Полупроводники. Часть первая: Электрические свойства полупроводников.


Полупроводниковые материалы.

Также по теме:
ЭЛЕКТРОННАЯ ПРОМЫШЛЕННОСТЬ

Полупроводник – это материал, который проводит электричество лучше, чем такой диэлектрик, как каучук, но не так хорошо, как хороший проводник, например медь. В отличие от металлов, электропроводность полупроводников с повышением температуры возрастает. К наилучшим полупроводниковым материалам относятся кремний (Si) и германий (Ge); в числе других можно назвать соединения галлия (Ga), мышьяка (As), фосфора (P) и индия (In). Кремний находит широкое применение в транзисторах, выпрямителях и интегральных схемах. Арсенид галлия (GaAs) обычно используют в СВЧ и оптоэлектронных приборах, а также в интегральных схемах. См. также

ПЕРИОДИЧЕСКАЯ СИСТЕМА ЭЛЕМЕНТОВ; ИНТЕГРАЛЬНАЯ СХЕМА; ФИЗИКА ТВЕРДОГО ТЕЛА; ТРАНЗИСТОР.

Полупроводник представляет собой, по существу, диэлектрик, пока в него не введено малое и тщательно дозированное количество некоторого подходящего материала. Например, такой материал, как фосфор, делает кремний проводящим, добавляя в него избыточные электроны (т.е. действуя как «донор»). Кремний, легированный подобным образом, становится кремнием n

-типа. Легирование таким материалом, как бор, превращает кремний в материал
p
-типа: бор (акцептор) отбирает у кремния часть электронов, создавая в нем «дырки», которые могут заполняться электронами расположенных поблизости атомов и повышать тем самым проводимость легируемого материала. (Потоки электронов в одном направлении и дырок в противоположном образуют ток.) Электроны и дырки, обеспечивающие таким образом проводимость, называются носителями заряда.

p-n-Переходы.

Твердотельные электронные приборы представляют собой, как правило, многослойную структуру (сэндвич), одна часть которой выполнена из полупроводника p

-типа, а другая – из полупроводника
n
-типа. Пограничная область между материалами
p
-типа и
n
-типа называется
p-n-
переходом. Переход образуется положительно заряженными атомами донорной примеси с
n
-стороны и отрицательно заряженными атомами акцепторной примеси с
p
-стороны. Электрическое поле, создаваемое этими ионами, предотвращает диффузию электронов в
p
-область и дырок в
n
-область (рис. 1).

Если p

-область
p-n
-перехода соединить с положительным выводом какого-либо источника напряжения (например, батареи), а
n
-область – с отрицательным выводом, то электроны и дырки смогут диффундировать через переход. В результате из
p
-области в направлении
n
-области потечет существенный ток. В таком случае говорят, что переход смещен в прямом направлении. При обратном смещении, когда описанные выше подсоединения имеют противоположную полярность, от области
n
-типа к области
p
-типа потечет лишь предельно малый обратный ток.

Современные технологии полупроводникового производства

В последние годы к стадии возможности использования в коммерческом производстве подошел целый ряд технологий, позволяющих заметно увеличить скорость работы транзисторов, либо столько же заметно уменьшить размер чипа без перехода на более тонкий технологический процесс. Некоторые из этих технологий уже начали применяться в течение последних месяцев, их названия упоминаются в новостях, относящихся к компьютерам, все чаще. Эта статья – попытка сделать краткий обзор подобных технологий, попытавшись заглянуть в самое ближайшее возможное будущее чипов, находящихся в наших компьютерах.

Первая интегральная схема, где соединения между транзисторами сделаны прямо на подложке, была сделана более 40 лет назад. За это время технология их производства претерпела ряд больших и малых улучшений, пройдя от первой схемы Джека Килби до сегодняшних центральных процессоров, состоящих из десятков миллионов транзисторов, хотя для серверных процессоров впору уже говорить о сотнях миллионов.

Здесь пойдет речь о некоторых последних технологиях в этой области, таких, как медные проводники в чипах, SiGe, SOI, перовскиты. Но сначала необходимо в общих чертах затронуть традиционный процесс производства чипов из кремниевых пластин. Нет необходимости описывать процесс превращения песка в пластины, поскольку все эти технологии не имеют к столь базовым шагам никакого отношения, поэтому начнем с того, что мы уже имеем кремниевую пластину, диаметр которой на большинстве сегодняшних фабрик, использующих современные технологии, составляет 20 см. Ближайшим шагом на ее превращении в чипы становится процесс окисления ее поверхности, покрытия ее пленкой окислов — SiO2, являющейся прекрасным изолятором и защитой поверхности пластины при литографии.

Дальше на пластину наносится еще один защитный слой, на этот раз — светочувствительный, и происходит одна из ключевых операций — удаление в определенных местах ненужных участков его и пленки окислов с поверхности пластины, до обнажения чистого кремния, с помощью фотолитографии.

