрана, чтобы можно было корректно определять высоту. После этого прибор подключается на измеряемый участок цепи и на мониторе появляется график. Теперь остается только посчитать высоту графика от горизонтальной линии и умножить на масштаб. Например, если на ниже приведенном графике одну клетку считать за 1 вольт (соответственно, она разбита на штриховые деления в 0,2, 0,4, 0,6, и 0,8 вольт), то получаем общее напряжение в 1,4 вольта. Если бы цена деления была 2 вольта, то напряжение бы равнялось 2,8 вольт и так далее…
Выставление нужного масштаба осуществляется вращением специальных ручек настройки.
Определение силы тока
Для узнавания силы тока в цепи с помощью осциллографа в нее последовательно включают резистор, имеющий значительно меньшее сопротивление, чем сама цепь (такое, чтобы он практически не влиял на ее исправную работу).
После этого производят измерение напряжения по принципу, указанному выше. Зная номинальное сопротивление резистора и общее напряжение в цепи несложно, пользуясь законом Ома, рассчитать силу тока.
Измерение частоты с помощью осциллографа
Прибор позволяет успешно измерять частоту сигнала, исходя из его периода. Частота находится в прямо пропорциональной зависимости от периода и рассчитывается по формуле f=1/T, там f — частота, Т — период. Перед измерением линию развертки совмещают с центральной горизонтальной осью прибора. При проведении измерений осциллограф подключают в исследуемую сеть и наблюдают на экране график.
Для большего удобства, используя ручки горизонтальной настройки, совмещают точку начала периода с одной из вертикальных линий на экране осциллографа. Успешно посчитав количество делений, которое составляет период, следует умножить его на величину скорости развертки.
Рассмотрим на конкретном примере подробнее. Например, период составляет 2,6 делений, развертка — 100 микросекунд/деление. Умножая их, получаем величину периода равную 260 микросекунд (260*10-6 секунд). Зная период, рассчитываем частоту по формуле f=1/T, в нашем случае частота примерно равна 3,8 кГц.
Измерение сдвига фаз
Сдвиг фаз — это величина, указывающая взаимное положение двух колебательных процессов в течение времени. Измерение его производят не в секундах, а в долях периода (Т) сигнала. Достичь максимальной точности измерений этого показателя возможно в том случае, если период растянут масштабированием на весь экран. В современном цифровом осциллографе абсолютно каждый из сигналов имеет свой цвет, что очень удобно при измерениях. В старых же аналоговых вариантах их яркость и цвет, к сожалению, одинаковы, поэтому для большего удобства следует сделать их амплитуду различной. Подготовка измерения сдвига фаз требует точных подготовительных операций. Первое, что нужно сделать — не подключая прибор к измеряемой цепи, установить ручками вертикальной настройки линии развертки обоих каналов на центральную ось экрана. Затем ручками настройки усиления каналов вертикального отклонения (плавно и ступенчато) 1-й сигнал устанавливается с большей амплитудой, а второй — с меньшей. Ручками регулирования скорости развертки ее величина устанавливается такой, чтобы оба сигнала на экране имели примерно одинаковый период. После этого, регулируя уровень синхронизации, совмещают начало графика напряжения с осью времени. Ручкой горизонтальной настройки устанавливают начало графика напряжения в крайней налево вертикальной линии. Затем ручками регулировки скорости развертки добиваются того, чтобы конец период графика напряжения совпадал с крайней направо вертикальной линией сетки монитора. Все эти подготовительные операции производят по порядку до тех пор, пока график периода напряжения не растянется на экран полностью. При этом он должен начинаться и заканчиваться в линиях развертки (см. рисунок).
После завершения подготовительного этапа следует выяснить, какой из параметров опережает другой — сила тока или напряжение. Величина, начальная точка периода которой начинается раньше во времени, является опережающей, и наоборот. Если опережающим является напряжение, то параметр угла сдвига фаз будет положительным, если сила тока — отрицательным. Углом сдвига фаз (по модулю) является дистанция между началами и концами периодов сигналов в величине сетки делений монитора. Он рассчитывается по такой формуле:
В ней величина N — это количество клеток сетки, которые занимает один период, а α — количество делений между началами периодов. Если графики периодов силы тока и напряжения имеют общие начальную и конечную точки, то угол сдвига фаз равняется нолю. При ремонте радиоаппаратуры поиск неисправностей ведут, измеряя осциллографом обозначенные выше параметры на отдельных участках электронной цепи или у конкретных электронных компонентов (например, микросхем). Затем их сравнивают с указанными в технологических каталогах величинах, стандартных для этих компонентов, после чего и делают выводы о безошибочной работе или неисправности того или иного элемента цепи.
Если статья была вам полезна, поделитесь ею, пожалуйста, в соц.сетях, воспользовавшись кнопками внизу страницы!
Заходите на мой канал в YouTube и в группы «Телемастерская» в Одноклассниках и «Самоделкин» ВКонтакте!
Всем успехов!
Как функционирует осциллограф
Если смотреть на быстро пробегающие объекты, то увидим размытую линию. Но если периодически открывать «окошко», то будут выхватываться статичные кадры. Это принцип стробоскопа, так же, но в электронной форме работает Oscilloscope.
Действие «окошка» синхронизуется (главное условие) со скоростью объектов (сигнала), поэтому при его открытии их место стабильно. В противном случае возникнет рассинхронизация.
Аппарат визуализирует периодические изменения в реальном времени на табло синусоидой или линией другой формы (пила, меандр и прочее). Каждый будущий отрезок схожий с прошедшим, он «останавливается» и показывается (в 1 момент — 1 период).
Классификация и виды
Различают два основных вида осциллографов:
- аналоговые — аппараты для измерения средних сигналов;
- цифровые — приборы преобразовывают получаемое значение измерений в «цифровой» формат для дальнейшей передачи информации.
По принципу действия существуют следующая классификация:
- Универсальные модели.
- Специальное оборудование.
Наиболее популярными являются универсальные устройства. Эти осциллографы используют для анализа различных видов сигналов:
- гармонических;
- одиночных импульсов;
- импульсных пачек.
