Основной параметр трансформатора
Основной характеристикой любого трансформатора является коэффициент трансформации. Он определяется как отношение количества витков первичной обмотки к числу витков во вторичной обмотке. Кроме того, эта величина может быть рассчитана путем деления соответствующих показателей ЭДС в обмотках.
Формула
При наличии идеальных условий, когда отсутствуют электрические потери, решение вопроса, как определить коэффициент, осуществляется с помощью соотношения напряжений на зажимах каждой из обмоток. Если в трансформаторе имеется больше двух обмоток, данная величина рассчитывается поочередно для каждой обмотки.
В понижающих трансформаторах коэффициент трансформации будет выше единицы, в повышающих устройствах этот показатель составляет от 0 до 1. Фактически этот показатель определяет во сколько раз трансформатор напряжения понижает подаваемое напряжение. С его помощью можно определить правильность числа витков. Данный коэффициент определяется на всех имеющихся фазах и на каждом ответвлении сети. Полученные данные используются для расчетов, позволяют выявить обрывы проводов в обмотках и определить полярность каждой из них.
Определить реальный коэффициент трансформации тока трансформатора можно с использованием двух вольтметров. В трансформаторах с тремя обмотками измерения выполняются как минимум для двух пар обмоток с наименьшим током короткого замыкания. Если некоторые элементы трансформатора и ответвления закрыты кожухом, то определение коэффициента становится возможным только для зажимов обмоток, выведенных наружу.
В однофазных трансформаторах для расчета рабочего коэффициента трансформации используется специальная формула, в которой напряжение, подведенное к первичной цепи, делится на одновременно измеряемое напряжение во вторичной цепи. Для этого нужно заранее знать, в чем измеряется каждый показатель.
Запрещается подключение к обмоткам напряжения существенно выше или ниже номинального значения, указанного в паспорте трансформатора. Это приведет к росту погрешностей измерений вследствие потерь тока, потребляемого измерительным прибором, к которому подключается трехфазный трансформатор. Кроме того, на точность измерений влияет ток холостого хода. Для большинства устройств разработана специальная таблица, где указаны довольно точные данные, которые можно использовать при расчетах.
Измерения должны проводиться вольтметрами с классом точности 0,2-0,5. Более простое и быстрое определение коэффициента возможно с помощью специальных универсальных приборов, позволяющих обойтись без использования посторонних источников переменного напряжения.
Поверка
осуществляется по документу ГОСТ 8.216-2011 «ГСИ. Трансформаторы напряжения. Методика поверки».
— трансформатор напряжения измерительный лабораторный серии НЛЛ-10 (регистрационный номер в Федеральном информационном фонде 46942-10);
— прибор сравнения КНТ-03 (регистрационный номер в Федеральном информационном фонде 24719-03);
— магазин нагрузок МР 3025 (регистрационный номер в Федеральном информационном фонде 22808-07).
Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых СИ с требуемой точностью.
Знак поверки наносится на свидетельство о поверке в виде оттиска поверительного клейма.
Трансформатор | Номинальное напряжение обмоток, кВ | Номинальное напряжение, кА в классе точности | Максимальная предельная мощность | Н, мм | Масса, кг | ||||
ВН | НН (осн.) | НН (доп.) | 0,5 | 1,0 | 3,0 | ||||
НТМИ-6 | 6 | 0.1 | 0.1/3 | 75 | 150 | 300 | 630 | 400 | 67 |
НТМИ-10 | 10 | 0.1 | 0.1/3 | 150 | 300 | 500 | 1000 | 490 | 87 |
Расчет трансформаторов тока 10 кВ. Все будет хорошо
наносится на титульный лист паспорта трансформатора напряжения типографским способом. Комплектность средства измерений
Мнение эксперта
It-Technology, Cпециалист по электроэнергетике и электронике
Задавайте вопросы «Специалисту по модернизации систем энергогенерации»
ПКУ 6 кВ и ПКУ 10 кВ Пункт коммерческого учета от производителя Максимальная предельная мощность это предельная мощность трансформатора, которая в несколько раз превышает номинальную мощность, но при которой трансформатор может работать с допустимым нагревом обмоток. Спрашивайте, я на связи!
Что такое коэффициент трансформации
Трансформатор не меняет один параметр в другой, а работает с их величинами. Тем не менее его называют преобразователем. В зависимости от подключения первичной обмотки к источнику питания, меняется назначение прибора.
В быту широко распространены эти устройства. Их цель — подать на домашнее устройство такое питание, которое бы соответствовало номинальному значению, указанному в паспорте этого прибора. Например, в сети напряжение равно 220 вольт, аккумулятор телефона заряжается от источника питания в 6 вольт. Поэтому необходимо понизить сетевое напряжение в 220:6 = 36,7 раз, этот показатель называется коэффициент трансформации.