На первом этапе пластину с нанесённой на её поверхность плёнкой светочувствительного слоя помещают в установку экспонирования, которая по сути работает как фотоувеличитель. В качестве негатива здесь используется прецизионная маска — квадратная пластина кварцевого стекла покрытая плёнкой хрома там, где требуется. Хромированные и открытые участки образуют изображение одного слоя одного чипа в масштабе 1:5. По специальным знакам, заранее сформированным на поверхности пластины, установка автоматически выравнивает пластину, настраивает фокус и засвечивает светочувствительный слой через маску и систему линз с уменьшением так, что на пластине получается изображение кристалла в масштабе 1:1. Затем пластина сдвигается, экспонируется следующий кристалл и так далее, пока не обработаются все чипы на пластине. Сама маска тоже формируется фотохимическим способом, только засвечивание светочувствительного слоя при формировании маски происходит по программе электронным лучом примерно также, как в телевизионном кинескопе.

В результате засвечивания химический состав тех участков светочувствительного слоя, которые попали под прозрачные области фотомаски, меняется. Что дает возможность удалить их с помощью соответствующих химикатов или других методов, вроде плазмы или рентгеновских лучей.

После чего аналогичной процедуре (уже с использованием других веществ, разумеется) подвергается и слой окислов на поверхности пластины. И снова, опять же, уже новыми химикатами, снимается светочувствительный слой:

Потом накладывается следующая маска, уже с другим шаблоном, потом еще одна, еще, и еще… Именно этот этап производства чипа является критическим в плане ошибок: любая пылинка или микроскопический сдвиг в сторону при наложении очередной маски, и чип уже может отправиться на свалку. После того, как сформирована структура чипа, пришло время для изменения атомной структуры кремния в необходимых участках путем добавления различных примесей. Это требуется для того, чтобы получить области кремния с различными электрическими свойствами — p-типа и n-типа, то есть, как раз то, что требуется для создания транзистора. Для формирования p-областей используются бор, галлий, алюминий, для создания n-областей — сурьма, мышьяк, фосфор.

Поверхность пластины тщательно очищается, чтобы вместе с примесями в кремний не попали лишние вещества, после чего она попадает в камеру для высокотемпературной обработки и на нее, в том или ином агрегатном состоянии, с использованием ионизации или без, наносится небольшое количество требуемых примесей. После чего, при температуре порядка от 700 до 1400 градусов, происходит процесс диффузии, проникновения требуемых элементов в кремний на его открытых в процессе литографии участках. В результате на поверхности пластины получаются участки с нужными свойствами. И в конце этого этапа на их поверхность наносится все та же защитная пленка из окисла кремния, толщиной порядка одного микрона.

Все. Осталось только проложить по поверхности чипа металлические соединения (сегодня для этой роли обычно используется алюминий, а соединения сегодня обычно расположены в 6 слоев), и дело сделано. В общих чертах, так в результате и получается, к примеру, классический МОП транзистор: при наличии напряжения на затворе начинается перемещение электронов между измененными областями кремния.

Теперь, слегка пробежавшись по классическому процессу создания сегодняшних чипов, можно более уверенно перейти к обзору технологий, которые предполагают внести определенные коррективы в эту картину.

Медные соединения

IBM, техпроцесс CMOS 7S, первая медная технология, начавшая применяться при коммерческом производстве чипов

Первая из них, уже начавшая широко внедряться в коммерческое производство — это замена на последнем этапе алюминия на медь. Медь является лучшим проводником, чем алюминий (удельное сопротивление 0,0175 против 0,028 ом*мм2/м), что, в полном соответствии с законами физики, позволяет уменьшить сечение межкомпонентных соединений. Вполне своевременно, учитывая постоянное движение индустрии в сторону уменьшения размеров транзисторов и увеличения плотности их размещения на чипе, когда использование алюминия начинает становиться невозможным. Индустрия начала сталкиваться с этой проблемой уже в первой половине 90-х. Вдобавок, что толку в ускорении самих транзисторов, если соединения между ними будут съедать весь прирост скорости?

Проблемой при переходе на медь являлось то, что алюминий куда лучше образует контакт с кремнием. Однако после не одного десятка лет исследований, ученым удалось найти принцип создания сверхтонкой разделительной области между кремниевой подложкой и медными проводниками, предотвращающей диффузию этих двух материалов.

По данным IBM, применение в технологическом процессе меди вместо алюминия, позволяет добиться снижения себестоимости примерно на 20-30 процентов за счет снижения площади чипа. Их технология CMOS 7S, использующая медные соединения, позволяет создавать чипы, содержащие до 150-200 миллионов транзисторов. И, наконец, просто увеличение производительности чипа (до 40 процентов) за счет меньшего сопротивления проводников.

IBM начала предлагать клиентам эту технологию в начале 98 года, в конце этого года своим заказчикам предложили использовать медь при производстве их чипов TSMC и UMC, AMD начинает выпуск медных Athlon в начале 2000 года, Intel переходит на медь в 2002 году, одновременно с переходом на 0.13 мкм техпроцесс.

SiGe

Соединения — соединениями, но уже на скорости чипа в несколько ГГц перестает справляться с нагрузкой сама кремниевая подложка. И если для традиционных областей применения чипов кремния пока достаточно, в области беспроводной связи уже давно дефицит на дешевые скоростные чипы. Кремний — дешево, но медленно, арсенид галлия — быстро, но дорого. Решением здесь стало использование в качестве материала для подложек соединения двух основ полупроводниковой индустрии — кремния с германием, SiGe. Практические результаты по этой технологии стали появляться с конца 80-х годов. Первый биполярный транзистор, созданный с использованием SiGe (когда германий используется как материал для базы), был продемонстрирован в 1987 году. В 1992 году уже появилась возможность применения при производстве чипов с SiGe транзисторами стандартной технологии КМОП с разрешением 0.25 мкм.

