Война токов: противостояние Томаса Эдисона и Николы Теслы (5 фото)

1891 год. На сцену в лекционном зале Колумбийского университета в Нью-Йорке выходит симпатичный высокий темноволосый мужчина. Он берет в каждую руку по медному шарику и касается клемм высоковольтного высокочастотного трансформатора (сегодня известного как катушка Теслы). По поверхности его тела пробегают 250 000 вольт. Как выразился один журналист, экспериментатор предстал перед зрителями «в лучезарной славе мириад языков электрического пламени».

Никола Тесла в своей лаборатории в Колорадо Спрингс делает заметки, пока над его головой бушует искусственно созданная электрическая буря. В этой лаборатории он работал в 1899 году и здесь же построил самую большую катушку Теслы в мире

Через некоторое время он отходит от аппарата, электрическая аура рассеиваются, и зрители видят, что он невредим. Кто же этот человек и зачем так рисковал?

подготовила перевод материала.

Перевод от

Этого отчаянного смельчака звали Никола Тесла. Он изобрел двигатель переменного тока и продемонстрировал его безопасность на себе. Последние несколько лет Edison Electric Light Company вела кампанию против него и его изобретений, стремясь удержать свою долю на рынке.

Друзья Теслы в Westinghouse Electric Company выигрывали эту битву. В ответ группа Эдисона попыталась оспорить безопасность систем переменного тока, публикуя сенсационные истории в прессе. Тесла надеялся, что эта демонстрация перебьет черный пиар.

Шел конец 1880-х, электричество было неизведанной территорией вроде Дикого Запада, и никто не знал, какая система в итоге победит.

В 1876 году Эдисон утомился от бесконечных споров с хозяевами помещений в Ньюарке и решил построить собственную лабораторию в поселке Менло-Парк, Нью-Джерси, в 40 км от Нью-Йорка

Очень часто технологические разногласия (то есть сражение двух изобретателей, жаждущих распространить свои изобретения как можно шире) разрешаются рациональным путем. Одно изобретение может стоить дешевле второго, второе может оказаться более безопасным, а третье соответствует стандартам, установленным инженерами или властями, и потому хорошо продается.

Впрочем, время от времени разногласия разрешить не удается. Тесла и Эдисон воевали за будущее электропередач. В этой битве было все: шокирующие демонстрации, переход на личности, достойный школьников, и даже попытки объявить переменный ток вне закона. В итоге победил переменный ток. Рациональная проектировка и дешевизна массового распределения – вот и весь секрет.

Переменный ток

Постоянный ток непрерывно течёт в одном направлении; переменный ток меняет своё направление 50 или 60 раз в секунду и у него можно изменять напряжение до высоких уровней, минимизируя при этом потери мощности на больших расстояниях. Позже напряжение переменного тока можно понижать, чтобы использовать его на заводах или в жилых домах. Тесла понял, что будущее принадлежит переменному току.

Тесла описал свои двигатели и электрические системы в статьей «Новая система двигателей переменного тока и трансформаторов», которую он презентовал в Американском институте инженеров-электриков в 1888 году. Именно тогда Джордж Вестингауз заинтересовался разработками Теслы, и однажды он посетил его лабораторию и поразился увиденному. Никола Тесла построил модель многофазной системы из понижающих и повышающих трансформаторов переменного тока, а также двигателя переменного тока. Так началось партнёрство Ветсингауза и Теслы. Позже Никола Тесла получил 40 патентов на свои изобретения в США, а Вестингауз выкупил их все, чтобы обеспечить себя богатством, а Америку переменным током.

Ниже мы как раз и поговорим об этих машинах и о том, как в США внедрялась многофазная система электроснабжения.

Различные определения

Виды постоянного тока
Период, термин ОКРУГ КОЛУМБИЯ

используется для обозначения энергосистем, в которых используется только одна полярность напряжения или тока, и для обозначения постоянного, нулевого или медленно меняющегося местного среднего значения напряжения или тока.[9] Например, напряжение на постоянном токе источник напряжения постоянна, как и ток через постоянный ток Источник тока. Решение постоянного тока электрическая цепь это решение, в котором все напряжения и токи постоянны. Можно показать, что любой стационарный форма волны напряжения или тока может быть разложена на сумму составляющей постоянного тока и изменяющейся во времени составляющей с нулевым средним значением; составляющая постоянного тока определяется как ожидаемое значение или среднее значение напряжения или тока за все время.

