Векторные диаграммы токов и напряжений: правила построения диаграмм, онлайн построение

Цифровое представление динамических процессов затрудняет восприятие, усложняет расчет выходных параметров после изменения условий на входе или в результате выполненной обработки. Векторная диаграмма токов и напряжений помогает успешно решать обозначенные задачи. Ознакомление с теорией и практическими примерами поможет освоить данную технологию.

Разновидности векторных диаграмм

Для корректного отображения переменных величин, которые определяют функциональность радиотехнических устройств, хорошо подходит векторная графика. Подразумевается соответствующее изменение основных параметров сигнала по стандартной синусоидальной (косинусоидальной) кривой. Для наглядного представления процесса гармоническое колебание представляют, как проекцию вектора на координатную ось.

С применением типовых формул несложно рассчитать длину, которая получится равной амплитуде в определенный момент времени. Угол наклона будет показывать фазу. Суммарные влияния и соответствующие изменения векторов подчиняются обычным правилам геометрии.

Различают качественные и точные диаграммы. Первые применяют для учета взаимных связей. Они помогают сделать предварительную оценку либо используются для полноценной замены вычислений. Другие создают с учетом полученных результатов, которые определяют размеры и направленность отдельных векторов.

Допустим, что надо изучить изменение параметров тока в цепи при разных значениях сопротивления резистора в диапазоне от нуля до бесконечности. В этой схеме напряжение на выходе (U) будет равно сумме значений (UR и UL) на каждом из элементов. Индуктивный характер второй величины подразумевает перпендикулярное взаимное расположение, что хорошо видно на части рисунка б). Образованные треугольники отлично вписываются в сегмент окружности 180 градусов. Эта кривая соответствует всем возможным точкам, через которые проходит конец вектора UR при соответствующем изменении электрического сопротивления. Вторая диаграмма в) демонстрирует отставание тока по фазе на угол 90°.

Здесь изображен двухполюсный элемент с активной и реактивной составляющими проводимости (G и jB, соответственно). Аналогичными параметрами обладает классический колебательный контур, созданный с применением параллельной схемы. Отмеченные выше параметры можно изобразить векторами, которые расположены постоянно под углом 90°. Изменение реактивной компоненты сопровождается перемещением вектора тока (I1…I3). Образованная линия располагается перпендикулярно U и на расстоянии Ia от нулевой точки оси координат.

Топографическая векторная диаграмма

Частным случаем векторной диаграммы является топографическая векторная диаграмма, на которой откладываются комплексные потенциалы отдельных точек цепи по отношению к одной точке, потенциал которой принят равным нулю. Порядок расположения векторов на топографической диаграмме соответствует порядку расположения элементов цепи.

Отметим, что по определению топографическая диаграмма используется как геометрическая интерпретация второго закона Кирхгофа (т.е. на ней откладываются векторы напряжений).

Существуют два способа построения топографической диаграммы.

I способ.

Строят, двигаясь по элементам цепи в направлении, совпадающем с направлением тока. В этом случае вектор напряжения на диаграмме и соответствующая стрелка напряжения на схеме ориентированы одинаково – от высшего потенциала к низшему.

Рассмотрим в качестве примера цепь рис. 3.15.

Рис. 3.15

Отложим на комплексной плоскости вектор тока под углом к действительной оси (рис. 3.16).

Рис. 3.16

Обозначим промежуточные точки рассматриваемой цепи буквами a, b, d, h. Обход контура будем совершать по направлению тока (т. е. по часовой стрелке), принимая комплексный потенциал точки а равным нулю. Последнее приводит к тому, что на комплексной плоскости точка а расположена в начале координат (рис. 3.16).

При движении в выбранном направлении по элементам цепи из точки а (рис. 3.15) первым элементом цепи является емкость с. Откладываем на топографической диаграмме из точки а вектор напряжения на емкости , который отстает от тока на угол (рис. 3.17). Конец вектора определяет величину комплексного потенциала точки b на векторной диаграмме.

