Здравствуйте уважаемые читатели сайта . На сайте есть раздел посвященный начинающим радиолюбителям, но пока что для начинающих, делающих первые шаги в мир электроники, я толком ничего и не написал. Восполняю этот пробел, и с этой статьи мы начинаем знакомиться с устройством и работой радиокомпонентов (радиодеталей).
Начнем с полупроводниковых приборов. Но чтобы понять, как работает диод, тиристор или транзистор, надо представлять, что такое полупроводник. Поэтому мы, сначала изучим структуру и свойства полупроводников на молекулярном уровне, а затем уже будем разбираться с работой и устройством полупроводниковых радиокомпонентов.
Общие понятия.
Почему именно полупроводниковый
диод, транзистор или тиристор? Потому, что основу этих радиокомпонентов составляют
полупроводники
– вещества, способные, как проводить электрический ток, так и препятствовать его прохождению.
Это большая группа веществ, применяемых в радиотехнике (германий, кремний, селен, окись меди), но для изготовления полупроводниковых приборов используют в основном только Кремний
(Si) и
Германий
(Ge).
По своим электрическим свойствам полупроводники занимают среднее место между проводниками и непроводниками электрического тока.
Свойства полупроводников.
Электропроводность проводников сильно зависит от окружающей температуры. При очень низкой
температуре, близкой к абсолютному нулю (-273°С), полупроводники
не проводят
электрический ток, а с
повышением
температуры, их сопротивляемость току
уменьшается
.
Если на полупроводник навести свет
, то его электропроводность начинает увеличиваться. Используя это свойство полупроводников, были созданы
фотоэлектрические
приборы. Также полупроводники способны преобразовывать энергию света в электрический ток, например, солнечные батареи. А при введении в полупроводники
примесей
определенных веществ, их электропроводность резко увеличивается.
Физика твёрдого тела
В физике твёрдого тела ды́рка — это отсутствие электрона в почти полностью заполненной валентной зоне. В некотором смысле, поведение дырки в полупроводнике похоже на поведение пузыря в полной бутылке с водой.
Дырочную проводимость можно объяснить при помощи следующей аналогии: имеется ряд людей, сидящих в аудитории, где нет запасных стульев. Если кто-нибудь из середины ряда хочет уйти, он перелезает через спинку стула в пустой ряд и уходит. Здесь пустой ряд — аналог зоны проводимости, а ушедшего человека можно сравнить со свободным электроном. Представим, что ещё кто-то пришёл и хочет сесть. Из пустого ряда плохо видно, поэтому там он не садится. Вместо этого человек, сидящий возле свободного стула, пересаживается на него, вслед за ним это повторяют и все его соседи. Таким образом, пустое место как бы двигается к краю ряда. Когда это место окажется рядом с новым зрителем, он сможет сесть.
В этом процессе каждый сидящий передвинулся вдоль ряда. Если бы зрители обладали отрицательным зарядом, такое движение было бы электрической проводимостью. Если вдобавок стулья заряжены положительно, то ненулевым суммарным зарядом будет обладать только свободное место. Это простая модель, показывающая как работает дырочная проводимость. Однако на самом деле, из-за свойств кристаллической решётки, дырка не в определённом месте, как описано выше, а размазана по области размером во много сотен элементарных ячеек.
Для создания дырок в полупроводниках используется легирование кристаллов акцепторными примесями. Кроме того, дырки могут возникать и в результате внешних воздействий: теплового возбуждения электронов из валентной зоны в зону проводимости, освещения светом или облучения ионизирующим излучением.
В случае кулоновского взаимодействия дырки с электроном из зоны проводимости образуется связанное состояние, называемое экситоном.
Тяжёлые дырки — название одной из ветвей энергетического спектра валентной зоны кристалла.
Строение атомов полупроводников.
Германий и кремний являются основными материалами многих полупроводниковых приборов и имеют во внешних слоях своих оболочек по четыре валентных электрона
.
Атом германия
состоит из 32 электронов, а атом
кремния
из 14. Но только
28
электронов атома германия и
10
электронов атома кремния, находящиеся во внутренних слоях своих оболочек, прочно удерживаются ядрами и никогда не отрываются от них. Лишь только
четыре
валентных электрона атомов этих проводников могут стать свободными, да и то не всегда. А если атом полупроводника потеряет хотя бы один электрон, то он становится
положительным ионом
.