Результатом применения становится увеличение скорости чипов в 2-4 раза по сравнению с той, что может быть достигнута путем использования кремния, во столько же снижается и их энергопотребление. При этом, в ход вступает все тот же решающий фактор — стоимость: SiGe чипы можно производить на тех же линиях, которые используются при производстве чипов на базе обычных кремниевых пластин, таким образом отпадает необходимость в дорогом переоснащении производственного оборудования. По информации IBM, потенциальная скорость транзистора (не чипа!) с их технологией составляет сегодня 45-50 ГГц (что далеко не рекорд), ведутся работы над увеличением этой цифры до 120 ГГц. Впрочем, в ближайшие годы прихода SiGe в компьютер ждать не стоит — при тех скоростях, что потребуется PC чипам в ближайшем будущем вполне хватает кремния, легированного такими технологиями, как медные соединения или SOI.

Кремний на изоляторе (silicon-on-insulator, SOI)

Еще одна технология, позволяющая достаточно безболезненно повысить скорость чипов, не требуя от производителей отказаться от всех их сегодняшних наработок. Как и технология медных соединений, SOI позволяет создателям чипов убить двух зайцев одним выстрелом — поднять скорость, до 25 процентов, одновременно снизив энергопотребление. Что из себя представляет эта технология? Вспомним начало обработки кремниевой пластины — она покрывается тонкой пленкой окисла кремния. А в SOI к этому бутерброду добавляется еще один элемент — сверху опять наносится тонкий слой кремния:

Вот и получается — кремний на изоляторе. Зачем это понадобилось? Чтобы уменьшить емкость. В идеале МОП транзистор должен выключаться, как только будет исчезнет питание с затвора (или наоборот, появится, в случае с КМОП). Но наш мир далеко не идеален, это справедливо и в данном конкретном случае. На время срабатывания транзистора напрямую влияет емкость области между между измененными участками кремния, через которую и идет ток при включении транзистора. Он начинает и заканчивает идти не мгновенно, а только после, соответственно, зарядки и разрядки этой промежуточной зоны. Понятно, что чем меньше это время, тем быстрее работает транзистор, можно сказать, что тем меньше его инерция. Для того и придумана SOI — при наличии между измененными участками и основной массой кремния тонкой пластинки изолирующего вещества (окисел кремния, стекло, и т.д.), этот вопрос снимается и транзистор начинает работать заметно быстрее.

Основная сложность в данном случае, как и в случае с медными соединениями, заключается в разных физических свойствах вещества. Кремний, используемый в подложке — кристалл, пленка окислов — нет, и закрепить на ее поверхности, или же не поверхности другого изолятора еще один слой кристаллического кремния весьма трудно. Вот как раз проблема создания идеального слоя и заняла весьма много времени. Не так давно IBM уже продемонстрировала процессоры PowerPC и чипы SRAM, созданные с использованием этой технологии, просигнализировав этим о том, что SOI подошла к стадии возможности коммерческого применения. Совсем недавно, IBM объявила о том, что она достигла возможности сочетать SOI и медные соединения на одном чипе, пользуясь плюсами обеих технологий. Тем не менее, пока что никто кроме нее не заявил публично о намерении использовать эту технологию при производстве чипов, хотя о чем-то подобном речь идет.

Перовскиты

Поиски замены на роль изолирующей пленки на поверхности подложки идут давно, учитывая, что как и алюминий, диоксид кремния начинает сдавать в последнее время — при постоянном увеличении плотности транзисторов на чипе необходимо уменьшать толщину его изолирующего слоя, а этому есть предел, поставленный его электрическими свойствами, который уже довольно близок. Однако пока, несмотря на все попытки, SiO2 по прежнему находится на своем месте. В свое время IBM, предполагала использовать в этой роли полиамид, теперь пришла очередь Motorola выступить со своим вариантом — перовскиты.

Этот класс минералов в природе встречается довольно редко — Танзания, Бразилия и Канада, но может выращиваться искусственно. Кристаллы перовскитов отличаются очень высокими диэлектрическими свойствами: использованный Motorola титанат стронция превосходит по этому параметру диоксид кремния более чем на порядок. А это позволяет в три-четыре раза снизить толщину транзисторов по сравнению с использованием традиционного подхода. Что, в свою очередь, позволяет значительно снизить ток утечки, давая возможность заметно увеличить плотность транзисторов на чипе, одновременно сильно уменьшая его энергопотребление.

Пока что эта технология находится в достаточно ранней стадии разработки, однако Motorola уже продемонстрировала возможность нанесения пленки перовскитов на поверхность стандартной 20 см кремниевой пластины, а также рабочий КМОП транзистор, созданный на базе этой технологии.

Спасибо Игорю Чудакову за помощь в создании этой статьи

Диоды с p-n-переходом.

Диоды – это устройства, которые проводят электрический ток только в одном направлении. Следовательно, p-n

-переходы идеально подходят для их использования в диодных выпрямителях, преобразующих переменный ток в постоянный.

