Что такое электрический заряд и каковы его свойства?

Научное обоснование многих электрических явлений стало возможным благодаря опытам Кулона, на основании которых учёный ввёл термин «точечный электрический заряд». Исследуя природу электризации, французский физик с помощью изобретённых им крутильных весов, открыл закон взаимодействия точечных зарядов, известный нам как закон Кулона.

Впоследствии этот основополагающий закон помог учёным сформировать представление о строении атомов, объяснить природу электричества. Это способствовало созданию источников электрического тока, без которого современного уровня научно-технического прогресса не удалось бы достигнуть.

История

На существование электрических зарядов обращали внимание мыслители ещё до нашей эры. Однако они не способны были объяснить их природу и, тем более, описать взаимодействие.

Прошло много веков до того момента, когда учёные вплотную занялись изучением электрических явлений, что и привело их к открытиям в данной области. В частности Уильям Гильберт ещё в XVI веке, не понимая природы электричества, называл наэлектризованными тела, которые притягивали другие вещества.

В 1729 году, наблюдая за электризацией различных тел, Шарль Дюфе пришёл к выводу о существовании зарядов двух видов, которые называл «стеклянными» (так как они проявляли себя на стеклянной палочке) и «смоляными» (возникающими при электризации смол). Позже Бенджамином Франклином понятия «стеклянные» и «смоляные» были заменены на более общие термины: «положительные» и «отрицательные». Данными терминами мы пользуемся по сегодняшний день.

Несмотря на то, что эти исследователи понимали факт распределения зарядов, они не смогли объяснить природу явления. Вплотную приблизился к пониманию элементарных частиц как носителей зарядов учёный-физик Ш. Кулон. Придуманный им термин «точечный заряд» помог учёному понять взаимодействие элементарных частиц, что привело его к открытию закона.

На основании своего открытия, физик уже мог объяснить причину взаимодействия точечных заряженных тел (см. рис. 1).

Дискретность (неделимость) элементарных заряженных частиц доказал Роберт Милликен. Учёный подтвердил, что заряженное тело содержит целое число элементарных частиц. Он пришёл к выводу, что делимость заряда имеет предел. Носителем элементарного заряда является электрон.

На рисунке 2 изображён опыт, подтверждающий делимость заряда. Опыт показывает, что деление кратно, это наталкивает на мысль о существовании элементарных частиц.

Целостная картина сложилась после обнародования предложенной Резерфордом наглядной планетарной модели атома. Модель предполагает, что атом состоит из ядра, вокруг которого вращаются электроны. Это довольно упрощённая модель, но она уже объясняла многие электрические процессы, включая электризацию тел.

Закон Кулона

В 1785 г. французский физик Шарль Кулон экспериментально установил основной закон электростатики – закон взаимодействия двух неподвижных точечных заряженных тел или частиц.

Закон взаимодействия неподвижных электрических зарядов – закон Кулона – основной (фундаментальный) физический закон и может быть установлен только опытным путем. Ни из каких других законов природы он не вытекает.

Если обозначить модули зарядов через |q

1| и |
q
2|, то закон Кулона можно записать в следующей форме:
\(~F = k \cdot \dfrac{|q_1| \cdot |q_2|}{r^2}\) , (1)
где k

– коэффициент пропорциональности, значение которого зависит от выбора единиц электрического заряда. В системе СИ \(~k = \dfrac{1}{4 \pi \cdot \varepsilon_0} = 9 \cdot 10^9\) Н·м2/Кл2, где ε0 – электрическая постоянная, равная 8,85·10-12 Кл2/Н·м2 .

  • сила взаимодействия двух точечных неподвижных заряженных тел в вакууме прямо пропорциональна произведению модулей зарядов и обратно пропорциональна квадрату расстояния между ними.

Эту силу называют кулоновской

.