Чтобы точно рассчитать этот показатель, необходимо вспомнить устройство самого трансформатора. В любом таком устройстве имеется сердечник, выполненный из специального сплава, и не менее 2 катушек:
- первичной;
- вторичной.
Первичная катушка подключается к источнику питания, вторичная — к нагрузке, их может быть 1 и более. Обмотка — это катушка, состоящая из намотанного на каркас, или без него, электроизоляционного провода. Полный оборот провода называется витком. Первая и вторая катушки устанавливаются на сердечник, с его помощью энергия передается между обмотками.
Для силового трансформатора
Трансформаторы бывают повышающие и понижающие, что бы это определить нужно узнать коэффициент трансформации, с его помощью можно узнать какой трансформатор. Если коэффициент меньше 1 то трансформатор повышающий(также это можно определить по значениям если во вторичной обмотке больше чем в первичной то такой повышающий) и наоборот если К>1, то понижающий(если в первичной обмотке меньше витков чем во вторичной).
Формула по вычислению коэффициента трансформации
где:
- U1 и U2 — напряжение в первичной и вторичной обмотки,
- N1 и N2 — количество витков в первичной и вторичной обмотке,
- I1 и I2 — ток в первичной и вторичной обмотки.
Трансформатор тока
Формула для вычисления коэффициента трансформации ТТ:
Значения коэффициентов обычно очень большие по сравнению с силовым трансформатор. Величины могут быть такими, как представлено в таблице:
Определим коэфф. трансформации: возьмём ТТ со значениями которые выделены в таблице 600/5 = 120. Также можно взять любой трансформатор 750/5 = 150; 800/2 = 400 и тд.
Трансформатор напряжения
Формула для вычисления коэффициента трансформации ТН:
Давайте рассчитаем коэффициент трансформации для ТН который показана на фото ниже:
Нужно взять напряжение первичной обмотки(красная стрелка) и разделить на напряжение вторичной обмотки(жёлтая стрелка). 35000/100 = 350.
Коэффициент трансформации электросчетчика
Величина коэффициента трансформации широко применяется для приборов учета электроэнергии. Эти данные необходимы для правильного выбора электросчетчика и дальнейших расчетов реального энергопотребления. С этой целью используется дополнительный показатель – расчетный коэффициент учета.
Для того чтобы определить данную величину с прибора учета электроэнергии снимаются показания и умножаются на коэффициент трансформации подключенного трансформаторного устройства. Например, решая задачу, как найти нужный показатель, 60 кВт/ч нужно умножить на коэффициент, равный 20 (30, 40 или 60). В результате умножения получается 60 х 20 = 1200 кВт/ч. Полученной значение и будет реальным расходом электроэнергии.
Существуют различные виды приборов учета. По своему принципу действия они могут быть одно- или трехфазными. Они не подключаются напрямую, между ними в цепь обязательно включается трансформатор тока. Некоторые конструкции счетчиков предполагают возможность прямого включения. В сетях с напряжением до 380 вольт используются счетчики 5-20 ампер. На счетчик поступает электроэнергия в чистом виде, с постоянным значением.
В настоящее время используются индукционные приборы учета, которые постепенно заменяются электронными моделями. Они считаются устаревшими, поскольку не могут выполнять учет потребленной электроэнергии по разным тарифам. Кроме того, они не могут передавать данные на удаленное расстояние. Поэтому на смену им приходят электронные счетчики, способные напрямую преобразовывать поступающий ток в определенные сигналы. В этих конструкциях отсутствуют вращающиеся части, что способствует существенному повышению их надежности и долговечности. Коэффициент трансформации счетчиков оказывает прямое влияние на точность получаемых данных.
Проверка по условию термической стойкости:
При этой проверке должно соблюдаться следующее требование:
Условия соблюдены. Расчет трансформаторов тока 10 кВ
Как видно, сложного здесь ничего нет, и с этой работой справится любой человек, который может обращаться с калькулятором. Не бойтесь браться за, как казалось бы, сложные дела. Сложными они кажутся только на первый взгляд. И если подумать и разобраться, то оказывается, в них нет ничего суперсложного. Беритесь, пробуйте, и все у Вас получится. Удачи…
Скачать изображения в формате PDF можно по ссылкам «План» «Схема».
Мнение эксперта
It-Technology, Cпециалист по электроэнергетике и электронике
Задавайте вопросы «Специалисту по модернизации систем энергогенерации»
Startbase — Система активизации и повышения результативности инновационного процесса — Продукция / Обзор продукта / Цифровой трансформатор тока и напряжения 6-10 (кВ) Оптические трансформаторы имеют очень высокую стоимость, их экономическая рентабельность снижается вместе с классом рабочего напряжения. Спрашивайте, я на связи!