Хотя DC означает «постоянный ток», DC часто означает «постоянная полярность». Согласно этому определению, напряжения постоянного тока могут меняться во времени, что видно по необработанному выходному сигналу выпрямителя или колебаниям голосового сигнала в телефонной линии.

Некоторые формы постоянного тока (например, производимые регулятор напряжения) практически не имеют вариаций Напряжение, но все еще могут быть варианты вывода мощность и ток.

Генератор переменного тока

Генератор переменного тока — это электрическая машина, которая является составной частью полифазной системы электроснабжения Теслы, о которой речь пойдёт ниже. Генератор создаёт переменный ток, используя механическую работу (например, генераторы, установленные на дамбах, использующие падающую на их лопасти воду).

Мы не будем объяснять принцип работы генератора. Посмотрите видео ниже, если хотите понять подробнее.

Альтернатор Теслы (другое название генератора переменного тока) превосходил все другие по той простой причине, что он был действительно эффективен на практике. Свой генератор Тесла изобрёл ещё будучи на 2 курсе и уже тогда обращался к своим преподавателям с идеей использования переменного тока, но от его идей все отмахивались, как от бредовых. Некоторые профессора даже просто смеялись над его изобретениями.

В 1882 году Тесла работает в Париже и создаёт первый рабочий прототип своего генератора.

Приехав в 1884 году в США, Тесла направился к тогда уже известному изобретателю и коммерсанту в области электричества Томасу Эдисону и устроился к нему на работу. Попутно Тесла предлагал Эдисону свои идеи по использованию переменного тока, но Эдисон считал, что он сошёл с ума, раз думает, что переменный ток можно хоть как-то использовать. Дошло даже до того, что Тесла, не поняв сарказма Эдисона, подумал, что получит большую сумму от Эдисона, если сделает несколько десятков определённых изобретений на заказ. Тесла их сделал, а Эдисон сказал, что пошутил, а Тесле рекомендовал научиться понимать американский юмор.

В 1891 году Тесла получает в США патент на первый в мире альтернатор.

Двигатель прогресса. 8 изобретений Томаса Эдисона

В 1869 году в свет вышел первый в истории тикерный аппарат – устройство для передачи котировок акции по телефонным или телеграфным проводам. С помощью тикерной машины на непрерывной бумажной ленте печатались текущие котировки ценных бумаг со скоростью один символ в секунду. Именно с этого момента названия компаний в биржевых сводках начали сокращать – такие сокращения называют тикерами. Commons.wikimedia.org / H. Zimmer

Следующим успешным проектом Эдисона стал квадруплексный телеграф. Томас усовершенствовал имеющуюся дуплексную схему, и после этого телеграф Эдисона был способен передавать четыре сообщения по одному проводу. Commons.wikimedia.org / Библиотека Конгресса США

В середине 1870-х Томас Эдисон изобрёл мимеограф – относительно небольшое устройство для трафаретной печати для тиражирования книг малыми и средними партиями. Мимеограф состоял из электрического пера и копировального ящика. Commons.wikimedia.org / Early Office Museum

К концу 1870-х Томас Эдисон собрал свой первый фонограф, работу над которым изобретатель вёл около 20 лет. Представленное Эдисоном устройство позволяла записывать и воспроизводить музыку и речь, использоваться в качестве говорящих часов, а также служило «вспомогательным приспособлением к телефону». Commons.wikimedia.org / Levin C. Handy

Одним из наиболее ярких изобретений Томаса Эдисона стала лампа накаливания с угольной нитью – его версия лампы позволяла гореть около 40 часов. Кроме того, Эдисон также изобрёл поворотный выключатель. Именно с этого момента лампы начали вытеснять на рынке газовые приборы освещения. Commons.wikimedia.org / William J. Hammer

Томас Эдисон также является изобретателем кинетоскопа. В устройстве были реализованы принцип покадрового показа плёнки. При прокрутке со скоростью 15 кадров в секунду у зрителей возникало ощущение того, что объекты на изображении движутся. Commons.wikimedia.org / Edison Manufacturing Company