Когда напряжение обратного смещения на диоде с p-n

-переходом увеличивается до критического значения, называемого напряжением пробоя, электрическое поле в области перехода создает электроны и дырки в результате соударений носителей заряда, обладающих высокой энергией, с атомами полупроводников. В ходе этого процесса, называемого ионизацией, образуется «лавина» новых носителей, вследствие чего обратный ток при напряжении пробоя существенно возрастает.

Диодные выпрямители обычно работают при обратных напряжениях ниже напряжения пробоя. Однако резкое и значительное нарастание обратного тока, происходящее при достижении напряжения пробоя, можно использовать для стабилизации напряжения или для фиксации опорного уровня напряжения. Диоды, предназначенные для таких применений, называются полупроводниковыми стабилитронами. См. также

ЭЛЕКТРОННЫЕ СХЕМЫ.

Емкость, зависящая от приложенного напряжения, соответствует обратно смещенному p-n

-переходу. Такую управляемую напряжением емкость можно применять, например, в настраиваемых контурах. Диоды, в которых используются такие переходы, называют варикапами.

Резкие p-n

-переходы, имеющие очень малую толщину и сильно легированные с обеих сторон, находят применение в туннельных диодах, т.е. диодах, в которых электроны могут «туннелировать» сквозь переход. Туннелирование – это квантовомеханический процесс, позволяющий некоторым электронам проходить сквозь потенциальный барьер. Как при обратном, так и при прямом смещении туннельный диод пропускает ток при очень низком напряжении. Но при некотором критическом значении напряжения прямого смещения эффект туннелирования уменьшается, и, в конечном счете, преобладающим становится прямой ток от
p
-области к
n
-области. Ток, обусловленный туннелированием, продолжает уменьшаться, пока напряжение повышается от критического уровня до некоторого более высокого значения. В этом диапазоне напряжений, где происходит уменьшение туннелирования, возникает отрицательное сопротивление, которое можно использовать в различных типах переключателей, автогенераторов, усилителей и других электронных устройств.

p-n

-Переход может также находить применение в качестве фотодиода или солнечного элемента (фотоэлектрического перехода). Когда свет, который состоит из фотонов, освещает
p-n
-переход, атомы полупроводника поглощают фотоны, в результате чего образуются дополнительные пары электронов и дырок. Поскольку эти дополнительные носители собираются в области перехода, от
n
-области в
p
-область течет избыточный ток. Величина этого обратного тока пропорциональна скорости, с которой генерируются дополнительные носители, а эта скорость, в свою очередь, зависит от интенсивности падающего света.

В фотодиодах этот обратный ток при фиксированном напряжении обратного смещения зависит от интенсивности освещения. Поэтому фотодиоды часто используют в фотометрах и системах распознавания символов.

Полученную от p-n

-перехода энергию солнечные элементы передают в подключенную к ним внешнюю нагрузку. Солнечные элементы, преобразующие солнечный свет в электричество, находят широкое применение в качестве источников электропитания для искусственных спутников Земли и в некоторых применениях на Земле.
См. также
БАТАРЕИ ЭЛЕКТРОПИТАНИЯ.

Во многих полупроводниковых материалах, таких, как арсенид галлия (GaAs), фосфид галлия (GaP) и фосфид индия (InP), электроны и дырки рекомбинируют друг с другом в области p-n

-перехода, смещенного в прямом направлении, излучая свет. Длина волны излучения зависит от используемого материала; обычно спектр излучения находится в пределах от инфракрасного (как в случае GaAs) до зеленого (как для GaP) участков. При надлежащем выборе материалов можно изготовить такие светоизлучающие диоды (СИД), которые будут давать излучение практически любого цвета (длины волны). Такие светодиоды применяют в цифровых наручных часах и в индикаторах электронных калькуляторов. Инфракрасные светодиоды могут использоваться в оптических системах связи, в которых световые сигналы, посылаемые по волоконно-оптическим кабелям, детектируются фотодиодами. Оптоэлектронные системы такого рода могут быть весьма эффективными, если используются светодиоды лазерного типа, а фотоприемники работают в лавинном режиме с обратным смещением.
См. также
ВОЛОКОННАЯ ОПТИКА; ЛАЗЕР.

Оптические свойства полупроводников

Зон­ная струк­ту­ра кри­стал­лов про­яв­ля­ет­ся в свой­ст­вах про­пус­ка­ния, от­ра­же­ния и по­гло­ще­ния по­лу­про­вод­ни­ка­ми элек­тро­маг­нит­но­го из­лу­че­ния. Наи­бо­лее оче­вид­но су­ще­ст­во­ва­ние за­пре­щён­ной зо­ны сле­ду­ет из то­го, что из­лу­че­ние с энер­ги­ей кван­та, мень­шей ши­ри­ны за­пре­щён­ной зо­ны $ℰ_g$ чис­то­го П., не по­гло­ща­ет­ся. По­гло­ще­ние на­чи­на­ет­ся толь­ко то­гда, ко­гда энер­гия кван­та пре­вы­сит $ℰ_g$. Для П. ти­па GaAs при низ­ких темп-рах дли­на вол­ны, на ко­то­рой ин­тен­сив­ность па­даю­ще­го из­лу­че­ния умень­ша­ет­ся в $e$ раз, при­бли­зи­тель­но рав­на 0,1 мкм. При та­ком по­гло­ще­нии кван­та све­та в П. воз­ни­ка­ют элек­трон и дыр­ка и име­ет ме­сто за­кон со­хра­не­ния ква­зи­им­пуль­са. Обыч­но им­пульс све­та зна­чи­тель­но мень­ше квази­им­пуль­сов но­си­те­лей за­ря­да, и при оп­тич. пе­ре­хо­де элек­тро­на из ва­лент­ной зо­ны в зо­ну про­во­ди­мо­сти ква­зи­им­пульс не из­ме­ня­ет­ся, так что в мо­мент ро­ж­де­ния элек­трон и дыр­ка име­ют про­ти­во­по­лож­ные ква­зи­им­пуль­сы. Та­кие пе­ре­хо­ды на­зы­ва­ют­ся пря­мы­ми; они про­ис­хо­дят в т. н. пря­мо­зон­ных П. (GaAs, InSb, Te, SiC), в ко­то­рых по­то­лок ва­лент­ной зо­ны и дно зо­ны про­во­ди­мо­сти рас­по­ло­же­ны в од­ной точ­ке зо­ны Брил­лю­эна.