Как рассчитать коэффициент трансформации
Коэффициентом трансформации «k» называется отношение напряжения U1 на концах первичной обмотки трансформатора к напряжению U2 на выводах его вторичной обмотки, определенному на холостом ходу (когда вторичных обмоток несколько, то коэффициентов k – тоже несколько, они определяются в этом случае по очереди). Это отношение принимается равным соотношению количеств витков в соответствующих обмотках.
Величина коэффициента трансформации легко вычисляется путем деления показателей ЭДС обмоток исследуемого трансформатора: ЭДС первичной обмотки – на ЭДС вторичной.
Коэффициент трансформации имеет очень важное значение как величина, при помощи которой вторичная обмотка приводится к первичной. В эксплуатационных условиях имеет большое значение коэффициент трансформации напряжения, под которым понимают отношение номинальных напряжений трансформатора.
Для однофазных трансформаторов между коэффициентами трансформации ЭДС и напряжений нет разницы, но в трехфазных трансформаторах следует строго различать их друг от друга.
В идеале потери мощности (на токи Фуко и на нагрев проводников обмоток) в трансформаторе полностью отсутствуют, поэтому и коэффициент трансформации для идеальных условий рассчитывается простым делением напряжений на выводах обмоток. Но ничего идеального в мире нет, поэтому иногда необходимо прибегать к замерам.
В реальности мы всегда имеем дело с повышающим или с понижающим трансформатором. У трансформаторов напряжения повышающих коэффициент трансформации всегда меньше единицы (и больше нуля), у понижающих — больше единицы. То есть коэффициент трансформации свидетельствует о том, во сколько раз ток вторичной обмотки под нагрузкой отличается от тока первичной обмотки, или во сколько крат напряжение вторичной обмотки меньше подаваемого на первичную обмотку.
Например, понижающий трансформатор ТП-112-1 имеет по паспорту коэффициент трансформации 7,9/220 = 0,036, значит номинальному току (по паспорту) вторичной обмотки в 1,2 ампера соответствует ток первичной обмотки 43 мА.
Зная коэффициент трансформации, измерив его например двумя вольтметрами на холостом ходу, можно убедиться в правильности соотношения количеств витков в обмотках. Если зажимов несколько, то измерения проводят на каждом ответвлении. Измерения такого рода помогают обнаруживать поврежденные обмотки, определять их полярности.
Есть несколько путей определения коэффициента трансформации:
путь непосредственного измерения напряжений вольтметрами;
методом моста переменного тока (например портативным прибором типа «коэффициент» для анализа параметров трехфазных и однофазных трансформаторов);
по паспорту данного трансформатора.
Для нахождения реального коэффициента трансформации традиционно применяют два вольтметра . Номинальный коэффициент трансформации рассчитывают путем деления значений напряжений, измеренных на холостом ходу (они и указаны в паспорте на трансформатор).
Если проверяется трехфазный трансформатор, то измерения следует провести для двух пар обмоток с наименьшим током КЗ. Когда трансформатор имеет выводы, часть которых скрыта под кожухом, то значение коэффициента трансформации определяется только для тех концов, которые доступны снаружи для присоединения приборов.
Если трансформатор однофазный, то рабочий коэффициент трансформации легко рассчитать, разделив напряжение приложенное к первичной обмотке, на в этот же момент измеренное вольтметром напряжение на вторичной обмотке (с подключенной нагрузкой ко вторичной цепи).
Применительно к трехфазным трансформаторам, данная операция может быть выполнена различными путями. Первый путь — подача на высоковольтную обмотку трехфазного напряжения от трехфазной сети, или второй путь – подача однофазного напряжения только на одну высоковольтную обмотку из трех, без выведения или с выведением нулевой точки. В каждом варианте измеряют линейные напряжения на одноименных зажимах первичных и вторичных обмоток.
В каждом случае нельзя подавать на обмотки напряжение существенно превосходящее номинальное значение, указанное в паспорте, ведь тогда погрешность измерения окажется высокой из-за потерь даже на холостом ходу.
От чего зависит величина электродвижущей силы
Величина этой ЭДС (U2) зависит от величины напряжения U1 и соотношения витков первичной и вторичной обмоток, то есть: U2=U1 (N2/ N1).
При этом отношение количества витков вторичной и первичной обмоток Кт данного трансформатора и обозначается n: n= N2/ N1. Таким образом, коэффициент трансформации — величина, показывающая масштабирующую характеристику ТР относительно какого-нибудь параметра электрической цепи.