Закон Кулона в данной формулировке справедлив только для точечных

заряженных тел, т.к. только для них понятие расстояния между зарядами имеет определенный смысл. Точечных заряженных тел в природе нет. Но если расстояние между телами во много раз больше их размеров, то ни форма, ни размеры заряженных тел существенно, как показывает опыт, не влияют на взаимодействие между ними. В этом случае тела можно рассматривать как точечные.

Легко обнаружить, что два заряженных шарика, подвешенные на нитях, либо притягиваются друг к другу, либо отталкиваются. Отсюда следует, что силы взаимодействия двух неподвижных точечных заряженных тел направлены вдоль прямой, соединяющей эти тела. Подобные силы называют центральными

. Если через \(~\vec F_{12}\) обозначить силу действующую на первый заряд со стороны второго, а через \(~\vec F_{21}\) – силу, действующую на второй заряд со стороны первого (рис. 2, 3), то, согласно третьему закону Ньютона, \(~\vec F_{12} = -\vec F_{21}\) .

  • Рис. 2
  • Рис. 3

Зная закон взаимодействия точечных заряженных тел, можно вычислить силу взаимодействия любых заряженных тел. Для этого тела нужно мысленно разбить на такие малые элементы, чтобы каждый из них можно было считать точечным. Складывая геометрически силы взаимодействия всех этих элементов друг с другом, можно вычислить результирующую силу взаимодействия.

Открытие закона Кулона – первый конкретный шаг в изучении свойств электрического заряда. Наличие электрического заряда у тел или элементарных частиц означает, что они взаимодействуют друг с другом по закону Кулона. Никаких отклонений от строгого выполнения закона Кулона в настоящее время не обнаружено.

Закон Кулона справедлив и для заряженных шаров на любом расстоянии между их центрами, если объемная или поверхностная плотность заряда каждого из них постоянна. (Отметим, что в отличие от гравитационного электростатическое взаимодействие может приводить к притяжению и отталкиванию тел.)

См. также

  1. Закон Кулона

Что такое электрический заряд?

Данный термин обозначает то, что заряженное тело способно создавать электрическое поле. В более широком значении, зарядом называют количество электричества – скалярную величину, являющейся источником электромагнитного поля, участвующую в процессах электромагнитных взаимодействий. Электрический заряд не может существовать без носителя.

Элементарными носителями отрицательных зарядов являются электроны. Антиподом электрона является позитрон – устойчивая античастица, равная по массе электрону, но со знаком «+». Существует ещё одна устойчивая, положительно заряженная элементарная частица – протон.

Частицы, заряжены дробными частями (кварки), могут существовать только в составе адронов, поэтому их не считают носителями.

Заряженные протоны, из которых состоит ядро атома, тесно связаны ядерными силами. Они не могут свободно вырываться с ядра атома. Поэтому в качестве свободных носителей положительного заряда принято считать ион – атом, с орбиты которого удалился электрон. Образование отрицательных ионов происходит за счёт присоединения к ним свободных электронов.

Заряженность нейтральных атомов и молекул нулевая, а число положительных и отрицательных ионов в ячейках кристаллических решёток скомпенсировано. Поэтому тела в обычных условиях электростатически нейтральны. Между нейтральными атомами взаимодействие отсутствует.

Проводники в электрическом поле

Проводниками называют вещества, в которых может происходить упорядоченное перемещение электрических зарядов, т. е. протекать электрический ток.

Проводниками являются металлы, водные растворы солей, кислот, ионизованные газы. В проводниках есть свободные электрические заряды. В металлах валентные электроны взаимодействующих друг с другом атомов становятся свободными.

Если металлический проводник поместить в электрическое поле, то под его действием свободные электроны проводника начнут перемещаться в направлении, противоположном направлению напряженности поля. В результате на одной поверхности проводника появится избыточный отрицательный заряд, а на противоположной – избыточный положительный заряд.

Эти заряды создают внутри проводника внутреннее электрическое поле, вектор напряженности которого направлен противоположно вектору напряженности внешнего поля. Под действием внешнего электростатического поля электроны проводимости в металлическом проводнике перераспределяются так, что напряженность результирующего поля в любой точке внутри проводника равна нулю. Электрические заряды расположены на поверхности проводника.