Универсальные приборы предназначены для разнообразных электрических устройств. Они позволяют измерять сигналы в диапазоне от нескольких наносекунд. Погрешность измерений составляет 6-8%.
Универсальные осциллографы делятся на два основных вида:
- моноблочные — имеют общую специализацию измерений;
- со сменными блоками — подстраиваются под конкретную ситуацию и тип прибора.
Специальные устройства разрабатываются под определённый вид электрической техники. Так существуют осциллографы для радиосигнала, телевизионного вещания или цифровой техники.
Универсальные и специальные устройства делятся на:
- скоростные – применяются в быстродействующих приборах;
- запоминающие — аппараты, сохраняющие и воспроизводящие ранее сделанные показатели.
При выборе устройства следует внимательно изучить классификации и виды, чтобы приобрести прибор под конкретную ситуацию.
Классификация
Так как осциллоскоп работает с входящими сигналами, то по виду обработки импульсов приборы делятся на:
- аналоговые;
- цифровые.
В аналоговых аппаратах применяются ЭЛТ с электростатическим смещением.
Внешний вид аналогового осциллографа
Цифровые аппараты оснащены жк-дисплеем. Они имеют память, позволяющую рассматривать уже зафиксированные сигналы, делать их скриншоты. ЖК-цветной монитор способствует улучшению восприятия картинки.
Следующее деление можно провести по числу лучей:
- однолучевые;
- двухлучевые;
- многолучевые.
Важно! N-лучевой прибор показывает сразу n-графиков на дисплее. У него n-входов. Но количество входов (каналов) не всегда равно количеству лучей. Так, двухканальный измеритель может отображать два сигнала одним лучом, но не одновременно.
Цифровой прибор с осциллограммой на жк дисплее
Цифровые осциллографы можно разделить на модели:
- стробоскопические;
- запоминающие;
- люминофорные;
- виртуальные.
Стробоскопические осциллографы сжимают спектр исследуемого сигнала путём моментального стробирования в определённой точке. С каждым новым появлением сигнала точка смещается по кривой, пока не простробируется сигнал. На дисплей выдаётся преобразованная кривая, повторяющая форму основного сигнала, но состоящая из мгновенных значений.
В запоминающих моделях цифровой формат информации позволяет сохранять результаты измерений в памяти или выводить на печать. У большинства моделей в наличии накопитель, где можно хранить картинки в виде файлов.
Технология «цифрового люминофора» даёт возможность имитировать изменение интенсивности картинки, присущее аналоговым моделям, но уже в цифровом формате. Люминофорные осциллографы выдают на дисплей модулированные сигналы в мельчайших подробностях, как и аналоговые устройства. При этом они обеспечивают измерение, сравнение и хранение, как цифровые запоминающие модели.
Отдельный класс виртуальных осциллографов может быть внешним или внутренним дополнительным гаджетом на базе ISA или PCI карт. ПО любого виртуального осциллоскопа разрешает полностью управлять прибором и предоставляет линейку сервисных опций: цифровая фильтрация, экспорт и импорт данных и иные возможности.
Двухканальный прибор
Модели типа «два канала – один луч» имеют два канала вертикальной развёртки и однолучевую ЭЛТ. Конструктивно это переключаемые электронным переключателем входы Y1 и Y2. Переключатель поочерёдно соединяет выходные сигналы каналов с пластинами вертикального отклонения.
История
Ондограф Госпиталье
Электрический колебательный процесс изначально фиксировался вручную на бумаге. Первые попытки автоматизировать запись были предприняты Жюлем Франсуа Жубером в 1880 году, который предложил пошаговый полуавтоматический метод регистрации сигнала. Развитием метода Жубера стал полностью автоматический ондограф Госпиталье. В 1885 году русский физик Роберт Колли создал осциллометр, а в 1893 году французский физик Андре Блондель изобрел магнитоэлектрический осциллоскоп с бифилярным подвесом.
Подвижные регистрирующие части первых осциллографов обладали большой инерцией и не позволяли фиксировать быстротечные процессы. Этот недостаток был устранён в 1897 году Уильямом Дадделлом, который создал светолучевой осциллограф, использовав в качестве измерительного элемента небольшое лёгкое зеркальце. Запись производилась на светочувствительную пластину. Вершиной развития этого метода стали в середине XX века многоканальные ленточные осциллографы.
Практически одновременно с Дадделлом Карл Фердинанд Браун использовал для отображения сигнала изобретённый им кинескоп. В 1899 году устройство было доработано Йонатаном Зеннеком, добавившим горизонтальную развертку, что сделало его похожим на современные осциллографы. Кинескоп Брауна в 1930-е годы заменил кинескоп Зворыкина, что сделало устройства на его основе более надёжными.
В конце XX века на смену аналоговым устройствам пришли цифровые. Благодаря развитию электроники и появлению быстрых аналого-цифровых преобразователей, к 1980-м годам они заняли доминирующую позицию среди осциллографов.
Как измеряется сопротивление петли фаза ноль
Измерение характеристик петли зависит от выбранной методики и прибора. Выделяют три основных способа:
- Короткое замыкание. Прибор подключается к рабочей цепи в наиболее отдаленной точке от вводного щита. Для получения нужных показателей устройство производит короткое замыкание и замеряет ток КЗ, время срабатывания автоматов. На основе данных автоматически рассчитываются параметры.
- Падение напряжения. Для подобного способа необходимо отключить нагрузку сети и подключить эталонное сопротивление. Испытание проводят с помощью прибора, который обрабатывает полученные результаты. Метод считается одним из наиболее безопасных.
- Метод амперметра-вольтметра. Достаточно сложный вариант, который проводят при снятом напряжении, а также используют понижающий трансформатор. Замыкая фазный провод на электроустановку, измеряют параметры и делают расчеты характеристик по формулам.