Для силовых трансформаторов ГОСТ 16110–82 определяет коэффициент трансформации как «отношение напряжений на зажимах двух обмоток в режиме холостого хода» и «принимается равным отношению чисел их витков»
Расчетный коэффициент учета
Чтобы уточнить реальный уровень потребления электрической энергии, требуется снять показания электросчётчика, после чего умножить их на КТ.
На практике КТ трансформатора, понижающего напряжение в домашних условиях, составляет 20 единиц, поэтому данные с прибора учёта нужно умножать именно на эту цифру, в результате чего и будет получен реальный расход электрической энергии.
Как пользоваться онлайн калькулятором для расчета трансформатора пошагово
Подготовка исходных данных за 6 простых шагов
Шаг №1. Указание формы сердечника и его поперечного сечения
Лучшим распределением магнитного потока обладают сердечники, набранные из Ш-образных пластин. Кольцевая форма из П-образных составляющих деталей обладает большим сопротивлением.
Для проведения расчета надо указать форму сердечника по виду пластины (кликом по точке) и его измеренные линейные размеры:
- Ширину пластины под катушкой с обмоткой.
- Толщину набранного пакета.
Вставьте эти данные в соответствующие ячейки таблицы.
Шаг №2. Выбор напряжений
Трансформатор создается как повышающей, понижающей (что в принципе обратимо) или разделительной конструкцией. В любом случае вам необходимо указать, какие напряжения вам нужны на его первичной и вторичной обмотке в вольтах.
Заполните указанные ячейки.
Шаг №3. Частота сигнала переменного тока
По умолчанию выставлена стандартная величина бытовой сети 50 герц. При необходимости ее нужно изменить на требуемую по другому расчету. Но, для высокочастотных трансформаторов, используемых в импульсных блоках питания, эта методика не предназначена.
Их создают из других материалов сердечника и рассчитывают иными способами.
Шаг №4. Коэффициент полезного действия
У обычных моделей сухих трансформаторов КПД зависит от приложенной электрической мощности и вычисляется усредненным значением.
Но, вы можете откорректировать его значение вручную.
Шаг №5. Магнитная индуктивность
Параметр определяет зависимость магнитного потока от геометрических размеров и формы проводника, по которому протекает ток.
По умолчанию для расчета трансформаторов принят усредненный параметр в 1,3 тесла. Его можно корректировать.
Шаг №6. Плотность тока
Термин используется для выбора провода обмотки по условиям эксплуатации. Среднее значение для меди принято 3,5 ампера на квадратный миллиметр поперечного сечения.
Для работы трансформатора в условиях повышенного нагрева его следует уменьшить. При принудительном охлаждении или пониженных нагрузках допустимо увеличить. Однако 3,5 А/мм кв вполне подходит для бытовых устройств.
Выполнение онлайн расчета трансформатора
После заполнения ячеек с исходными данными нажимаете на кнопку «Рассчитать». Программа автоматически обрабатывает введенные данные и показывает результаты расчета таблицей.
Онлайн калькулятор (ссылка откроется в новой вкладке)
Разные виды трансформаторов и их коэффициенты
Хотя конструктивно преобразователи мало чем отличаются друг от друга, назначение их достаточно обширно. Существуют следующие виды трансформаторов, кроме рассмотренных:
- силовой;
- автотрансформатор;
- импульсный;
- сварочный;
- разделительный;
- согласующий;
- пик-трансформатор;
- сдвоенный дроссель;
- трансфлюксор;
- вращающийся;
- воздушный и масляный;
- трехфазный.
Особенностью автотрансформатора является отсутствие гальванической развязки, первичная и вторичная обмотка выполнены одним проводом, причем вторичная является частью первичной. Импульсный масштабирует короткие импульсные сигналы прямоугольной формы. Сварочный работает в режиме короткого замыкания. Разделительные используются там, где нужна особая безопасность по электротехнике: влажные помещения, помещения с большим количеством изделий из металла и подобное. Их k в основном равен 1.
Пик-трансформатор преобразует синусоидальное напряжение в импульсное. Сдвоенный дроссель — это две сдвоенные катушки, но по своим конструктивным особенностям относится к трансформаторам. Трансфлюксор содержит сердечник из магнитопровода, обладающего большой величиной остаточной намагниченности, что позволяет использовать его в качестве памяти. Вращающийся передает сигналы на вращающиеся объекты.
Воздушные и масляные трансформаторы отличаются способом охлаждения. Масляные применяются для масштабирования большой мощности. Трехфазные используются в трехфазной цепи.
Более подробную информацию можно узнать о коэффициенте трансформации трансформатора тока в таблице.