Важно! Если внутри проводника есть полость, то напряженность в ней будет равна нулю независимо от того, какое поле имеется вне проводника и как заряжен проводник. Внутренняя полость в проводнике экранирована (защищена) от внешних электростатических полей. На этом основана электростатическая защита.

Явление перераспределения зарядов во внешнем электростатическом поле называется электростатической индукцией.

Заряды, разделенные электростатическим полем, взаимно компенсируют друг друга, если проводник удалить из поля. Если такой проводник разрезать, не вынося из поля, то его части будут иметь заряды разных знаков.

Важно! Во всех точках поверхности проводника вектор напряженности направлен перпендикулярно к его поверхности. Поверхность проводника является эквипотенциальной (потенциалы всех точек поверхности проводника равны).

Свойства

Установлено, что неподвижный заряд q неразрывно связан с электрическим полем, представителем особого вида материи. Поле является материальным носителем взаимодействия между элементарными частицами. Это свойство поля проявляется даже в случае отсутствия вещества между взаимодействующими телами.

Электрическое поле действует с силой F на пробный заряд q′, расположенный в любой точке поля.

Векторная величина:

характеризует действие электричества и называется напряженностью поля. Линии, касательные к которым совпадают с вектором напряжённости, образуют линии напряжённости. Густота линий напряжённости определяет величину напряжённости.

Линии напряженности электростатического поля точечного заряда представляют собой лучи, выходящие из одной точки (для положительного) или входящего в точку (для отрицательного) (см. рис. 4).

Электростатическое взаимодействие электромагнитных полей можно наблюдать на поведении заряженных шариков. Если эбонитовую или стеклянную палочку наэлектризовать трением и приблизить её к крохотным бузиновым шарикам, то мы увидим, как в результате силовых взаимодействий частицы отталкиваются (если они одинаковых знаков), либо притягиваются (разнознаковые).

Насыщение свободными носителями зарядов различных веществ не одинаково. Больше всего свободных электронов содержится в металлах. Поскольку заряженные электроны способны перемещаться под действием электрического поля, они являются основными транспортировщиками электрического тока в металлах. При этом движения электронов не приводит к каким-либо химическим изменениям.

Перенос зарядов в расплавленных солях или в растворах кислот осуществляется ионами. Они могут быть заряжены как положительно, так и отрицательно. В отличие от металлов, перераспределение зарядов в этих жидкостях сопровождается химическими реакциями. Поэтому растворы называют проводниками второго рода, то есть такими, которые под действием постоянных токов приводят к изменению химического состава вещества.

Таким образом, вещества условно подразделяют по типу проводимости:

  • проводники первого рода (металлы);
  • проводники второго рода (соляные, щелочные и кислотные растворы);
  • полупроводники (электронно-дырочная проводимость);
  • диэлектрики (вещества не способные проводить электричество из-за отсутствия свободных носителей).

Электризация тела

Макроскопические тела, как правило, электрически нейтральны. Нейтрален атом любого вещества, так как число электронов в нем равно числу протонов в ядре. Положительно и отрицательно заряженные частицы связаны друг с другом электрическими силами и образуют нейтральные системы.

Тело больших размеров заряжено в том случае, когда оно содержит избыточное количество элементарных частиц с одним знаком заряда. Отрицательный

заряд тела обусловлен избытком электронов по сравнению с протонами, а
положительный
заряд – их недостатком.

Для того чтобы получить электрически заряженное макроскопическое тело или, как говорят, наэлектризовать

его, нужно отделить часть отрицательного заряда от связанного с ним положительного.

Проще всего это сделать с помощью трения. Если провести расческой по волосам, то небольшая часть наиболее подвижных заряженных частиц – электронов – перейдет с волос на расческу и зарядит ее отрицательно, а волосы зарядятся положительно. При электризации трением оба тела приобретают противоположные по знаку, но одинаковые по модулю заряды.