Watch this video on YouTube
Методика измерения
Наиболее простой методикой считается падение напряжения в сети. Для этого в линию электропитания подключают нагрузку и замеряют необходимые параметры. Это простой и безопасный способ, не требующий специальных навыков, Измерение можно проводить:
- между одной из фаз и нулевым проводом;
- между фазой и проводом РЕ;
- между фазой и защитным заземлением.
После подключения прибора он начинает измерять сопротивление. Требуемый прямой параметр или косвенные результаты отобразятся на экране. Их необходимо сохранить для последующего анализа. Стоит учитывать, что измерительные устройства приведут к срабатыванию УЗО, поэтому перед испытаниями необходимо их зашунтировать.
Анализ результатов измерения и выводы
Полученные параметры используют для анализа характеристик сети, а также ее профилактики. На основе результатов принимают решения о модернизации линии электропередачи или продолжении эксплуатации. Из основных возможностей выделяют следующие:
- Определение безопасности работы сети и надежности защитных устройств. Проверяется техническая исправность проводки и возможность дальнейшей эксплуатации без вмешательств.
- Поиск проблемных зон для модернизации линии электроснабжения помещения.
- Определение мер модернизации сети для надежной работы автоматических выключателей и других защитных устройств.
Если показатели находятся в пределах нормы и ток КЗ не превышает показатели отсечки автоматов, дополнительные меры не требуются. В противном случае необходимо искать проблемные места и устранять их, чтобы обеспечить работоспособность выключателей.
Форма протокола измерения
Последним этапом в измерении сопротивления петли фаза-ноль является занесение показаний в протокол. Это необходимо для того, чтобы сохранить результаты и использовать их для сравнения в будущем. В протокол вписывается информация о дате проверки, полученный результат, используемый прибор, тип расцепителя, его диапазон измерения и класс точности.
В конце составленной формы подводят итоги испытания. Если он удовлетворительный, то в заключении указывается возможность дальнейшей эксплуатации сети без принятия дополнительных мер, а если нет — список необходимых действий для улучшения показателя.
В заключение необходимо подчеркнуть важность измерений сопротивления петли. Своевременный поиск проблемных участков линий электропитания позволяет принимать профилактические меры
Это не только обезопасит работу с электроприборами, но и увеличит срок эксплуатации сети.
Что такое амперметр и как им проводить измерения?
Как найти ноль и фазу индикаторной отверткой, мультиметром и без приборов?
Что такое дифференциальный автомат?
Для чего нужен осциллограф и как им выполнять измерения тока, напряжения, частоты и сдвига фаз
Как собрать электрический распределительный щиток для квартиры
Термометр сопротивления — датчик для измерения температуры: что это такое, описание и виды
Как измерить амплитудные характеристики произвольного периодического сигнала
Амплитуду синусоидального сигнала, а также любого другого сигнала, можно оценивать не только как абсолютное максимальное его значение. Иногда пользуются понятием двойная амплитуда (амплитуда от пика до пика сигнала), которая, как нетрудно догадаться, равна удвоенной амплитуде. Иногда употребляют понятие эффективное значение, которое определяется следующим образом: U
ЭФФ =
Um = 0,707Um
. Это соотношение справедливо только для синусоидальных сигналов: для других видов сигналов отношение амплитуды к эффективному значению будет другим. Синусоидальные сигналы часто характеризуются эффективными значениями; дело в том, что именно эффективное значение используется для определения мощности. В России напряжение в сети имеет эффективное значение 220 В и частоту 50 Гц.
Измерение амплитуды в децибелах
. Как сравнить амплитуды двух сигналов? Можно, например, сказать, что сигнал
X
в два раза больше, чем сигнал
Y
. Во многих случаях именно так и производят сравнение. Но очень часто подобные отношения достигают миллионов, и тогда удобнее пользоваться логарифмической зависимостью и измерять отношение в децибелах (децибел составляет одну десятую часть бела, но единицей «бел» никогда не пользуются). По определению отношение двух сигналов, выраженное в децибелах:
где А1
и
А2
– амплитуды двух сигналов. Например, если один сигнал имеет амплитуду вдвое большую, чем другой, то отношение первого сигнала ко второму составляет +6 дБ, так как lg2 = 0,3010. Если один сигнал в 10 раз больше другого, то отношение первого ко второму составляет +20 дБ, в 100 раз – +40 дБ, а если один сигнал в 10 раз меньше другого – то -20 дБ. Отношение мощностей двух сигналов определяется как dБ = 10lg(
Р2/Р1
), где
P1
и
Р2
– мощности двух сигналов. Если оба сигнала имеют одну и ту же форму, т.е. представлены синусоидами, то оба способа определения отношения сигналов (через амплитуду и мощность) дают одинаковый результат. Для сравнения сигналов разной формы, например, синусоидального и шумового следует использовать мощность (или эффективные значения).
Хотя децибел служит для определения отношения двух сигналов, иногда эту единицу используют для измерения абсолютного, а не относительного значения амплитуды. Дело в том, что можно взять некоторую эталонную амплитуду и определять любую другую амплитуду в децибелах по отношению к эталонной. Известно несколько стандартных значений амплитуды, используемых для такого сравнения (эти значения не указываются, но подразумеваются); приведем некоторые из них: а) дБВ – эффективное значение 1 В; б) дБВт – напряжение, соответствую-щее мощности 1 мВт на некоторой предполагаемой нагрузке, для радиочастот это обычно 50 Ом, для звуковых частот – 600 Ом (напряжение 0 дБВт на этих нагрузках имеет эффективное значение 0,22 В и 0,78 В); в) дБп – небольшой шумовой сигнал, генерируемый резистором при комнатной температуре. Нужно обратить внимание на эталонную амплитуду 0 дБ: при использовании этого значения нужно не забывать его оговаривать, например «амплитуда 27 дБ относительно эффективного значения 1 В», или в сокращенной форме «27 дБ относительно 1 Вэфф» или пользоваться условным обозначением дБВ.
Импульсные сигналы
Электрическим импульсом называют напряжение или ток, отличающийся от нуля и имеющий постоянное значение лишь в течение короткого промежутка времени, меньшего или сравнимого с длительностью установления процессов в электрической системе, в которой действует этот ток или напряжение. В случае следующих друг за другом импульсов обычно предполагается, что интервал между ними существенно превышает длительность процессов установления.