Элек­трон­ные пе­ре­хо­ды со зна­чит. из­ме­не­ни­ем ква­зи­им­пуль­са про­ис­хо­дят в т. н. не­пря­мо­зон­ных П. (Ge, Si, AlAs, GaP), у ко­то­рых вер­ши­на ва­лент­ной зо­ны и дно зо­ны про­во­ди­мо­сти раз­не­се­ны в про­стран­ст­ве ква­зи­им­пуль­сов на ве­ли­чи­ну по­ряд­ка $π/d$, где $d$ – меж­атом­ное рас­стоя­ние в кри­стал­лич. ре­шёт­ке. В этом слу­чае для вы­пол­не­ния за­ко­на со­хра­не­ния ква­зи­им­пуль­са не­об­хо­ди­мо уча­стие треть­ей час­ти­цы, в ка­че­ст­ве ко­то­рой мо­жет вы­сту­пать ли­бо при­мес­ный атом, ли­бо фо­нон. Ти­пич­ная дли­на по­гло­ще­ния для не­пря­мых пе­ре­хо­дов со­став­ля­ет 1–10 мкм.

В спек­тре по­гло­ще­ния П. при­сут­ст­ву­ют ши­ро­кие энер­ге­тич. по­ло­сы, что ука­зы­ва­ет на то, что элек­тро­ны в ва­лент­ных зо­нах свя­за­ны сла­бо и лег­ко по­ля­ри­зу­ют­ся под дей­ст­ви­ем элек­трич. по­ля. Это оз­на­ча­ет, что П. ха­рак­те­ри­зу­ют­ся от­но­си­тель­но боль­шой ди­элек­трич. про­ни­цае­мо­стью $ε$, напр. в Ge $ε=16$, в GaAs $ε=11$, в PbTe $ε=30$. Бла­го­да­ря боль­шим зна­че­ни­ям $ε$ ку­ло­нов­ское взаи­мо­дей­ст­вие элек­тро­нов и ды­рок друг с дру­гом или с за­ря­жен­ны­ми при­ме­ся­ми силь­но по­дав­ле­но, ес­ли они на­хо­дят­ся друг от дру­га на рас­стоя­нии, пре­вы­шаю­щем раз­ме­ры эле­мен­тар­ной ячей­ки. Это и по­зво­ля­ет во мно­гих слу­ча­ях рас­смат­ри­вать дви­же­ние ка­ж­до­го но­си­те­ля за­ря­да не­за­ви­си­мо от дру­гих. Ес­ли бы ку­ло­нов­ское взаи­мо­дей­ст­вие не ос­лаб­ля­лось, то при­мес­ные ио­ны мог­ли бы свя­зы­вать но­си­те­ли за­ря­да в ус­той­чи­вые, ло­ка­ли­зован­ные в про­стран­ст­ве об­ра­зо­ва­ния с энер­ги­ей ок. 10 эВ. В этом слу­чае при темп-рах ок. 300 К те­п­ло­вое дви­же­ние прак­ти­че­ски не мог­ло бы ра­зо­рвать эти свя­зи, соз­дать сво­бод­ные но­си­те­ли за­ря­да и при­вес­ти к за­мет­ной элек­тро­про­вод­но­сти. Та­кое свя­зы­ва­ние име­ет ме­сто в П. и ди­элек­три­ках, но из-за ос­лаб­ле­ния ку­ло­нов­ско­го взаи­мо­дей­ст­вия и от­но­си­тель­но ма­лых эф­фек­тив­ных масс элек­тро­нов и ды­рок (ок. 0,1–0,5 от мас­сы сво­бод­но­го элек­тро­на) энер­гия свя­зи та­ких об­ра­зо­ва­ний (эк­си­то­нов) со­став­ля­ет 1–50 мэВ, что мно­го мень­ше энер­гии ио­ни­за­ции ато­мов. Эк­си­то­ны лег­ко иони­зу­ют­ся при темп-рах вы­ше темп-ры жид­ко­го азо­та и, т. о., не пре­пят­ст­ву­ют об­ра­зо­ва­нию сво­бод­ных но­си­те­лей. Тем не ме­нее при низ­ких темп-рах об­ра­зо­ва­ние эк­си­то­нов при­во­дит к по­гло­ще­нию в чис­тых П. элек­тро­маг­нит­но­го из­лу­че­ния с энер­ги­ей кван­та, мень­шей $ℰ_g$ на ве­ли­чи­ну энер­гии свя­зи эк­си­то­на.