Наэлектризовать тела с помощью трения очень просто. А вот объяснить, как это происходит, оказалось очень непростой задачей.

1 версия

. При электризации тел важен тесный контакт между ними. Электрические силы удерживают электроны внутри тела. Но для разных веществ эти силы различны. При тесном контакте небольшая часть электронов того вещества, у которого связь электронов с телом относительно слаба, переходит на другое тело. Перемещения электронов при этом не превышают размеров межатомных расстояний (10-8 см). Но если тела разъединить, то оба они окажутся заряженными. Так как поверхности тел никогда не бывают идеально гладкими, то необходимый для перехода тесный контакт между телами устанавливается только на небольших участках поверхностей. При трении тел друг о друга число участков с тесным контактом увеличивается, и тем самым увеличивается общее число заряженных частиц, переходящих от одного тела к другому. Но не ясно, как в таких не проводящих ток веществах (изоляторах), как эбонит, плексиглас и другие, могут перемещаться электроны. Они ведь связаны в нейтральных молекулах.

2 версия

. На примере ионного кристалла LiF (изолятора) это объяснение выглядит так. При образовании кристалла возникают различного рода дефекты, в частности вакансии – незаполненные места в узлах кристаллической решетки. Если число вакансий для положительных ионов лития и отрицательных – фтора неодинаково, то кристалл окажется при образовании заряженным по объему. Но заряд в целом не может сохраняться у кристалла долго. В воздухе всегда имеется некоторое количество ионов, и кристалл будет их вытягивать из воздуха до тех пор, пока заряд кристалла не нейтрализуется слоем ионов на его поверхности. У разных изоляторов объемные заряды различны, и поэтому различны заряды поверхностных слоев ионов. При трении поверхностные слои ионов перемешиваются, и при разъединении изоляторов каждый из них оказывается заряженным.

А могут ли электризоваться при трении два одинаковых изолятора, например те же кристаллы LiF? Если они имеют одинаковые собственные объемные заряды, то нет. Но они могут иметь и различные собственные заряды, если условия кристаллизации были разными и появилось разное число вакансий. Как показал опыт, электризация при трении одинаковых кристаллов рубина, янтаря и др. действительно может происходить. Однако приведенное объяснение вряд ли правильно во всех случаях. Если тела состоят, к примеру, из молекулярных кристаллов, то появление вакансий у них не должно приводить к заряжению тела.

Еще один способ электризации тел – воздействие на них различных излучений

(в частности, ультрафиолетового, рентгеновского и
γ
-излучения). Этот способ наиболее эффективен для электризации металлов, когда под действием излучений с поверхности металла выбиваются электроны, и проводник приобретает положительный заряд.

Электризация через влияние

. Проводник заряжается не только при контакте с заряженным телом, но и в том случае, когда оно находится на некотором расстоянии. Исследуем подробнее это явление. Подвесим на изолированном проводнике легкие листки бумаги (рис. 3). Если вначале проводник не заряжен, листки будут в неотклоненном положении. Приблизим теперь к проводнику изолированный металлический шар, сильно заряженный, например, при помощи стеклянной палочки. Мы увидим, что листки, подвешенные у концов тела, в точках
а
и
b
, отклоняются, хотя заряженное тело и не касается проводника. Проводник зарядился через влияние, отчего и само явление получило название «
электризация через влияние
» или «
электрическая индукция
». Заряды, полученные посредством электрической индукции, называют
наведенными
или
индуцированными
. Листки, подвешенные у середины тела, в точках
а
’ и
b
’, не отклоняются. Значит, индуцированные заряды возникают только на концах тела, а середина его остается нейтральной, или незаряженной. Поднося к листкам, подвешенным в точках
а
и
b
, наэлектризованную стеклянную палочку, легко убедиться, что листки в точке
b
от нее отталкиваются, а листки в точке
а
притягиваются. Это значит, что на удаленном конце проводника возникает заряд того же знака, что и на шаре, а на близлежащих частях возникают заряды другого знака. Удалив заряженный шар, мы увидим, что листки опустятся. Явление протекает совершенно аналогичным образом, если повторить опыт, зарядив шар отрицательно (например, при помощи сургуча).