В 1889 году Томас Эдисон представил свой электрический стул. Когда власти США искали гуманную альтернативу повешению, изобретатель смог убедить общественность в том, что его устройство отвечает требованиям времени. При этом сам Эдисон стремился показать губительность переменного тока, который использовали в своей продукции его конкуренты. Commons.wikimedia.org / George Eastman House

Знаменитый изобретатель также приложил руку к изобретению аккумуляторов – батарей с возможностью многократной зарядки. В конце XIX века никель-кадмиевый аккумулятор изобрёл швед Вальдемар Юнгнер, но пока они не дошли до США популярностью пользовались железо-никелевые батареи Эдисона. Например, они устанавливались на электромобиль Detroit Electric. Commons.wikimedia.org / Edison Storage Battery Company

Двигатель переменного тока

Двигатель переменного тока или асинхронная машина — это ещё один этап в развитии идей применения переменного тока. Генератор переменного тока мы уже обсудили, значит электричество мы получаем, но что с ним делать дальше? У нас ведь нет машин, которые бы работали от переменного тока! Вот Тесла их и изобрёл.

В 1880-е года множество изобретателей пыталось изобрести рабочие варианты двигателей переменного тока, но сделать этого не удавалось. Галилео Феррарис занимается теоретическим исследованием создания двигателей переменного тока и приходит к ошибочному выводу, что они попросту не могут быть эффективными и коммерчески успешными. Это добавило мотивации изобретателям всего мира, это звучало как вызов — создать эффективный двигатель переменного тока. Тесла отвечает на этот вызов и демонстрирует в 1887 году свой первый вариант двигателя, работающего на переменном токе, а в 1887 году совершенствует свою модель, выпуская вторую машину.

Основная причина, по которой рациональное использование двигателей переменного тока казалось невозможным, заключалась в том, что они были однофазовыми. Тесла же обосновал теоретически и доказал практически, что можно не ограничиваться одной фазой, а делать две или больше фаз.

На картинке ниже показано схематически устройство двух- и трёхфазных двигателей переменного тока:

Двухфазный электрический двигатель переменного тока из коллекции Вестингауза.

4-х фазный электрический двигатель переменного тока из коллекции Вестингауза.

Когда каждый процент на счету

Несмотря на заметный прогресс в области выпрямления тока, оборудование для преобразования переменного тока в постоянный и обратно до сих пор стоит очень больших денег. Настолько больших, что строительство сетей переменного тока, даже с учетом повышенного расхода материала для проводов, выходит сильно дешевле. Вне зависимости от длины линии, стартовая цена высоковольтной магистрали постоянного тока обязательно включает стоимость двух преобразователей в начале и конце линии — габаритных и очень дорогих устройств, производимых всего несколькими компаниями в мире, в числе которых и Toshiba. На это оборудование приходится до половины стоимости сети.

Но по мере увеличения длины магистрали стоимость линии на переменном токе растет быстрее, чем на токе постоянном. Виной тому сложность магистрали HVAC — для передачи аналогичной мощности HVDC нужно вдвое меньше проводников меньшего диаметра, а значит, вдвое меньше опор, которые и сами стоят немало, и требуют крайне дорогостоящего монтажа. При длине линии около 600 км стоимость HVDC и HVAC равна, но на больших расстояниях, порядка 2000 км, HVDC выходит сильно дешевле, чем HVAC, примерно на 30-40%, а это сотни миллионов долларов экономии.

На каждые 1000 км линии потери в HVDC составляют 2-3%, а самое современное оборудование позволяет снизить этот параметр до 1%. Потери в HVAC могут достигать 6%. Даже в самых эффективных сетях переменного тока с самым лучшим оборудованием потери будут на 30-40% больше, чем в HVDC Несколько процентов от полной мощности — вроде бы терпимая ерунда? Когда речь идет о сетях, передающих несколько гигаватт, каждый процент превращается в десятки потраченных впустую мегаватт, которые можно было бы использовать для электроснабжения маленького города. Не говоря уже о потерянной прибыли.