Номинальная вторичная нагрузка, В351015203040506075100
Коэффициент, n | Номинальная предельная кратность | ||||||||||
3000/5 | 37 | 31 | 25 | 20 | 17 | 13 | 11 | 9 | 8 | 6 | 5 |
4000/5 | 38 | 32 | 26 | 22 | 20 | 15 | 13 | 11 | 10 | 8 | 6 |
5000/5 | 38 | 29 | 25 | 22 | 20 | 16 | 14 | 12 | 11 | 10 | 8 |
6000/5 | 39 | 28 | 25 | 22 | 20 | 16 | 15 | 13 | 12 | 10 | 8 |
8000/5 | 38 | 21 | 20 | 19 | 18 | 14 | 14 | 13 | 12 | 11 | 9 |
10000/5 | 37 | 16 | 15 | 15 | 14 | 12 | 12 | 12 | 11 | 10 | 9 |
12000/5 | 39 | 20 | 19 | 18 | 18 | 12 | 15 | 14 | 13 | 12 | 11 |
14000/5 | 38 | 15 | 15 | 14 | 14 | 12 | 13 | 12 | 12 | 11 | 10 |
16000/5 | 36 | 15 | 14 | 13 | 13 | 12 | 10 | 10 | 10 | 9 | 9 |
18000/5 | 41 | 16 | 16 | 15 | 15 | 12 | 14 | 14 | 13 | 12 | 12 |
Почти у всех перечисленных приборов есть сердечник для передачи магнитного потока. Поток появляется благодаря движению электронов в каждом из витков обмотки, и силы токов не должны быть равны нулю. Коэффициент трансформации тока зависит и от вида сердечника:
- стержневой;
- броневой.
В броневом сердечнике магнитные поля оказывают большее влияние на масштабирование.
Зависимость КПД от коэффициента нагрузки
В процессе эксплуатации любого оборудования важен его КПД. Для трансформаторного оборудования на подстанции или на производстве это соотношение между напряжением, поступающим из сети, и напряжением, выдаваемым потребителям:
КПД = Р2/Р1
По сути, это эффективность преобразования напряжения.
На практике используется более точная формула:
КПД = 1- (∑P – (P2 + ∑P)), где:
∑P – сумма потерь на обмотках и железе.
Потери определяются, исходя из опытов короткого замыкания (Рк) и холостого хода (Р).
КПД достигает максимального значения, если равны потери в стали и обмотках.
Так как отношение потерь холостого хода к выдаваемому напряжению (Р/Р1) равно 0,25-0,4, то максимальное значение КПД достигается коэффициенте загрузки 0,5-0,7.
Как определить коэффициент нагрузки трансформатора на практике? Существуют каталоги и стандарты с таблицами Рк и Р.
Для вычисления оптимальной величины используется формула:
βопт = √P/Pк.
Это примерно 0,45-0,5.
При снижении или превышении показателя КПД снижается, что влечет за собой повышение эксплуатационных затрат.
Если токи небольшие, полезная работа равна потерям. При превышении оптимальной загрузки греются провода обмоток и насыщается сердечник, преобразователь греется. В процессе эксплуатации чаще всего есть возможность регулировать уровень нагрузки таким образом, чтобы получить оптимальную величину КПД.
Как определить этот показатель в цепях передачи мощности
При передаче энергии в конкретную нагрузку стараются согласовать мощность нагрузки во вторичной цепи с мощностью, извлекаемой трансформатором из цепи его первичной обмотки, то есть от источника. Такого согласования можно добиться, используя балластные сопротивления во вторичных цепях, а можно для этого использовать согласующий трансформатор.
Соотношение мощностей в этом случае будет
Соотношение S1 = S2 + ΔS
где S1 — мощность, потребляемая трансформатором из сети и S2 — мощность, отдаваемая трансформатором в нагрузку;
ΔS — потери мощности в самом трансформаторе — обычно их находят как равные 1–2% от мощности.
Пренебрегая этими малыми потерями трансформирующего устройства, получаем зависимости для мощностей
Формулы
S1=U1*I1= U21/Z1
S2=U2*I2= U22/Z2
где Z1 — входное сопротивление цепи трансформатора с нагрузкой относительно первичной цепи,
Z2 — входное сопротивление цепи нагрузки трансформатора, подключенной к вторичной обмотке.
Так как цепи согласованы, то
Формула S1=S2→U12/Z1 = U22/Z2→ U12 / U22 = Z1/ Z2=nz=nu2
Получается значение еще одного показателя, который называется коэффициентом трансформации по сопротивлению, и такой коэффициент трансформации равен отношению квадратов напряжений на первичной обмотке и на вторичной.
Как определить опытным путем?
В реальных практических случаях не всегда бывает возможно найти коэффициент трансформации чисто аналитическим путем, чему не помогает даже и использование калькуляторов. Например, трансформаторы, имеющие несколько обмоток.