В полупроводнике атомы расположены в строгом порядке: каждый атом окружен четырьмя
такими же атомами. Причем они расположены так близко друг к другу, что их валентные электроны образуют единые орбиты, проходящие вокруг соседних атомов, тем самым связывая атомы в единое целое вещество.
Представим взаимосвязь атомов в кристалле полупроводника в виде плоской схемы. На схеме красные шарики с плюсом, условно, обозначают ядра атомов
(положительные ионы), а синие шарики – это
валентные электроны
.
Здесь видно, что вокруг каждого атома расположены четыре
точно таких же атома, а каждый из этих четырех имеет связь еще с четырьмя другими атомами и т.д. Любой из атомов связан с каждым соседним
двумя
валентными электронами, причем один электрон свой, а другой заимствован у соседнего атома. Такая связь называется двухэлектронной или
ковалентной
.
В свою очередь, внешний слой электронной оболочки каждого атома содержит восемь
электронов:
четыре
своих, и по
одному
, заимствованных от четырех
соседних
атомов. Здесь уже не различишь, какой из валентных электронов в атоме «свой», а какой «чужой», так как они сделались общими. При такой связи атомов во всей массе кристалла германия или кремния можно считать, что кристалл полупроводника представляет собой одну большую
молекулу
. На рисунке розовым и желтым кругами показана связь между внешними слоями оболочек двух соседних атомов.
Как из атомов получаются молекулы
Любой атом находится в стабильном состоянии, если на его внешней орбите находится 8 электронов. Он не стремится забрать электроны у соседних атомов, но не отдает и свои. Чтобы убедиться в справедливости этого достаточно в таблице Менделеева посмотреть на инертные газы: неон, аргон, криптон, ксенон. Каждый из них на внешней орбите имеет 8 электронов, чем и объясняется нежелание этих газов вступать в какие – либо отношения (химические реакции) с другими атомами, строить молекулы химических веществ.
Совсем по-другому обстоит дело у тех атомов, у которых на внешней орбите нет заветных 8 электронов. Такие атомы предпочитают объединиться с другими, чтобы за счет них дополнить свою внешнюю орбиту до 8 электронов и обрести спокойное стабильное состояние.
Вот, например, всем известная молекула воды H2O. Она состоит из двух атомов водорода и одного атома кислорода, как показано на рис. 1.
Как создается молекула воды (рис. 1)
В верхней части рисунка показаны отдельно два атома водорода и один атом кислорода. На внешней орбите кислорода находятся 6 электронов и тут же поблизости два электрона у двух атомов водорода. Кислороду до заветного числа 8 не хватает как раз двух электронов на внешней орбите, которые он и получит, присоединив к себе два атома водорода.
Каждому атому водорода для полного счастья не хватает 7 электронов на внешней орбите. Первый атом водорода получает на свою внешнюю орбиту 6 электронов от кислорода и еще один электрон от своего близнеца – второго атома водорода. На его внешней орбите вместе со своим электроном теперь 8 электронов. Второй атом водорода тоже комплектует свою внешнюю орбиту до заветного числа 8. Этот процесс показан в нижней части рис. 1.
На рис. 2 показан процесс соединения атомов натрия и хлора. В результате чего получается хлористый натрий, который продается в магазинах под названием поваренная соль.
Процесс соединения атомов натрия и хлора (рис. 2)
Здесь тоже каждый из участников получает от другого недостающее количество электронов: хлор к своим собственным семи электронам присоединяет единственный электрон натрия, в то время, как свои отдает в распоряжение атома натрия. У обоих атомов на внешней орбите по 8 электронов, чем достигнуто полное согласие и благополучие.
Электропроводность полупроводника.
Рассмотрим упрощенный рисунок кристалла полупроводника, где атомы обозначаются красным шариком с плюсом, а межатомные связи показаны двумя линиями, символизирующими валентные электроны.