В противном случае этот сигнал называют переменным напряжением или током сложной формы. С чисто математической точки зрения переходные процессы протекают, как известно, бесконечно долго, поэтому данное определение не совсем строго. Однако в реальных цепях длительность этих процессов не превышает 3τ
, где
τ
– постоянная времени цепи, поэтому такое определение вполне допустимо.
Все многообразие электрических импульсов можно разделить на видеоимпульсы (рис. 1.2, а) и радиоимпульсы (рис. 1.2, б).
Связь между этими двумя типами импульсов состоит в том, что огибающая радиоимпульса представляет собой видеоимпульс. Частота синусоидального сигнала, которым заполнен видеоимпульс, называется частотой заполнения. Системы автоматики и управления оперируют в основном с видеоимпульсами, которые в дальнейшем будем называть просто импульсами.
Рис.1.2. Видео- и радиоимпульсы
На рис.1.3 приведен пример реального импульса.
Основными характеристиками и параметрами импульсов являются:
1.Амплитуда импульса Um = А
;
2.Активная длительность импульса (измеряется на уровне 0,1А) t
И;
Рис. 1.3. Реальный прямоугольный импульс
5.Искажение вершины импульса ΔU
;
6.Амплитуда обратного выброса Um
ОБР;
7.Длительность обратного выброса t
И ОБР;
8.Мощность импульса P = W/t
И, где
W
– энергия импульса.
Периодически повторяющиеся импульсы образуют импульсную последовательность (рис.1.4). Она характеризуется следующими параметрами:
1.Частота импульсной последовательности ƒ = 1/Т
, где
T = t
И
+ t
П;
2.Коэффициент заполнения γ = t
И
/Т
(диапазон изменения 0…1) и скважность
Q = Т/t
И (диапазон изменения от до 1);
3.Среднее значение импульса (рис.1.5)
; (1.4)
Рис. 1.4. Импульсная последовательность
Рис. 1.5. Определение среднего значения импульса
История
Функциональный триггер можно создать из обычного реле с электромеханическим приводом. Установив нужным образом контакты управляющей цепи, обеспечивают включение силовой группы после определенной комбинации входных сигналов. Отдельной клавишей выполняют сброс.
Электронные аналоги были собраны в начале прошлого века из ламповых приборов. Действующие схемы впервые опубликованы российскими и английскими учеными в 1918-20 гг. Позднее стали применять полупроводниковые транзисторы. В наши дни соответствующие устройства создают с применением микроэлектронных технологий.
Развертка
Напряжение развертки необходимо подавать на те пластины, которые расположены в вертикальной плоскости. Оно пилообразной формы, медленно нарастает линейно, и у него очень быстрый спад. При этом положительное напряжение приводит к тому, что луч отклоняется вправо. А отрицательное – к тому, что луч движется влево. Это в том случае, если наблюдатель находится перед экраном, и можно видеть, как луч совершает движение слева направо. При этом скорость его постоянна. После достижения крайней правой границы он быстро идет на исходную. Затем заново повторяется движение.
В данной статье будет максимально подробно рассказано о том, как правильно пользоваться осциллографом. Вышеизложенный процесс и носит название «развертка». Линия развертки – это линия (горизонтальная), прочерчиваемая лучом на экране. Когда проводятся измерения, ее называют линией нуля. Она же является осью времени на графике. Частота развертки – это не что иное, как частота, с которой происходит повторение импульсов пилообразной формы. В процессе измерений она не применяется. Важные параметры для измерений – это скорость.
Что измеряет осциллограф
На экране осциллографа отображается двухмерная картинка сигнала, который подали на измерительный вход. На экране есть две оси координат. Горизонтальная — ось времени, вертикальная — напряжение. Эти параметры и измеряют. А уже из них высчитывают остальные.
На экране осциллографа отображаются сигналы, которые подаются на его входы. Это например, двухлучевой аналоговый осциллограф, который показывает форму сигнала на входе (синусоида) и выходе (прямоугольный) импульсного преобразователя напряжения
Вот что можно измерить и отследить при помощи осциллографа:
- Напряжение (амплитуду).
- Временные параметры, по которым можно рассчитать частоту.
- Отслеживать сдвиг фаз.
- Видеть искажения, которые вносит элемент или участок цепи.
- Определить постоянную и временную составляющие сигнала.
- Увидеть наличие шума.
- Рассчитать соотношение сигнал/шум.
- Видеть/определить параметры импульсов.
Сигнал, который показывает осциллограф, довольно информативен. Видны искажения, которые вносит та или иная деталь, можно отследить, как меняется форма/амплитуда/частота в каждой точке схемы, после каждой детали.
Кроме наблюдения за формой сигнала, осциллограф можно использовать для определения целостности сопротивлений, конденсаторов, катушек индуктивности (см. видео ниже).
Часто задаваемые вопросы
Компания Fluke — один из мировых лидеров в производстве цифровых портативных осциллографов
Вопрос №1. При выборе осциллографа какая полоса пропускания считается оптимальной?
Полоса пропускания прибора должна немного превышать максимальную частоту сигналов, подлежащих измерению. Например: при максимальной частоте сигнала 80 МГц рекомендуется подобрать модель с полосой 100 МГц.
Вопрос №2. Является ли стоимость осциллографа гарантией более высоких его технических показателей?
Не всегда. При выборе следует задуматься в первую очередь о том, нужна ли дорогая модель именно для ваших измерений. Ведь многие технические функции и «навороты» могут просто «простаивать» из-за ненадобности.
Вопрос №3. Прибор больше не может выполнять поставленные задачи в связи с их усложнением. Что делать? Покупать новый?
Некоторые серии осциллографов от известных производителей позволяют увеличить в будущем полосу пропускания, то есть выполнить апгрейд. Для этого не требуется куда-то отвозить прибор, достаточно просто купить цифровой ключ и ввести код в соответствующем меню.