Коэффициент трансформации трехфазного трансформатора, вообще говоря, не один, а несколько, так как трехфазный трансформатор содержит несколько вторичных обмоток, которые намотаны на одном сердечнике.
Или когда мы имеем перед собой трансформатор, но не знаем точное количество витков в обмотках.
Обратите внимание
Поэтому существуют методы опытного определения, основанные на измерении напряжений на входе трансформатора и напряжения на вторичных обмотках. Такие замеры необходимо делать на холостом ходу, причем одновременно на первичной и на вторичных обмотках. Из них и найдете искомые коэффициенты трансформации. Найденное значение послужит основой для дальнейших расчетов.
Устройство и принцип действия
В статическом оборудовании, которое предназначено для преобразования частоты и напряжения тока, а также количества фаз, отсутствуют движущиеся элементы конструкции, что исключает возникновение потерь механического характера. Но в процессе передачи нагрузки с первичного контура на вторичный не вся мощность доходит до приемника энергии, выступающего конечным потребителем.
Электромагнитное статическое оборудование без вращающихся деталей преобразует энергию и работает от электросети. Силовой агрегат представляет собой прибор, основными элементами которого служат стальной магнитопровод стержневого или броневого исполнения и катушки – несвязанные электрически изолированные провода.
Трансформаторное оборудование бывает однофазного и многофазного типа, соответственно, состоящего из двух или более контуров. По типу исполнения различают приборы с броневым, стержневым или бронестержневым магнитопроводом. Принцип действия оборудования на примере простого однофазного прибора:
- К источнику переменного тока подключена первая катушка, а вторичный контур соединен с приемником электроэнергии (конечным потребителем).
- Переменный ток проходит по виткам первичной обмотки, и его величина соответствует значению нагрузки I1.
- Магнитный поток Ф пронизывает оба контура и индуцирует в проводниках электродвижущую силу.
- При подключении второго контура к источнику электроэнергии в цепи под действием ЭДС возникает ток нагрузки I2.
- Трансформаторный узел работает на холостом ходе, если на вторичную обмотку прибора не подается нагрузка.
Особенности
Величина показателя электродвижущей силы тесно связана с числом витков провода на катушках. Соотношение ЭДС в обмотках, называемое коэффициентом трансформации, соответствует числу витков медных катушек. Изменяя количество витков в контурах, можно регулировать напряжение в приемнике электроэнергии.
Обмотки связаны между собой магнитными линиями, а на степень их взаимосвязи влияет близость/дальность расположения катушек. Из-за изменения силы тока в первой обмотке, обе цепи пронизывает магнитный поток, постоянно меняющий свою величину и направленность. Соединение концов вторичной обмотки с приемником передает ему ток, а средством передачи энергии выступает переменный магнитный поток – катушки не связаны друг с другом гальваническим способом.
Стоит также учесть, что нельзя размыкать вторичную обмотку трансформатора.
Что такое режим холостого хода
Одно из наиболее используемых электротехнических устройств – трансформатор. Данное оборудование используется для изменения величины электрического напряжения. Рассмотрим особенности режима холостого хода трансформатора, с учётом правил определения характеристик для различных видов устройств.
Трансформатор состоит из первичной и вторичной обмоток, расположенных на сердечнике. При подаче напряжения на входную катушку, образуется магнитное поле, индуцирующее ток на выходной обмотке. Разница характеристик достигается, благодаря различному количеству витков в катушках входа и выхода.
Под режимом холостого хода понимают состояние устройства, при котором во время подачи переменного электротока на входную катушку выходная находится в разомкнутом состоянии. Данная ситуация характерна для агрегата, подключённого к электросети, при условии, что нагрузку к выходному контуру ещё не включили.
Режим короткого замыкания
В процессе эксперимента можно найти:
- электроток холостого хода (замеряется амперметром) – обычно его значение невелико, не больше 0,1 от номинального показателя тока первой обмотки;
- мощность, теряемую в магнитопроводе прибора(или другими словами потери в стали);
- показатель трансформации напряжения – примерно равен значению в первичной цепи, деленному на таковое для вторичной (оба значения – данные вольтметров);
- по результатам замеров силы тока, мощности и напряжения первичной электроцепи можно высчитать коэффициент мощности: мощность делят на произведение двух других величин.
Использование пунктов коммерческого учета
При эксплуатации ПКУ необходимо соблюдать ряд требований, в число которых входят:
- Высота установки не превышает отметку в 1000 метров над уровнем моря.
- Воздух не содержит взрывоопасных горючих примесей или большого количества загрязняющих веществ.