Про­зрач­ность П. в уз­кой об­лас­ти час­тот вбли­зи края собств. по­гло­ще­ния из­ме­ня­ет­ся под дей­ст­ви­ем внеш­них (элек­трич., маг­нит­но­го и др.) по­лей. Элек­трич. по­ле, ус­ко­ряя элек­трон, мо­жет в про­цес­се оп­тич. пе­ре­хо­да пе­ре­дать ему не­боль­шую до­пол­нит. энер­гию, в ре­зуль­та­те че­го пря­мые оп­тич. пе­ре­хо­ды из ва­лент­ной зо­ны в зо­ну про­во­ди­мо­сти про­ис­хо­дят под дей­ст­ви­ем кван­тов све­та с энер­ги­ей, мень­шей $ℰ_g$ (Кел­ды­ша – Фран­ца эф­фект).

В од­но­род­ном маг­нит­ном по­ле за­кон со­хра­не­ния ква­зи­им­пуль­са при­во­дит к со­хра­не­нию кру­го­во­го дви­же­ния элек­тро­нов и ды­рок по­сле по­гло­ще­ния из­лу­чения. В ре­зуль­та­те за­ви­си­мость ко­эф. по­гло­ще­ния от час­то­ты па­даю­ще­го из­лу­че­ния при­ни­ма­ет вид уз­ких пи­ков. Кро­ме собств. по­гло­ще­ния (за счёт пря­мых или не­пря­мых пе­ре­хо­дов), в П. име­ет ме­сто по­гло­ще­ние све­та сво­бод­ны­ми но­си­те­ля­ми, свя­зан­ное с их пе­ре­хо­да­ми в пре­де­лах од­ной раз­ре­шён­ной зо­ны. Их вклад в об­щее по­гло­ще­ние мал, по­сколь­ку чис­ло сво­бод­ных но­си­те­лей за­ря­да в П. ма­лó по срав­не­нию с пол­ным чис­лом ва­лент­ных элек­тро­нов, и для их реа­ли­за­ции тре­бу­ет­ся уча­стие треть­ей час­ти­цы – при­ме­си или фо­но­на. Кро­ме то­го, в не­ле­ги­ро­ван­ных П. со зна­чит. до­лей ион­ной свя­зи на­блю­да­ет­ся по­гло­ще­ние да­лё­ко­го ИК-из­лу­че­ния за счёт воз­бу­ж­де­ния ко­ле­ба­ний ре­шёт­ки – фо­но­нов.

Спектр фо­то­лю­ми­нес­цен­ции П. со­сре­до­то­чен в уз­кой об­лас­ти вбли­зи ши­ри­ны за­пре­щён­ной зо­ны. Вклад в фо­то­лю­ми­нес­цен­цию П. мо­гут вно­сить разл. ме­ха­низ­мы из­лу­ча­тель­ной ре­ком­би­на­ции: зо­на – зо­на, зо­на – при­месь, до­нор – ак­цеп­тор, с уча­сти­ем фо­но­на, из­лу­че­ние сво­бод­ных, свя­зан­ных или ло­ка­ли­зо­ван­ных эк­си­то­нов, эк­си­тон-по­ля­ри­тон­ная, би­эк­си­тон­ная ре­ком­би­на­ции. В не­ле­ги­ро­ван­ных струк­ту­рах с кван­то­вы­ми яма­ми низ­ко­тем­пе­ра­тур­ная фо­то­лю­ми­нес­цен­ция об­у­слов­ле­на из­лу­ча­тель­ной ре­ком­би­на­ци­ей эк­си­то­нов, ло­ка­ли­зо­ван­ных на ше­ро­хо­ва­то­стях по­верх­но­сти и флук­туа­ци­ях со­ста­ва.

Оп­тич. свой­ст­ва твёр­дых рас­тво­ров П. мож­но ме­нять в ши­ро­ких пре­де­лах, под­би­рая хи­мич. со­став рас­тво­ра, что об­услов­ли­ва­ет их ши­ро­кое при­ме­не­ние в при­бо­рах оп­то­элек­тро­ни­ки, в пер­вую оче­редь в ка­че­ст­ве ра­бо­чих ма­те­риа­лов ла­зе­ров, све­то- и фо­то­дио­дов, сол­неч­ных эле­мен­тов, де­тек­то­ров из­лу­че­ния.

Транзисторы.

p-n

-Переходы используются также в транзисторах и более сложных транзисторных структурах – интегральных схемах.

В биполярном транзисторе носителями заряда служат как электроны, так и дырки. В нем имеются два близко расположенных и включенных навстречу друг другу перехода, которые образуют тем самым три отдельных слоя p-n-p

— либо
n-p-n
-структуры. В
p-n-p
-транзисторе
p
-область, служащая слоем ввода, называется эмиттером; центральная
n
-область является базой;
p
-область, служащая выводом, называется коллектором. В
n-p-n
-транзисторе
p
— и
n
-области меняются местами. В
p-n-p
-транзисторе дырки инжектируются через эмиттерный переход, смещенный в прямом направлении, и собираются на коллекторном переходе, смещенном в обратном направлении; в
n-p-n
-приборе то же самое происходит с электронами. Количество инжектируемых и собираемых носителей заряда можно менять путем изменения малого тока, подаваемого в область базы.