Вопрос №4. Иногда случаются настолько кратковременные аномалии, которые осциллограф не может воспроизвести на экране. Как их обнаружить?
С обнаружением суперкратковременных аномалий отлично справляется функция цифровой подсветки (люминофор), отображающая на экране иным цветом редко происходящие события. Благодаря этому они хорошо видны на экране.
Вопрос №5. Может ли недорогой прибор, исправно работающий в лабораторных условиях, использоваться для решения более серьезных задач для более сложного оборудования?
На что обратить внимание в Oscilloscope, ориентиры для выбора
Рассмотрим основы характеристик O-Scope, которые послужат также ориентирами, как выбрать осциллограф, надежную его модель.
Способы, чтобы проверить осциллограф:
- встроенным генератором (Калибровка), все цифровые модели имеют его. Включают режим и смотрят, есть ли синусоида. Если магазин специализированный, там должен быть внешний генератор для проверки;
- старые осциллографы начинают подвирать со временем, как проверить их есть простой способ: взять эталонный источник, например, ту же батарейку 1.5 В;
- экран должен быть достаточной яркости, луч без артефактов;
- дотронуться до щупа: фаза покажет синусоиду (правда с большими помехами), земля — ровную линию;
- посредством ПК, специальным ПО.
Полоса пропускания
Это минимальная и максимальная частоты, амплитудность, то есть диапазон, который может измерить прибор. Достаточно учесть верхнюю черту; нижнюю рисуют все устройства.
Частота дискретизации (Sampling rate)
У цифровых моделей. Данный параметр связан с предыдущим. Чем выше, тем лучше (например, у Siglent SDS — 1×109). Это число считываний за единицу времени, определяет максимальные частоты без потерь на экране. У приборов с несколькими каналами может уменьшаться при задействовании их всех (при покупке надо учесть).
По теореме Котельникова част. дискр. должна превышать в 2 раза верхнюю рамку пропускания, но на практике потребуется превышение в 4–5 раза. На этом и основывается выбор
Пример для изделия с полосой до 200–800 МГц (важно учесть параметр при использовании 2 и больше каналов)
Число каналов
Многие модели способны обрабатывать больше сигналов вместе, одновременно раздельно показывая их на мониторе. Обычно от 2 до 4. Иногда включение других каналов сказывается на производительности. Выбор осциллографа рекомендовано делать среди изделий с двумя каналами, что позволит сравнивать исследуемые величины, исчислять фазные сдвиги. Три и больше входа, это хорошо, но для обычных задач иногда чрезмерно, цена прибора возрастет многократно.
Цифровой осциллограф, конечно, намного совершеннее обычного электронного, позволяет запоминать осциллограммы, может подключаться к персональному компьютеру, имеет математическую обработку результатов, экранные маркеры и многое другое. Но при всех достоинствах эти приборы нового поколения обладают одним существенным недостатком, — это высокая цена.
Именно она делает цифровой осциллограф недоступным для любительских целей, хотя существуют «карманные» осциллографы, которые продаются на Алиэкспресс, но пользоваться ими не особенно удобно. Ну, просто интересная игрушка. Поэтому пока речь пойдет об измерениях с помощью электронного осциллографа.
На тему выбора осциллографа для использования в домашней лаборатории в интернете можно найти достаточное количество форумов. Не отрицая достоинств цифровых осциллографов, на многих форумах советуют остановить выбор на простых малогабаритных и надежных осциллографах отечественной разработки С1-73 и С1-101 и подобных.
При достаточно демократичной цене эти приборы позволят выполнить большинство радиолюбительских задач. А пока познакомимся с общими принципами измерений с помощью осциллографа.
Рисунок 1. Осциллограф С1-73
Что измеряет осциллограф
Измеряемый сигнал подается на вход канала вертикального отклонения Y, который имеет большое входное сопротивление, как правило, 1MΩ, и малую входную емкость, не более 40pF, что позволяет вносить минимальные искажения в измеряемый сигнал. Эти параметры часто указываются рядом с входом канала вертикального отклонения.
Рисунок 2. Осциллограф С1-101
Высокое входное сопротивление свойственно вольтметрам, поэтому можно с уверенностью сказать, что осциллограф измеряет напряжение. Применение внешних входных делителей позволяет снизить входную емкость и увеличить входное сопротивление. Это также снижает влияние осциллографа на исследуемый сигнал.
Здесь следует вспомнить, что существуют специальные высокочастотные осциллографы, входное сопротивление которых всего 50 Ом. В радиолюбительской практике такие приборы не находят применения. Поэтому далее речь пойдет об обычных универсальных осциллографах.
Полоса пропускания канала Y
Осциллограф измеряет напряжения в очень широких пределах: от напряжений постоянного тока, до напряжений достаточно высокой частоты. Размах напряжения может быть достаточно разнообразным, — от десятков милливольт до десятков вольт, а при использовании внешних делителей вплоть до нескольких сотен вольт.
При этом следует иметь в виду, что полоса пропускания канала вертикального отклонения Y д.б. не менее, чем в 5 раз выше частоты сигнала, который будет измеряться. То есть усилитель вертикального отклонения должен пропускать не ниже пятой гармоники исследуемого сигнала. Особенно это требуется при исследовании прямоугольных импульсов, которые содержат множество гармоник, как показано на рисунке 3. Только в этом случае на экране получается изображение с минимальными искажениями.
Рисунок 3. Синтез прямоугольного сигнала из гармонических составляющих
Кроме основной частоты на рисунке 3 показаны третья и седьмая гармоники. С увеличением номера гармоники возрастает ее частота: частота третьей гармоники в три раза выше основной, пятой гармоники в пять раз, седьмой в семь и т.д. Соответственно амплитуда высших гармоник падает: чем выше номер гармоники, тем ниже ее амплитуда. Только если усилитель вертикального канала без особого ослабления сможет пропустить высшие гармоники, изображение импульса получится прямоугольным.
На рисунке 4 показана осциллограмма меандра при недостаточной полосе пропускания канала Y.
Рисунок 4.