- Значения среднесуточных температур находятся в диапазоне от +50 до -40 (кратковременно -45) градусов по Цельсию
- Способность выдерживать механическое воздействие определяется по ГОСТ 17516.1 в категории М2.
Монтаж ПКУ осуществляется только специалистами, имеющими соответствующую квалификацию и практический опыт работы на оборудовании такого типа. Непосредственно перед началом проведения установки необходимо:
- Провести согласование строительных работ с технической документацией.
- Проверить комплектацию поставки и удостовериться в отсутствии повреждений, которые могли появиться при хранении или транспортировке.
Монтажные работы необходимо проводить с полным соблюдением всех правил, указанных в:
Для обеспечения корректной работы прибора необходимо проводить регулярные осмотры в соответствии с регламентом правил технической проверки. При этом вывод оборудования из сети определяется спецификацией проводимых работ.
Мнение эксперта
It-Technology, Cпециалист по электроэнергетике и электронике
Задавайте вопросы «Специалисту по модернизации систем энергогенерации»
Особенности эксплуатации При расчете тока короткого замыкания учитывается наиболее тяжелый режим, с минимальным сопротивлением до места предполагаемого повреждения. Спрашивайте, я на связи!
Как проводится опыт холостого хода
При проведении опыта холостого хода появляется возможность определить следующие характеристики агрегата:
- коэффициент трансформации;
- мощность потерь в стали;
- параметры намагничивающей ветви в замещающей схеме.
Для опыта на устройство подаётся номинальная нагрузка.
При проведении опыта холостого хода и расчёте характеристик на основе данной методики необходимо учитывать разновидность устройства.
В данном состоянии трансформатор обладает нулевой полезной мощностью по причине отсутствия на выходной катушке электротока. Поданная нагрузка преобразуется в потери тепла на входной катушке I02×r1 и магнитные потери сердечника Pm. По причине незначительности значения потерь тепла на входе, их в большинстве случае в расчёт не принимают. Поэтому общее значение потерь при холостом ходе определяется магнитной составляющей.
Далее приведены особенности расчёта характеристик для различных видов трансформаторов.
Для однофазного трансформатора
Опыт холостого хода для однофазного трансформатора проводится с подключением:
- вольтметров на первичной и вторичной катушках;
- ваттметра на первичной обмотке;
- амперметра на входе.
Приборы подключаются по следующей схеме:
Для определения электротока холостого хода Iо используют показания амперметра. Его сравнивают со значением электротока по номинальным характеристикам с использованием следующей формулы, получая итог в процентах:
Iо% = I0×100/I10.
Чтобы определить коэффициент трансформации k, определяют величину номинального напряжения U1н по показаниям вольтметра V1, подключённого на входе. Затем по вольтметру V2 на выходе снимают значение номинального напряжения U2О.
Коэффициент рассчитывается по формуле:
K = w1/w2 = U1н/ U2О.
Величина потерь составляет сумму из электрической и магнитной составляющих:
P0 = I02×r1 + I02×r0.
Но, если пренебречь электрическими потерями, первую часть суммы можно из формулы исключить. Однако незначительная величина электрических потерь характерна только для оборудования небольшой мощности. Поэтому при расчёте характеристик мощных агрегатов данную часть формулы следует учитывать.
Потери холостого хода для трансформаторов мощностью 30-2500 кВА
Для трёхфазного трансформатора
Трёхфазные агрегаты испытываются по аналогичной схеме. Но напряжение подаётся отдельно по каждой фазе, с соответствующей установкой вольтметров. Их потребуется 6 единиц. Можно провести опыт с одним прибором, подключая его в необходимые точки поочерёдно.
При номинальном напряжении электротока обмотки более 6 кВ, для испытания подаётся 380 В. Высоковольтный режим для проведения опыта не позволит добиться необходимой точности для определения показателей. Кроме точности, низковольтный режим позволяет обеспечить безопасность.
Применяется следующая схема:
Работа аппарата в режиме холостого хода определяется его магнитной системой. Если речь идёт о типе прибора, сходного с однофазным трансформатором или бронестержневой системе, замыкание третьей гармонической составляющей по каждой из фаз будет происходить отдельно, с набором величины до 20 процентов активного магнитного потока.
В результате возникает дополнительная ЭДС с достаточно высоким показателем – до 60 процентов от главной. Создаётся опасность повреждения изолирующего слоя покрытия с вероятностью выхода из строя аппарата.
Предпочтительнее использовать трехстержневую систему, когда одна из составляющих будет проходить не по сердечнику, с замыканием по воздуху или другой среде (к примеру, масляной), с низкой магнитной проницаемостью. В такой ситуации не произойдёт развитие большой дополнительной ЭДС, приводящей к серьёзным искажениям.