Полевой транзистор представляет собой униполярный прибор; это означает, что только основной тип носителей заряда – либо электроны в областях с проводимостью n

-типа, либо дырки в областях с проводимостью
p
-типа – проходят через проводящий канал прибора. Ток в канале изменяется посредством электрического поля, создаваемого напряжением, приложенным к переходу (с обратным смещением) или к изолирующему слою на поверхности прибора.

Биполярный транзистор – это, по существу, прибор, управляемый током, а полевой транзистор – прибор, управляемый напряжением. Оба типа транзисторов широко применяются в схемах микроэлектроники. См. также

ИНТЕГРАЛЬНАЯ СХЕМА; ТРАНЗИСТОР.

p-n-p-n-Приборы.

На рис. 2 представлена четырехслойная структура, называемая триодным тиристором (SCR). Это наиболее важный тип приборов со структурой p-n-p-n

. Другие приборы с этой структурой – двухвыводной и двусторонний диоды.

Тиристор представляет собой эффективный переключатель, позволяющий работать со значительными уровнями мощностей. При прямом напряжении на тиристоре переход B

имеет смещение в обратном направлении, так что тока через него практически нет. Но когда напряжение смещения в прямом направлении увеличивается до некоторого критического уровня, на переходе
B
развивается лавинный процесс. Носители заряда инжектируются затем в средние области
N
и
P
, вызывая диффузию дырок на переходе
Ap-n-p
-структуры и диффузию электронов на переходе
Cn-p-n
-структуры. В результате ток увеличивается, и падение напряжения на приборе становится малым. Этот процесс можно инициировать при меньшем прямом смещении, инжектируя небольшой ток в одну из точек слоя
p
управляющего электрода. Отсюда следует, что SCR может служить почти идеальным переключателем, в котором практически не протекает ток в закрытом состоянии, но в открытом состоянии течет значительный ток при низком напряжении. Приборы SCR широко используются в схемах управления электродвигателями и печами, в регуляторах освещения и других применениях.

Сверхвысокочастотные приборы.

Транзисторы находят широкое применение в СВЧ-технике. К тому же сверхвысокие частоты можно генерировать с помощью полупроводниковых компонентов, имеющих всего два вывода, но обладающих отрицательным сопротивлением, подобно туннельным диодам. К наиболее распространенным СВЧ-приборам такого типа относятся лавинно-пролетные диоды и диоды Ганна.

В лавинно-пролетном диоде при лавинном пробое в обратносмещенном p-n

-переходе возникают избыточные носители в области дрейфа, т.е. в области, где носители заряда движутся под влиянием приложенного напряжения. Если размер области дрейфа выбран правильно, то избыточные носители проходят ее на протяжении отрицательного полупериода напряжения переменного тока. Далее ток увеличивается при уменьшении напряжения. При этом существует своего рода отрицательная проводимость, которую можно использовать в объемном резонаторе для генерации СВЧ-колебаний.

Принцип действия диода Ганна основан на свойстве таких полупроводников, как GaAs и InP, вызывать замедление электронов в материале при некоторой критической напряженности электрического поля. В соответствии с законом Ома ток при слабых полях пропорционален напряженности поля. Однако при очень сильных полях (с напряженностью порядка нескольких тысяч вольт на сантиметр) энергии электронов в GaAs или InP возрастают до величин, при которых свобода движения электронов в полупроводниковом кристалле ограничивается. Вследствие их пониженной подвижности при превышении напряженностью электрического поля некоторого критического уровня электроны еще более замедляются. Как и в лавинно-пролетном диоде, здесь возникает некоторая разновидность отрицательной проводимости, которую можно использовать для генерации СВЧ-колебаний. См. также

СВЕРХВЫСОКИХ ЧАСТОТ ДИАПАЗОН.

Классификация полупроводников

По аг­ре­гат­но­му со­стоя­нию П. де­лят­ся на твёр­дые и жид­кие (см. Жид­кие по­лу­про­вод­ни­ки), по внутр. струк­ту­ре – на кри­стал­лич. и аморф­ные (см. Аморф­ные и стек­ло­об­раз­ные по­лу­про­вод­ни­ки), по хи­мич. со­ста­ву – на не­ор­га­ни­че­ские и ор­га­ни­че­ские. Наи­бо­лее ши­ро­ко изу­че­ны и ис­поль­зу­ют­ся в по­лу­про­вод­ни­ко­вой элек­тро­ни­ке кри­стал­лич. не­ор­га­нич. П. К ним от­но­сят­ся:

– эле­мен­тар­ные П. – эле­мен­ты IV груп­пы ко­рот­кой фор­мы пе­рио­дич. сис­те­мы хи­мич. эле­мен­тов – уг­ле­род С (гра­фит, ал­маз, гра­фен, на­нот­руб­ки), гер­ма­ний Ge и крем­ний Si (ба­зо­вый эле­мент боль­шин­ст­ва ин­те­граль­ных схем в мик­ро­элек­тро­ни­ке), эле­мен­ты VI груп­пы – се­лен Se и тел­лур Te, а так­же их со­едине­ния, напр. кар­бид крем­ния SiC, об­ра­зую­щий слои­стые струк­ту­ры, и не­пре­рыв­ный ряд твёр­дых рас­тво­ров SixGe1–x;

– со­еди­не­ния AIIIBV, где А=Al, Ga, In; В=N, Р, As, Sb, напр. GaAs, AlAs, InAs, InSb, GaN, GaP и др.