Примерно так выглядит меандр частотой 500 КГц на экране осциллографа ОМШ-3М с полосой пропускания 0…25 КГц. Как будто прямоугольные импульсы пропущены через интегрирующую RC цепочку. Такой осциллограф выпускался советской промышленностью для лабораторных работ на уроках физики в школах. Даже напряжение питания этого прибора в целях безопасности было не 220, а всего 42В. Совершенно очевидно, что осциллограф с такой полосой пропускания позволит почти без искажений наблюдать сигнал с частотами не более 5КГц.
У обычного универсального осциллографа полоса пропускания чаще всего составляет 5 МГц. Даже при такой полосе можно увидеть сигнал до 10 МГц и выше, но полученное на экране изображение позволяет судить лишь о наличии или отсутствии этого сигнала. О его форме что-либо сказать будет затруднительно, но в некоторых ситуациях форма не столь уж и важна: например есть генератор синусоиды, и достаточно просто убедиться, есть эта синусоида или ее нет. Как раз такая ситуация показана на рисунке 4.
Современные вычислительные системы и линии связи работают на очень высоких частотах, порядка сотен мегагерц. Чтобы увидеть столь высокочастотные сигналы полоса пропускания осциллографа должна быть не менее 500 МГц. Такая широкая полоса очень «расширяет» цену осциллографа.
В качестве примера можно привести цифровой осциллограф U1610A показанный не рисунке 5. Его полоса пропускания 100МГц.
Рисунок 5.
Пусть читатель не сочтет этот рисунок за рекламу, поскольку все координаты продавца не закрашены: на месте этого рисунка мог оказаться любой подобный скриншот.
Виды исследуемых сигналов и их параметры
Наиболее распространенным видом колебаний в природе и технике является синусоида. Это та самая многострадальная функция Y=sinX, которую проходили в школе на уроках тригонометрии. Достаточно много электрических и механических процессов имеют синусоидальную форму, хотя достаточно часто в электронной технике применяются и другие формы сигналов. Некоторые из них показаны на рисунке 6.
Рисунок 6. Формы электрических колебаний
Периодические сигналы. Характеристики сигналов
Универсальный электронный осциллограф позволяет достаточно точно исследовать периодические сигналы. Если же на вход Y подать реальный звуковой сигнал, например, музыкальную фонограмму, то на экране будут видны хаотично мелькающие всплески. Естественно, что детально исследовать такой сигнал невозможно. В этом случае поможет применение цифрового запоминающего осциллографа, который позволяет сохранить осциллограмму.
Колебания, показанные на рисунке 6, являются периодическими, повторяются, через определенный период времени T. Подробнее это можно рассмотреть на рисунке 7.
Рисунок 7. Периодические колебания
Колебания изображены в двухмерной системе координат: по оси ординат отсчитывается напряжение, а по оси абсцисс время. Напряжение измеряется в вольтах, время в секундах. Для электрических колебаний время чаще измеряется в миллисекундах или микросекундах.
Кроме компонентов X и Y осциллограмма содержит еще компонент Z – интенсивность, или попросту яркость (рисунок 8). Именно она включает луч на время прямого хода луча и гасит на время обратного хода. Некоторые осциллографы имеют вход для управления яркостью, который так и называется вход Z. Если на этот вход подать импульсное напряжение от образцового генератора, то на экране можно увидеть частотные метки. Это позволяет точнее отсчитывать длительность сигнала по оси X.
Рисунок 8. Три компонента исследуемого сигнала
Современные осциллографы имеют, как правило, калиброванные по времени развертки, позволяющие точно отсчитывать время. Поэтому пользоваться внешним генератором для создания меток практически не приходится.
В верхней части рисунка 7 располагается синусоида. Нетрудно видеть, что начинается она в начале координатной системы. За время T (период) выполняется одно полное колебание. Далее все повторяется, идет следующий период. Такие сигналы называются периодическими.
Ниже синусоиды показаны прямоугольные сигналы: меандр и прямоугольный импульс. Они также периодические с периодом T. Длительность импульса обозначена как τ (тау). В случае меандра длительность импульса τ равна длительности паузы между импульсами, как раз половина периода T. Поэтому меандр является частным случаем прямоугольного сигнала.
Скважность и коэффициент заполнения
Для характеристики прямоугольных импульсов используется параметр, называемый скважностью. Это есть отношение периода следования импульсов T к длительности импульса τ. Для меандра скважность равна двум, — величина безразмерная: S= T/τ.
В англоязычной терминологии как раз все наоборот. Там импульсы характеризуются коэффициентом заполнения, соотношением длительности импульса к периоду следования Duty cycle: D=τ/T. Коэффициент заполнения выражается в %%. Таким образом, для меандра D=50%. Получается, что D=1/S, коэффициент заполнения и скважность величины взаимно обратные, хотя характеризуют собой один и тот же параметр импульса. Осциллограмма меандра показана на рисунке 9.
Рисунок 9. Осциллограмма меандра D=50%
Здесь вход осциллографа подключен к выходу функционального генератора, показанного тут же в нижнем углу рисунка. И вот тут внимательный читатель может задать вопрос: «Амплитуда выходного сигнала с генератора 1В, чувствительность входа осциллографа 1В/дел., а на экране прямоугольные импульсы с размахом 2В. Почему?»
Дело в том, что функциональный генератор выдает двухполярные прямоугольные импульсы относительно уровня 0В, примерно так же, как синусоида, с положительной и отрицательной амплитудой. Поэтому на экране осциллографа наблюдаются импульсы с размахом ±1В. На следующем рисунке изменим коэффициент заполнения Duty cycle, например, до 10%.
Рисунок 10. Прямоугольный импульс D=10%
Нетрудно видеть, что период следования импульсов составляет 10 клеток, в то время, как длительность импульса всего одна клетка. Поэтому D=1/10=0,1 или 10 %, что видно по настройкам генератора. Если воспользоваться формулой для подсчета скважности, то получится S = T / τ = 10 / 1 = 1 – величина безразмерная. Вот здесь можно сделать вывод, что Duty cycle намного наглядней характеризует импульс, чем скважность.