Рис. 3

С точки зрения электронной теории эти явления легко объясняются существованием в проводнике свободных электронов. При поднесении к проводнику положительного заряда электроны к нему притягиваются и накапливаются на ближайшем конце проводника. На нем оказывается некоторое число «избыточных» электронов, и эта часть проводника заряжается отрицательно. На удаленном конце образуется недостаток электронов и, следовательно, избыток положительных ионов: здесь появляется положительный заряд.

При поднесении к проводнику отрицательно заряженного тела электроны накапливаются на удаленном конце, а на ближнем конце получается избыток положительных ионов. После удаления заряда, вызывающего перемещение электронов, они вновь распределяются по проводнику, так что все участки его оказываются по-прежнему незаряженными.

Перемещение зарядов по проводнику и их накопление на концах его будут продолжаться до тех пор, пока воздействие избыточных зарядов, образовавшихся на концах проводника, не уравновесит те исходящие из шара электрические силы, под влиянием которых происходит перераспределение электронов. Отсутствие заряда у середины тела показывает, что здесь уравновешены силы, исходящие из шара, и силы, с которыми действуют на свободные электроны избыточные заряды, накопившиеся у концов проводника.

Индуцированные заряды можно разделить, если в присутствии заряженного тела разделить проводник на части. Такой опыт изображен на рис. 4. В этом случае сместившиеся электроны уже не могут вернуться обратно после удаления заряженного шара; так как между обеими частями проводника находится диэлектрик (воздух). Избыточные электроны распределяются по всей левой части; недостаток электронов в точке b

частично пополняется из области точки
b
’, так что каждая часть проводника оказывается заряженной: левая – зарядом, по знаку противоположным заряду шара, правая – зарядом, одноименным с зарядом шара. Расходятся не только листки в точках
а
и
b
, но и остававшиеся прежде неподвижными листки в точках
а
’ и
b
’.

Рис. 4

Взаимодействие зарядов

Многочисленные опыты показали, что заряженные элементарные частицы взаимодействуют между собой. Носители одноименных зарядов отталкиваются, а носители разноименных зарядов – притягиваются (см.рис. 5).

Силу взаимодействия точечных зарядов определяют по формуле, вытекающей из закона Кулона: F = (k*q1*q2)/r2 , где q1 и q2 –две заряженные точки, расположенные на расстоянии r, а k – коэффициент, размерность которого зависит от выбранной системы измерений, а значение – от свойств окружающей среды. Закон Кулона – один из фундаментальных законов физики.

Электрическая емкость. Конденсатор

Электрическая емкость (электроемкость) – скалярная физическая величина, характеризующая способность уединенного проводника удерживать электрический заряд.

Обозначение – ​\( C \)​, единица измерения в СИ – фарад (Ф).

Уединенный проводник – это проводник, удаленный от других проводников и заряженных тел.

Фарад – электроемкость такого уединенного проводника, потенциал которого изменяется на 1 В при сообщении ему заряда 1 Кл:

Формула для вычисления электроемкости:

где ​\( q \)​ – заряд проводника, ​\( \varphi \)​ – его потенциал.

Электроемкость зависит от его линейных размеров и геометрической формы. Электроемкость не зависит от материала проводника и его агрегатного состояния. Электроемкость проводника прямо пропорциональна диэлектрической проницаемости среды, в которой он находится.

Конденсатор – это система из двух проводников, разделенных слоем диэлектрика, толщина которого мала по сравнению с размерами проводников.

Проводники называют обкладками конденсатора. Заряды обкладок конденсатора равны по величине и противоположны по знаку заряда. Электрическое поле сосредоточено между обкладками конденсатора. Конденсаторы используют для накопления электрических зарядов.