– со­еди­не­ния AIIBVI, где А=Zn, Cd, Hg; B=S, Se, Te, напр. ZnTe, ZnSe, ZnO, ZnS, CdTe, CdS, HgTe и др.;

– со­еди­не­ния эле­мен­тов I и V групп с эле­мен­та­ми VI груп­пы, напр. PbS, PbSe, PbTe, Bi2Se3, Bi2Te3,Cu2O и др.;

– трой­ные и чет­вер­ные твёр­дые рас­т­во­ры на ос­но­ве со­еди­не­ний A III B V и A II B VI , напр. GaxAl1–xAs, GaxAl1–xN, CdxHg1–xTe, CdxMn1–xTe, GaxIn1–xAsyP1–y и др.

При­ме­ры аморф­ных и стек­ло­об­раз­ных П.: аморф­ный гид­ри­ро­ван­ный крем­ний a-Si:H, аморф­ные Ge, Se, Te, мно­го­ком­по­нент­ные стек­ло­об­раз­ные спла­вы халь­ко­ге­ни­дов на ос­но­ве S, Se, Te.

К ор­га­ни­че­ским П. от­но­сят­ся: ряд ор­га­нич. кра­си­те­лей, аро­ма­тич. со­еди­не­ния (наф­та­лин, ан­тра­цен и др.), по­ли­ме­ры с со­пря­жён­ны­ми свя­зя­ми, не­ко­то­рые при­род­ные пиг­мен­ты. Ор­га­нич. П. су­ще­ст­ву­ют в ви­де мо­но­кри­стал­лов, по­ли­кри­стал­лич. или аморф­ных по­рош­ков и плё­нок. Дос­то­ин­ст­во ор­га­нич. П. – от­но­сит. де­ше­виз­на их про­из-ва и ме­ха­нич. гиб­кость. Они при­ме­ня­ют­ся как све­то­чув­ст­вит. ма­те­риа­лы для фо­то­эле­мен­тов и ПЗС-мат­риц; на их ос­нове соз­да­ны све­то­из­лу­чаю­щие дио­ды, в т. ч. для гиб­ких эк­ра­нов и мо­ни­то­ров.

Боль­шин­ст­во изу­чен­ных П. на­хо­дят­ся в кри­стал­лич. со­стоя­нии. Свой­ст­ва та­ких П. в зна­чит. ме­ре оп­ре­де­ля­ют­ся их хи­мич. со­ста­вом и сим­мет­ри­ей кри­с­тал­лич. ре­шёт­ки. Ато­мы крем­ния, об­ла­дая че­тырь­мя ва­лент­ны­ми элек­тро­на­ми, об­ра­зу­ют ку­бич. кри­стал­лич. ре­шёт­ку ти­па ал­ма­за с ко­ва­лент­ной свя­зью ато­мов (кри­стал­ло­гра­фич. класс $m\bar 3m$, или $O_h$). Та­кую же кри­стал­лич. ре­шёт­ку име­ют гер­ма­ний и се­рое оло­во. В GaAs ка­ж­дый атом об­ра­зу­ет 4 ва­лент­ные свя­зи с бли­жай­ши­ми со­се­дя­ми, в ре­зуль­та­те че­го по­лу­ча­ет­ся кри­стал­лич. ре­шёт­ка, по­доб­ная ре­шёт­ке ал­ма­за, в ко­то­рой бли­жай­ши­ми со­се­дя­ми ка­тио­на Ga яв­ля­ют­ся анио­ны As и на­обо­рот. За счёт час­тич­но­го пе­ре­рас­пре­де­ле­ния элек­тро­нов ато­мы Ga и As ока­зы­ва­ют­ся раз­но­имён­но за­ря­жен­ны­ми и свя­зи ме­ж­ду ато­ма­ми ста­но­вят­ся час­тич­но ион­ны­ми. Кри­стал­лич. ре­шёт­ка GaAs не об­ла­да­ет цен­тром ин­вер­сии, по­это­му в та­ких П. воз­ни­ка­ют эф­фек­ты, от­сут­ст­вую­щие в цен­тро­сим­мет­рич­ных по­лу­про­вод­ни­ко­вых струк­ту­рах, напр. пье­зо­элек­три­че­ст­во (см. Пье­зо­элек­три­ки), ге­не­ра­ция 2-й оп­тич. гар­мо­ни­ки, фо­то­галь­ва­ни­че­ские эф­фек­ты. Струк­ту­рой, по­доб­ной ар­се­ни­ду гал­лия, об­ла­да­ют InAs, InP, ZnTe, ZnSe и др.

Чис­тые и струк­тур­но со­вер­шен­ные П. по­лу­ча­ют в ре­зуль­та­те кри­стал­ли­за­ции из рас­пла­ва или рас­тво­ра. Для соз­да­ния тон­ких по­лу­про­вод­ни­ко­вых плё­нок при­ме­ня­ют ме­тод эпи­так­сии из жид­кой или га­зо­вой фа­зы.

Рейтинг
( 1 оценка, среднее 4 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]