Собственно сам сигнал остался такой же, как на рисунке 9: прямоугольный импульс амплитудой 1В и частотой 100Гц. Изменяется только коэффициент заполнения или скважность, уж это как кому привычней и удобней. Но для удобства наблюдения на рисунке 10 длительность развертки снижена в два раза по сравнению с рисунком 9 и составляет 1мс/дел. Поэтому период сигнала занимает на экране 10 клеток, что позволяет достаточно легко убедиться, что Duty cycle составляет 10%. При пользовании реальным осциллографом длительность развертки выбирается примерно также.
Измерение напряжения прямоугольного импульса
Как было сказано в начале статьи, осциллограф измеряет напряжение, т.е. разность потенциалов между двумя точками. Обычно измерения проводятся относительно общего провода, земли (ноль вольт), хотя это необязательно. В принципе возможно измерение от минимального до максимального значения сигнала (пиковое значение, размах). В любом случае действия по измерению достаточно просты.
Прямоугольные импульсы чаще всего бывают однополярными, что характерно для цифровой техники. Как измерить напряжение прямоугольного импульса, показано на рисунке 11.
Рисунок 11. Измерение амплитуды прямоугольного импульса
Если чувствительность канала вертикального отклонения выбрана 1В/дел, то получается, что на рисунке показан импульс с напряжением 5,5В. При чувствительности 0,1В/дел. Напряжение будет всего 0,5В, хотя на экране оба импульса выглядят совершенно одинаково.
Что еще можно увидеть в прямоугольном импульсе
Прямоугольные импульсы, показанные на рисунках 9, 10 просто идеальные, поскольку синтезированы программой Electronics WorkBench. Да и частота импульсов всего 100Гц, поэтому проблем с «прямоугольностью» изображения возникнуть не может. В реальном устройстве при высокой частоте следования импульсы несколько искажаются, прежде всего, появляются различные выбросы и всплески, обусловленные индуктивностью монтажа, как показано на рисунке 12.
Рисунок 12. Реальный прямоугольный импульс
Если не обращать внимания на подобные «мелочи», то прямоугольный импульс выглядит так, как показано на рисунке 13.
Рисунок 13. Параметры прямоугольного импульса
На рисунке показано, что передний и задний фронты импульса возникают не сразу, а имеют какое-то время нарастания и спада, несколько наклонены относительно вертикальной линии. Этот наклон обусловлен частотными свойствами микросхем и транзисторов: чем более высокочастотный транзистор, тем менее «завалены» фронты импульсов. Поэтому длительность импульса определяется по уровню 50% от полного размаха.
По этой же причине амплитуда импульса определяется по уровню 10…90%. Длительность импульса, так же, как и напряжение, определяется умножением числа делений горизонтальной шкалы на значение деления, как показано на рисунке 14.
Рисунок 14.
На рисунке показан один период прямоугольного импульса, несколько отличного от меандра: длительность положительного импульса составляет 3,5 деления горизонтальной шкалы, а длительность паузы 3,8 деления. Период следования импульса составляет 7,3 деления. Такая картинка может принадлежать нескольким разным импульсам с различной частотой. Все будет зависеть от длительности развертки.
Предположим, что длительность развертки 1мс/дел. Тогда период следования импульса 7,3*1=7,3мс, что соответствует частоте F=1/T=1/7.3= 0,1428КГц или 143ГЦ. Если длительность развертки будет 1мкс/дел, то частота получится в тысячу раз выше, а именно 143КГЦ.
Пользуясь данными рисунка 14 нетрудно подсчитать скважность импульса: S=T/τ=7,3/3,5=2,0857, получается почти, как у меандра. Коэффициент заполнения Duty cycle D=τ/T=3,5/7,3=0,479 или 47.9%. При этом следует обратить внимание, что эти параметры ни в коем случае не зависят от частоты: скважность и коэффициент заполнения были подсчитаны просто по делениям на осциллограмме.
С прямоугольными импульсами все вроде бы понятно и просто. Но мы совсем забыли о синусоиде. В сущности, там то — же самое: можно измерить напряжения и временные параметры. Один период синусоиды показан на рисунке 15.
Рисунок 15. Параметры синусоиды
Очевидно, что для показанной на рисунке синусоиды чувствительность канала вертикального отклонения составляет 0,5В/дел. Остальные параметры нетрудно определить умножив число делений на 0,5В/дел.
Синусоида может быть и другой, которую придется измерять при чувствительности, например, 5В/дел. Тогда вместо 1В получится 10В. Однако, на экране изображение обеих синусоид выглядит абсолютно одинаково.
Временные параметры показанной синусоиды неизвестны. Если предположить, что длительность развертки 5мс/дел., период составит 20мс, что соответствует частоте 50ГЦ. Цифры в градусах на оси времени показывают фазу синусоиды, хотя для одиночной синусоиды это не особо важно. Чаще приходится определять сдвиг по фазе (непосредственно в миллисекундах или микросекундах) хотя бы между двумя сигналами. Лучше всего это делать с помощью двухлучевого осциллографа. Как это делается, будет показано чуть ниже.
Как осциллографом измерить ток
В некоторых случаях требуется измерение величины и формы тока. Например, переменный ток, протекающий через конденсатор, опережает напряжение на ¼ периода. Тогда в разрыв цепи включают резистор с небольшим сопротивлением (десятые доли Ома). На работу схемы такое сопротивление не влияет. Падение напряжения на этом резисторе покажет форму и величину тока, протекающего через конденсатор.
Примерно так же устроен обычный стрелочный амперметр, который включатся в разрыв электрической цепи. При этом измерительный резистор находится внутри самого амперметра.
Схема для измерения тока через конденсатор показана на рисунке 16.
Рисунок 16. Измерение тока через конденсатор
Синусоидальное напряжение частотой 50 Гц амплитудой 220 В с генератора XFG1 (красный луч на экране осциллографа) подается на последовательную цепь из конденсатора C1 и измерительного резистора R1. Падение напряжения на этом резисторе покажет форму, фазу и величину тока через конденсатор (синий луч). Как это будет выглядеть на экране осциллографа, показано на рисунке 17.