При температуре, близкой к абсолютному нулю полупроводник не проводит
ток, так как в нем нет
свободных электронов
. Но с повышением температуры связь валентных электронов с ядрами атомов
ослабевает
и некоторые из электронов, вследствие теплового движения, могут покидать свои атомы. Вырвавшийся из межатомной связи электрон становится «
свободным
», а там где он находился до этого, образуется пустое место, которое условно называют
дыркой
.
Чем выше
температура полупроводника, тем
больше
в нем становится свободных электронов и дырок. В итоге получается, что образование «дырки» связано с уходом из оболочки атома валентного электрона, а сама дырка становится
положительным
электрическим зарядом равным
отрицательному
заряду электрона.
А теперь давайте рассмотрим рисунок, где схематично показано явление возникновения тока в полупроводнике
.
Если приложить некоторое напряжение к полупроводнику, контакты «+» и «-», то в нем возникнет ток. Вследствие тепловых явлений
, в кристалле полупроводника из межатомных связей начнет
освобождаться
некоторое количество электронов (синие шарики со стрелками). Электроны, притягиваясь
положительным
полюсом источника напряжения, будут
перемещаться
в его сторону, оставляя после себя
дырки
, которые будут заполняться другими
освободившимися электронами
. То есть, под действием внешнего электрического поля носители заряда приобретают некоторую скорость направленного движения и тем самым создают
электрический ток
.
Например: освободившийся электрон, находящийся ближе всего к положительному полюсу источника напряжения притягивается
этим полюсом. Разрывая межатомную связь и уходя из нее, электрон
оставляет
после себя
дырку
. Другой освободившийся электрон, который находится на некотором
удалении
от положительного полюса, также
притягивается
полюсом и
движется
в его сторону, но
встретив
на своем пути дырку, притягивается в нее
ядром
атома, восстанавливая межатомную связь.
Образовавшуюся новую
дырку после второго электрона,
заполняет
третий освободившийся электрон, находящийся рядом с этой дыркой (рисунок №1). В свою очередь
дырки
, находящиеся ближе всего к
отрицательному
полюсу, заполняются другими
освободившимися электронами
(рисунок №2). Таким образом, в полупроводнике возникает электрический ток.
Пока в полупроводнике действует электрическое поле
, этот процесс
непрерывен
: нарушаются межатомные связи — возникают свободные электроны — образуются дырки. Дырки заполняются освободившимися электронами – восстанавливаются межатомные связи, при этом нарушаются другие межатомные связи, из которых уходят электроны и заполняют следующие дырки (рисунок №2-4).
Из этого делаем вывод: электроны движутся от отрицательного полюса источника напряжения к положительному, а дырки перемещаются от положительного полюса к отрицательному
.
Дырка
У этого термина существуют и другие значения, см. Дырка (значения).
Необходимо проверить качество перевода и привести статью в соответствие со стилистическими правилами Википедии. Вы можете помочь улучшить эту статью, исправив в ней ошибки. Оригинал на английском языке — Electron hole. Эта отметка стоит на статье с 1 мая 2012 года. |
Дырка | |
Символ: | h (англ. hole) |
| |
Состав: | Квазичастица |
Классификация: | Лёгкие дырки, тяжёлые дырки |
В честь кого и/или чего названа: | Отсутствие электрона |
Квантовые0числа: | |
Электрический заряд: | +1 |
Спин: | Определяется спином электронов в валентной зоне ħ |
Ды́рка — квазичастица, носитель положительного заряда, равного элементарному заряду, в полупроводниках.
Определение по ГОСТ 22622-77: «Незаполненная валентная связь, которая проявляет себя как положительный заряд, численно равный заряду электрона».
Понятие дырки вводится в зонной теории для описания электронных явлений в не полностью заполненной электронами валентной зоне. В электронном спектре валентной зоны часто возникает несколько зон, различающихся величиной эффективной массы и энергетическим положением (зоны легких и тяжёлых дырок, зона спин-орбитально отщепленных дырок).
Электронно-дырочная проводимость.
В «чистом» кристалле полупроводника число высвободившихся
в данный момент электронов равно числу
образующихся
при этом дырок, поэтому электропроводность такого полупроводника
мала
, так как он оказывает электрическому току
большое
сопротивление, и такую электропроводность называют
собственной
.