Электроемкость конденсатора рассчитывается по формуле:

где ​\( q \)​ – модуль заряда одной из обкладок, ​\( U \)​ – разность потенциалов между обкладками.

Электроемкость конденсатора зависит от линейных размеров и геометрической формы и расстояния между проводниками. Электроемкость конденсатора прямо пропорциональна диэлектрической проницаемости вещества между проводниками.

Плоский конденсатор представляет две параллельные пластины площадью ​\( S \)​, находящиеся на расстоянии ​\( d \)​ друг от друга.

Электроемкость плоского конденсатора:

где ​\( \varepsilon \)​ – диэлектрическая проницаемость вещества между обкладками, \( \varepsilon_0 \) – электрическая постоянная.

На электрической схеме конденсатор обозначается:

Виды конденсаторов:

  • по типу диэлектрика – воздушный, бумажный и т. д.;
  • по форме – плоский, цилиндрический, сферический;
  • по электроемкости – постоянной и переменной емкости.

Конденсаторы можно соединять между собой.

Параллельное соединение конденсаторов

При параллельном соединении конденсаторы соединяются одноименно заряженными обкладками. Напряжения конденсаторов равны:

Общая емкость:

Последовательное соединение конденсаторов

При последовательном соединении конденсаторов соединяют их разноименно заряженные обкладки.

Заряды конденсаторов при таком соединении равны:

Общее напряжение:

Величина, обратная общей емкости:

При таком соединении общая емкость всегда меньше емкостей отдельных конденсаторов.

Важно! Если конденсатор подключен к источнику тока, то разность потенциалов между его обкладками не изменяется при изменении электроемкости и равна напряжению источника. Если конденсатор заряжен до некоторой разности потенциалов и отключен от источника тока, то его заряд не изменяется при изменении электроемкости.

Применение конденсаторов Конденсаторы используются в радиоэлектронных приборах как накопители заряда, для сглаживания пульсаций в выпрямителях переменного тока.

Закон сохранения электрического заряда

Экспериментально установлено, что в замкнутой системе выполняется один из основополагающих законов физики – закон сохранения. В изолированной системе суммарный заряд не исчезает, а сохраняется во времени. Кроме того, он квантуется, то есть изменяется порциями, кратными заряду элементарной частицы.

Алгебраическая сумма зарядов – величина постоянная: q1 + q2 + … + qn = const (см. рис. 7).

Закон сформулирован Б.Франклином (1747 г.) и подтверждён М. Фарадеем в 1843 г.

Литература

  1. Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н.Ракина, К. С. Фарино; Под ред. К. С. Фарино. — Мн.: Адукацыя i выхаванне, 2004. — C. 209-210, 211-214.
  2. Жилко, В. В. Физика: учеб. пособие для 11-го кл. общеобразоват. учреждений с рус. яз. обучения с 12-летним сроком обучения (базовый и повышенный уровни) /В. В. Жилко, Л. Г. Маркович. — 2-е изд., исправленное. — Минск: Нар. асвета, 2008. — С. 72-79.

Способы измерения

Самый простой прибор для измерения – электроскоп. Он состоит из двух лепестков из фольги, расположенных на металлическом стержне. Конструкция накрыта стеклянным колпаком.

Если наэлектризованным телом прикоснуться к стержню, то лепестки наэлектризуются. Поскольку знаки на них одинаковые, то кулонова сила оттолкнёт их в разные стороны. По величине угла отклонения можно оценить величину статического электричества поступившего на лепестки.

Более сложный прибор – электрометр (схематическое изображение на рис. 8). Прибор состоит из стержня электрометра, стрелки и шкалы. Принцип действия аналогичен электроскопу (стрелка отталкивается от стержня). Благодаря наличию шкалы отклонение стрелки электрометра показывает количественную величину переданного электричества.

Мы уже упоминали, что Кулон в своих опытах пользовался крутильными весами. Этот измерительный прибор позволил учёному открыть знаменитый закон, названный в честь его имени.

Рейтинг
( 2 оценки, среднее 4.5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]