Рисунок 17. Ток через конденсатор опережает напряжение на ¼ периода
При частоте синусоиды 50 Гц и развертке 5 ms/Div один период синусоиды занимает 4 деления по оси X, что очень удобно для наблюдения. Нетрудно видеть, что синий луч опережает красный ровно на 1 деление по оси X, что соответствует ¼ периода. Другими словами ток через конденсатор опережает по фазе напряжение, что полностью соответствует теории.
Чтобы рассчитать ток через конденсатор достаточно воспользоваться законом Ома: I = U/R. При сопротивлении измерительного резистора 0,1Ом падение напряжения на нем 7мВ. Это амплитудное значение. Тогда максимальный ток через конденсатор составит 7/0,1=70мА.
Измерение формы тока через конденсатор не является какой-то очень актуальной задачей, тут все ясно и без измерений. Вместо конденсатора может быть любая нагрузка: катушка индуктивности, обмотка электродвигателя, транзисторный усилительный каскад и многое другое. Важно, что именно таким методом можно исследовать ток, который в некоторых случаях значительно отличается по форме от напряжения.
Ранее ЭлектроВести писали, что Президент Владимир Зеленский обратился к премьер-министру Украины Денису Шмыгалю с просьбой принять меры для сбалансированной работы энергосистемы Украины, в том числе за счет ограничения импорта электроэнергии из России и Беларуси.
По материалам: electrik.info.
Виды осциллографов
По принципу действия осциллографы бывают цифровыми и аналоговыми. Существуют смешанные аналого-цифровые приборы. Всё чаще выпускают виртуальные. Там в качестве экрана используется другой прибор – монитор компьютера, телевизора.
Работа некоторых моделей основана на электромеханическом принципе:
- электродинамический;
- электростатический;
- выпрямительный;
- электромагнитный;
- магнитоэлектрический;
- термоэлектрический.
Прибор может работать самостоятельно или являться приставкой к другому оборудованию (например, компьютеру). Во втором случае цена ниже, но сам прибор зависим от внешнего устройства.
Устройство и принцип работы
Осциллограф своими руками
Основной элемент аналогового осциллографа – специализированная ЭЛТ (электронно-лучевая трубка), которая делает возможным визуальное представление изучаемого сигнала. Он поступает на входной делитель (определяет диапазон измеряемых значений), усиливается и синхронизируется с генератором развертки, затем попадает на оконечный усилитель и входы ЭЛТ, отображение проходит в реальном времени. Конкретная реализация зависит от производителя, но принцип действия остается неизменным.
Функциональная схема осциллографа
Цифровые приборы устроены по-другому: пользователь видит уже преобразованные в цифру данные, полученные от АЦП (аналого-цифрового преобразователя) и записанные в буферную память, поэтому имеет возможность просмотреть динамику изменения сигнала не только после запуска, но и до пускового импульса. Есть возможность сохранить информацию для последующей обработки на компьютере.
Важно! В цифровом устройстве сигнал не отображается в реальном времени и идет с задержкой.
Последовательное и параллельное включение элементов
Для элементов электрической цепи (участка цепи) характерным моментом является последовательное либо параллельное соединение.
Соответственно, каждый вид соединения сопровождается разным характером течения тока и подводкой напряжения. На этот счёт закон Ома также применяется по-разному, в зависимости от варианта включения элементов.
Цепь последовательно включенных резистивных элементов
Применительно к последовательному соединению (участку цепи с двумя компонентами) используется формулировка:
- I = I1 = I2 ;
- U = U1 + U2 ;
- R = R1 + R2
Такая формулировка явно демонстрирует, что, независимо от числа последовательно соединенных резистивных компонентов, ток, текущий на участке цепи, не меняет значения.
Соединение резистивных элементов на участке схемы последовательно один с другим. Для этого варианта действует свой закон расчета. На схеме: I, I1, I2 – прохождение тока; R1, R2 – резистивные элементы; U, U1, U2 – приложенное напряжение
Величина напряжения, приложенного к действующим резистивным компонентам схемы, является суммой и составляет в целом значение источника ЭДС.
При этом напряжение на каждом отдельном компоненте равно: Ux = I * Rx.
Общее сопротивление следует рассматривать как сумму номиналов всех резистивных компонентов цепи.
Цепь параллельно включенных резистивных элементов
На случай, когда имеет место параллельное включение резистивных компонентов, справедливой относительно закона немецкого физика Ома считается формулировка:
- I = I1 + I2 … ;
- U = U1 = U2 … ;
- 1 / R = 1 / R1 + 1 / R2 + …
Не исключаются варианты составления схемных участков «смешанного» вида, когда используется параллельное и последовательное соединение.
Соединение резистивных элементов на участке цепи параллельно один с другим. Для этого варианта применяется свой закон расчета. На схеме: I, I1, I2 – прохождение тока; R1, R2 – резистивные элементы; U – подведённое напряжение; А, В – точки входа/выхода
Для таких вариантов расчет обычно ведется изначальным расчетом резистивного номинала параллельного соединения. Затем к полученному результату добавляется номинал резистора, включенного последовательно.
Интегральная и дифференциальная формы закона
Все вышеизложенные моменты с расчетами применимы к условиям, когда в составе электрических схем используются проводники, так сказать, «однородной» структуры.
Между тем на практике нередко приходится сталкиваться с построением схематики, где на различных участках структура проводников меняется. К примеру, используются провода большего сечения или, напротив, меньшего, сделанные на основе разных материалов.
Для учёта таких различий существует вариация, так называемого, «дифференциально-интегрального закона Ома». Для бесконечно малого проводника рассчитывается уровень плотности тока в зависимости от напряженности и величины удельной проводимости.
Под дифференциальный расчет берется формула: J = ό * E
Для интегрального расчета, соответственно, формулировка: I * R = φ1 – φ2 + έ
Однако эти примеры скорее уже ближе к школе высшей математики и в реальной практике простого электрика фактически не применяются.