Многофазная система электроснабжения

Тесла обратил внимание, что электрические станции постоянного тока Эдисона неэффективны, а Эдисон уже застроил ими всё Атлантическое побережье США. Чтобы преодолеть недостатки постоянного тока, надо было, по идее Теслы, использовать переменный ток. Многофазной такая система называется потому, что двигатели и генераторы имеют несколько фаз (см. пояснения выше).

Лампы Эдисона были слабыми и неэффективными при использовании постоянного тока. Вся эта система имела один большой недостаток в том, что она не могла транспортировать электричество на расстояние более 3 км из-за неспособности изменять напряжение до высокого уровня, необходимого для передачи на большие расстояния. Поэтому электростанции постоянного тока устанавливались с интервалом в 3 км.

Переменный ток, как писалось выше, мог достигать больших напряжений и поэтому его можно было передавать на огромные расстояния (выйдите из дома и посмотрите на ближайшие высоковольтные линии электропередач, это оно самое).

Когда Эдисон узнал, что у него появился столь мощный конкурент, он понял, что может потерять свою империю постоянного тока. Именно так и началась война между Вестингауза вместе с Теслой против Эдисона, которую назовут войной токов. Эдисон начал усиленно пытаться дискредитировать изобретение Теслы, показывая, что переменный ток более опасен для жизни, чем постоянный.

Стоит также отметить, что когда Тесла приехал в США, то сначала он предложил свои разработки Эдисону, но он назвал всё это вздором и сумасшествием.

Эдисон бил переменным током животных на публике, чтобы привести их в ярость и доказать, что этот вид тока опасен. Однажды Эдисон узнал об идее одного врача, об использовании переменного тока для умерщвления людей. Реализация не застала себя ждать. Так был изобретён электрический стул, который впервые применили к Уильяму Кеммлеру, виновному в убийстве своей любовницы.

Эдисон долго не мог придумать для своего нового изобретения название, но ему больше всего нравилось слово «увестингаузить», правда ни один из них, как мы теперь видим, не прижился.

Схемы

Цепь постоянного тока — это электрическая цепь который состоит из любой комбинации постоянных Напряжение источники, постоянные Текущий источники и резисторы. В этом случае напряжения и токи в цепи не зависят от времени. Конкретное напряжение или ток цепи не зависит от прошлых значений напряжения или тока в цепи. Это означает, что система уравнений, представляющая цепь постоянного тока, не включает интегралы или производные по времени.

Если конденсатор или же индуктор добавляется к цепи постоянного тока, результирующая цепь, строго говоря, не является цепью постоянного тока. Однако большинство таких схем имеют решение постоянного тока. Это решение дает напряжения и токи в цепи, когда цепь находится в Установившееся состояние постоянного тока. Такая схема представлена ​​системой дифференциальные уравнения. Решение этих уравнений обычно содержит переменную во времени или преходящий часть, а также часть постоянного или устойчивого состояния. Именно эта часть установившегося состояния и является решением постоянного тока. Есть некоторые схемы, которые не имеют решения постоянного тока. Двумя простыми примерами являются источник постоянного тока, подключенный к конденсатору, и источник постоянного напряжения, подключенный к катушке индуктивности.

В электронике цепь, которая питается от источника постоянного напряжения, такого как аккумулятор, или выход источника постоянного тока, обычно называют цепью постоянного тока, даже если имеется в виду, что эта схема питается постоянным током.

Катушка или трансформатор Теслы

Тесла изобрёл свою катушку примерно в 1891 году. В то время он повторял эксперименты Герниха Герца, который обнаружил электромагнитное излучение тремя годами ранее. Тесла решил запустить его устройство вместе с высокоскоростным генератором переменного тока, который он разрабатывал в рамках улучшения системы дугового освещения, но он обнаружил, что ток высокой частоты перегревает стальной сердечник и плавит изоляцию между первичной и вторичной обмотками в катушке Румкорфа, которая использовалась по умолчанию в экспериментах Герца. Для устранения этой проблемы Тесла решает изменить конструкцию таким образом, чтобы образовался воздушный зазор между первичной и вторичной обмотками, вместо изоляционного материала. Тесла сделал так, что сердечник мог быть перемещён в различные положения в катушке. Тесла также установил конденсатор, который обычно используются в таких установках между генератором и его первичной катушкой обмотки, чтобы избежать выгорания катушки. Экспериментируя с настройками катушки и конденсатора, Тесла обнаружил, что он мог бы воспользоваться возникающим резонансом между ними для достижения более высоких частот.