Для сварочного трансформатора
Для сварочных трансформаторов холостой ход – один из режимов их постоянного использования в работе. В процессе выполнения сварки при рабочем режиме происходит замыкание второй обмотки между электродом и металлом детали. В результате расплавляются кромки и образуется неразъёмное соединение.
После окончания работы электроцепь разрывается, и агрегат переходит в режим холостого хода. Если вторичная цепь разомкнута, величина напряжения в ней соответствует значению ЭДС. Эта составляющая силового потока отделяется от главного и замыкается по воздушной среде.
Чтобы избежать опасности для человека при нахождении аппарата на холостом ходу, значение напряжения не должно превышать 46 В. Учитывая, что у отдельных моделей значение данных характеристик превышает указанное, достигая 70 В, сварочный агрегат выполняют со встроенным ограничителем характеристик для режима холостого хода.
Блокировка срабатывает за время, не превышающее 1 секунду с момента прерывания рабочего режима. Дополнительная защитная мера – устройство заземления корпуса сварочного агрегата.
Источники
- https://dzgo.ru/osveshchenie/koefficient-transformacii-transformatora.html
- https://odinelectric.ru/equipment/chto-takoe-koeffitsient-transformatsii-transformatora
- https://OFaze.ru/teoriya/koeffitsient-transformatsii
- https://ElektroKlub-nn.ru/osveshchenie/koefficient-transformacii-schetchika.html
- https://orenburgelectro.ru/drugoe/chto-takoe-koeffitsient-transformatsii-sovety-elektrika.html
- https://OFaze.ru/teoriya/holostoj-hod-transformatora
- https://ElectroInfo.net/transformatory/rezhim-holostogo-hoda-dlja-transformatorov.html
Калькулятор
Для упрощения вычислений удобно пользоваться онлайн-калькулятором. Алгоритм программы позволяет вычислить энергопотери трансформатора без сложных формул. Но полученные результаты следует рассматривать как ориентировочные. Для ввода используют следующие данные:
- из техпаспорта прибора берут величину Sном (кВА);
- вводят значение Ркз – справочный (паспортный) параметр (кВт);
- выбирают Pхх в технической документации прибора (кВт);
- указывают нагрузочный ток Iхх в процентном выражении (%);
- обозначают напряжение Uкз – справочная информация (%);
- вводят коэффициент загрузки K в относительных единицах;
- указывают время эксплуатации прибора с максимальной загрузкой Тм (час);
- из фактического режима эксплуатации оборудования берут годовое число часов работы агрегата Тг (час);
- средний тариф Со на активную электроэнергию в расчетном периоде (руб/кВт*час).
После введения данных программа рассчитывает необходимые значения.
Поскольку энергопотери приводят к увеличению расхода материалов и средств, они вызывают удорожание электроэнергии. Сведение убыли непродуктивных энергозатрат силовых агрегатов к минимуму позволяет конструировать устройства с максимальным коэффициентом полезного действия. Применяя на практике методы расчета потерь активной мощности трансформаторных узлов, можно определить экономичность функционирования оборудования и необходимость установки в замкнутых цепях компенсирующей аппаратуры.
Разновидности трансформаторов тока
Выбирать прибор, подходящий под напряжение сети или конкретные работы, необходимо на основании классификации по разным признакам.
Назначение
Существуют такие трансформаторы:
- измерительные – замеряют параметры цепи;
- защитные – предотвращают перегрузки, выход оборудования из строя;
- промежуточные – подключаются в цепь с релейной защитой, выравнивают токи в схемах дифзащиты;
- лабораторные – отличаются высокой точностью.
У лабораторных моделей больше коэффициентов преобразования.
Тип монтажа
Для частного дома и квартиры можно подобрать аппарат, монтируемый внутри или снаружи помещения. Некоторые модификации встраиваются в оборудование, а также надеваются на проходную изоляцию. Для измерения и лабораторных тестов используются переносные модели.
Конструкция первичной обмотки
Существуют шинные, одновитковые (со стержнем) и многовитковые (с катушкой, обмоткой петлевого типа и «восьмеркой») устройства.
Тип изоляции
Бывают следующие преобразователи:
- сухая изоляция – на основе литой эпоксидки, фарфора или бакелита;
- бумажно-масляная – стандартная или конденсаторная;
- газонаполненные – внутри находится неорганический элегаз с высоким пробивным напряжением;
- компаундные – внутри находится заливка из термоактивной и термопластичной смолой.
Компаунд имеет самые высокие показатели влагостойкости.
В зависимости от количества ступеней трансформации можно подобрать одноступенчатые и каскадные модели. Вся линейка имеет рабочее напряжение более 1000 В.