Но если в полупроводник добавить в виде примеси
некоторое количество атомов других элементов, то электропроводность его повысится в разы, и в зависимости от
структуры
атомов примесных элементов электропроводность полупроводника будет
электронной
или
дырочной
.
Электронная проводимость.
Допустим, в кристалле полупроводника, в котором атомы имеют по четыре валентных электрона, мы заменили один атом атомом, у которого пять
валентных электронов. Этот атом своими
четырьмя
электронами свяжется с четырьмя соседними атомами полупроводника, а
пятый
валентный электрон останется «
лишним
» – то есть свободным. И чем
больше
будет таких атомов в кристалле, тем
больше
окажется свободных электронов, а значит, такой полупроводник по своим свойствам приблизится к металлу, и чтобы через него проходил электрический ток, в нем
не обязательно должны разрушаться межатомные связи
.
Полупроводники, обладающие такими свойствами, называют полупроводниками с проводимостью типа «n
», или полупроводники
n
-типа. Здесь латинская буква n происходит от слова «negative» (негатив) — то есть «отрицательный». Отсюда следует, что в полупроводнике
n
-типа
основными
носителями заряда являются –
электроны
, а не основными – дырки.
Примеси и дефекты в полупроводниках
Электрич. проводимость П. может быть обусловлена как электронами собственных атомов данного вещества (собственная проводимость), так и электронами и дырками примесных атомов (примесная проводимость). Процесс внедрения примесей в П. для получения необходимых физич. свойств называется легированием полупроводников. Поскольку энергия связи носителей заряда в примесных атомах составляет от нескольких мэВ до нескольких десятков мэВ, именно примесная проводимость объясняет экспоненциальный рост концентрации свободных носителей заряда в большинстве П. в интервале температур вблизи комнатной.
Примеси в П. обычно вводят в процессе роста структуры, они могут быть донорами или акцепторами, т. е. поставщиками электронов или дырок. Если, напр., в германий Ge или кремний Si (элементы IV группы) ввести примесные атомы элементов V группы (As, P), то 4 внешних электрона этих атомов образуют устойчивую связь с четырьмя соседними атомами решётки, а пятый электрон окажется несвязанным и будет удерживаться около примесного атома только за счёт кулоновского взаимодействия, ослабленного диэлектрич. поляризацией среды. Такой примесный атом является донором и легко ионизуется при комнатной темп-ре. Акцептор возникает, напр., при введении в Ge или Si элементов III группы (Ga, Al). В этом случае для образования всех четырёх связей с ближайшими атомами требуется дополнит. электрон, который берётся из внутр. оболочек атомов, так что примесный атом оказывается заряжен отрицательно. Электронейтральность восстанавливается за счёт того, что внутр. незаполненная орбиталь распределяется вблизи соседних атомов решётки, расположенных от примесного на расстояниях, превосходящих межатомное расстояние. Наличие доноров или акцепторов приводит соответственно к проводимости n- или р-типа.
П., в которых могут одновременно существовать акцепторные и донорные примеси, называются компенсированными. Компенсация примесей приводит к тому, что часть электронов от доноров переходит к акцепторам, и в результате возникает значит. концентрация ионов, которые эффективно влияют на проводимость полупроводников.
Амплитуда волновой функции электронов или дырок, локализованных на примесных атомах, составляет 1–10 нм. Это означает, что при концентрации примесных атомов ок. 1018 см–3 волновые функции электронов и дырок соседних атомов начинают перекрываться, носители заряда могут переходить от иона к иону и П. становится вырожденным (см. Вырожденные полупроводники). Такие П. называются сильнолегироваными. Из-за сильного экранирования кулоновского притяжения носители заряда в них оказываются свободными даже при таких низких темп-рах, при которых была невозможна термич. активация электрона или дырки из изолированного атома.
В отсутствие внешнего электрич. поля или освещения концентрация свободных носителей заряда называется равновесной и определяется шириной запрещённой зоны П., эффективными массами носителей заряда, концентрацией примесей и энергией связи примесных носителей заряда.
Наряду с примесями, источниками носителей заряда могут быть и разл. дефекты структуры, напр. вакансии (отсутствие одного из атомов решётки), межузельные атомы, а также недостаток или избыток атомов одного из компонентов в полупроводниковых соединениях (отклонения от стехиометрич. состава).