В катушке трансформатора Теслы конденсатор, после пробивания короткой искры, подключался к катушке из нескольких витков (первичная катушка), формируя таким образом резонансный контур с частотой колебания, как правило, 20-100 кГц, определяемый ёмкостью конденсатора и индуктивностью катушки.

Конденсатор заряжался до напряжения, которое необходимо для пробоя воздушного искрового промежутка, при входном линейном цикле, что достигает примерно 10 киловольтам при использовании линейного трансформатора, который подключён через воздушный зазор. Линейный трансформатор был спроектирован так, чтобы иметь более высокую, чем обычно, индуктивность рассеяния (параметр, отражающий неидеальность трансформатора), чтобы выдерживать короткое замыкание, возникающее в то время, когда зазор оставался ионизированным, или в течение нескольких миллисекунд, пока ток высокой частоты не исчезал.

Искровой разрядник настраивался таким образом, чтобы его пробой происходил при напряжении, которое несколько меньше пикового выходного напряжения трансформатора, чтобы максимизировать напряжение на конденсаторе. Внезапный ток, проходящий через искровой промежуток, вызывает резонанс первичной резонансной цепи на её резонансной частоте. Кольцевая первичная обмотка магнитно соединяет энергию с вторичной обмоткой в течение нескольких радиочастотных циклов, пока вся энергия, которая первоначально была в первичной обмотке, не перенесётся на вторичную. В идеале зазор затем прекращает проведение тока (гашение), захватывая всю энергию в колебательный вторичный контур. Обычно промежуток снова начинает расти, а энергия вторичных передач возвращается к первичной цепи в течение ещё нескольких радиочастотных циклов. Цикл энергии может повторяться несколько раз, пока искровой промежуток окончательно не ослабнет. Как только зазор прекратит проводить ток, трансформатор начнёт заряжать конденсатор. В зависимости от напряжения пробоя искрового промежутка, он может срабатывать много раз на протяжении всего цикла переменного тока.

Более заметная вторичная обмотка с значительно большим количеством витков более тонкой проволоки, чем у вторичной, была расположена для перехвата части магнитного поля первичной обмотки. Вторичная система была сконструирована так, чтобы иметь такую же частоту резонанса, что и первичная, используя только паразитную ёмкость (нежелательная ёмкостная связь) самой обмотки на «землю», а также любую клемму, расположенную в верхней части вторичной обмотки. Нижний конец длинной вторичной обмотки должен быть заземлён.

Применение катушек Тесла

Применение можно разделить на практическое и чисто декоративное. Практическое применение тока катушки Тесла нашли в радиоуправлении, радио и беспроводной передачи энергии для питания различных устройств (например, лампочек). Генератор Теслы обнаружил и неожиданное применение в медицине. Арсен Д’Арсонваль применил токи, создаваемые генератором, для физиотерапевтического воздействия на поверхность кожи и слизистые различных органов человека. Ток проходил по поверхностным слоям кожи и оказывал тонизирующий и оздоровляющий эффект. Также катушки Тесла применяются для работы газоразрядных лапм и обнаружения течи внутри вакуумных систем.

Но гораздо большую распространённость катушки Тесла получили в сфере спецэффектов и декораций, ведь разряды, создающиеся трансформатором Тесла выглядят крайне эффектно и красиво.

Пример работы катушки Тесла можете посмотреть на видео:

Интересно также понаблюдать и за музыкальными свойствами данных катушек, которые достигаются за счёт изменения частоты:

Интересно, что в своё время в 20-м веке пытались продавать катушки Теслы, как эффективный способ защитить вашу машину от угона:

Рекомендации

  1. Эндрю Дж. Робинсон, Линн Снайдер-Маклер (2007). Клиническая электрофизиология: электротерапия и электрофизиологические исследования
    (3-е изд.). Липпинкотт Уильямс и Уилкинс. п. 10. ISBN 978-0-7817-4484-3 .
  2. Н. Н. Бхаргава и Д. К. Кульшриштха (1984). Базовая электроника и линейные схемы
    . Тата МакГроу-Хилл Образование. п. 90. ISBN 978-0-07-451965-3 .
  3. Национальная ассоциация электрического освещения (1915 г.). Справочник электросчетчика
    . Trow Press. п. 81.
  4. Мел Горман. «Чарльз Ф. Браш и первая электрическая система уличного освещения в Америке». История Огайо
    . Kent State University Press. Историческое общество Огайо.
    70
    : 142.[
    постоянная мертвая ссылка
    ]
  5. «Алессандро Джузеппе Антонио Анастасио Вольта — grants.hhp.coe.uh.edu». Архивировано из оригинал на 2017-08-28. Получено 2017-05-29.
  6. Джим Брайтхаупт, Физика, Palgrave Macmillan — 2010, стр. 175
  7. «Машина Pixii, изобретенная Ипполитом Пикси, Национальная лаборатория сильных магнитных полей». Архивировано из оригинал на 2008-09-07. Получено 2008-06-12.
  8. Первая форма электрического света История угольной дуговой лампы (1800–1980-е годы)
  9. Роджер С. Амос, Джеффри Уильям Арнольд Даммер (1999). Электронный словарь Newnes
    (4-е изд.). Newnes. п. 83. ISBN 0-7506-4331-5 .

Беспроводное освещение

В 1891 году Тесла усовершенствовал передатчик волн, изобретённый Герцом, который был необходим для радиочастотного снабжения энергией, переделав его в систему освещения, состоящую из газоразрядных ламп.

В этом же году он продемонстрировал в Колумбийском колледже своё изобретение.

Когда мы говорим о том, что освещение беспроводное, не имеются в виду радиоволны, речь идёт об электростатической индукции.

В 1894 году новое достижение. Удаётся зажечь фосфорную лампу накаливания в своей лаборатории, используя резонансный метод взаимоиндукции.

Правда широкого коммерческого применения такая лампа найти не смогла, но резонансный метод индуктивной связи сейчас применяется повсеместно в электронике.

Эдисон и лампы накаливания

Если вам требовался более мелкий источник мягкого электрического света, дуговые лампы уже не годились. Эдисон быстро сообразил, что можно продавать маленькие лампочки как замену тогдашних газовых светильников. В 1878 году он бросил работу над телефоном и фонографом и с головой окунулся в мир электрического освещения, о котором он до этого момента ничего не знал.

Лампа 1879 года с углеродной нитью, которая светится при пропускании через нее тока. ФОТО: SSPL, GETTY

Для создания лампы поменьше Эдисон решил обратиться к эффекту накаливания (так называется свечение при нагревании). При достижении критической температуры предмет источает яркий свет. Поначалу Эдисон экспериментировал с платиной. У этого металла высокая точка плавления, поэтому изобретатель предположил, что через платиновую нить можно пропускать ток и заставить ее светиться.

Однако он сразу же обнаружил, что в процессе участвует еще и кислород. Платина почти сразу перегорала. Тогда Эдисон поместил металлическую нить в вакуумную стеклянную колбу. Это решило проблему горения, однако платина стоила слишком дорого и к тому же обладала низким электросопротивлением.

Это означало, что для такой системы освещения потребуются дорогие и очень толстые медные кабели. К счастью, Эдисон решил и эту задачку, всего лишь повысив сопротивление в каждой лампе и замкнув их в параллельные цепи.

Теперь требовалось найти металл с достаточно высоким сопротивлением. Эдисон и его команда несколько месяцев подбирали и испытывали материалы, пока не обнаружили, что лучше всего для этого подходит ламповая сажа, используемая в телефонных передатчиках. Вот как момент открытия был описан в одной из газет:

«Однажды ночью, сидя в своей лаборатории над незаконченным проектом, Эдисон начал бездумно перекатывать в пальцах кусочек спрессованной ламповой сажи, пока не скатал из нее тонкую нить. Один случайный взгляд навел его на мысль, что можно попробовать ее накалить. Через несколько минут он провел вполне успешный эксперимент, хоть результаты его и не удивили. Дальнейшие тесты помогли найти подходящую форму и состав вещества, и результат каждого эксперимента подтверждал, что изобретатель на верном пути».

Подписывайтесь на нашу Facebook-страничку, чтобы не пропустить ничего важного из новостей украинского IT

Рейтинг
( 2 оценки, среднее 5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]