Следующий элемент цепи при движении по направлению тока – сопротивление r (см. рис. 3.15). Откладываем на топографической диаграмме вектор напря­жения на сопротивлении , который совпадает по направлению с вектором тока (рис. 3.18).

Рис. 3.17

Рис. 3.18

Конец вектора определяет величину комплексного потенциала точки d на векторной диаграмме.

Следующий элемент цепи при движении по направлению тока – индуктивность L (см. рис. 3.15). Откладываем на топографической диаграмме вектор напряжения на индуктивности , который опережает вектор тока (рис. 3.19). Конец вектора определяет величину комплексного потенциала точки h на векторной диаграмме.

Разность потенциалов точек a и h равна входному напряжению цепи (см. рис. 3.15). Для получения соответствующего вектора на диаграмме необходимо соединить прямой линией точки a и h. Конец вектора на диаграмме должен быть направлен так же, как и стрелка напряжения на схеме, – от точки а к точке h (рис. 3.20).

Рис. 3.19

Рис. 3.20

Угол между векторами напряжения и тока (рис. 3.20) равен углу сдвига фаз . В данном случае входное напряжение опережает ток и цепь имеет активно-индуктивный характер.

2 способ.

Строят, двигаясь по элементам цепи в направлении, противоположном направлению тока. В этом случае вектор напряжения на диаграмме направлен от точки низшего потенциала к точке высшего потенциала. Это же напряжение на схеме указывается стрелкой противоположного направления.

Итак, будем совершать обход цепи рис. 3.21 в направлении, противоположном току, принимая комплексный потенциал точки h равным нулю.

Рис. 3.21

Последнее приводит к тому, что на комплексной плоскости точка h расположена в начале координат (рис. 3.22).

Рис. 3.22

При движении в выбранном направлении по элементам цепи из точки h (рис. 3.21) первым элементом цепи является индуктивность L. Откладываем на топографической диаграмме из точки h вектор напряжения на индуктивности , который опережает вектор тока (рис. 3.23). Конец вектора определяет величину комплексного потенциала точки d на векторной диаграмме.

Рис. 3.23

Продолжая движение в выбранном направлении по элементам цепи и осуществляя аналогичные построения, получим результирующую топографическую диаграмму рис. 3.24.

Рис. 3.24

Сравнение векторных диаграмм рис. 3.20 и 3.24, построенных двумя способами, показывает их полную идентичность (векторы одноименных величин на диаграммах имеют одинаковое направление). Область преимущественного использования второго способа – трехфазные цепи.

Частным случаем векторной диаграммы является топографическая векторная диаграмма, на которой откладываются комплексные потенциалы отдельных точек цепи по отношению к одной точке, потенциал которой принят равным нулю. Порядок расположения векторов на топографической диаграмме соответствует порядку расположения элементов цепи.

Отметим, что по определению топографическая диаграмма используется как геометрическая интерпретация второго закона Кирхгофа (т.е. на ней откладываются векторы напряжений).

Существуют два способа построения топографической диаграммы.

I способ.

Строят, двигаясь по элементам цепи в направлении, совпадающем с направлением тока. В этом случае вектор напряжения на диаграмме и соответствующая стрелка напряжения на схеме ориентированы одинаково – от высшего потенциала к низшему.

Рассмотрим в качестве примера цепь рис. 3.15.

Рис. 3.15

Отложим на комплексной плоскости вектор тока под углом к действительной оси (рис. 3.16).

Рис. 3.16

Обозначим промежуточные точки рассматриваемой цепи буквами a, b, d, h. Обход контура будем совершать по направлению тока (т. е. по часовой стрелке), принимая комплексный потенциал точки а равным нулю. Последнее приводит к тому, что на комплексной плоскости точка а расположена в начале координат (рис. 3.16).

При движении в выбранном направлении по элементам цепи из точки а (рис. 3.15) первым элементом цепи является емкость с. Откладываем на топографической диаграмме из точки а вектор напряжения на емкости , который отстает от тока на угол (рис. 3.17). Конец вектора определяет величину комплексного потенциала точки b на векторной диаграмме.

Следующий элемент цепи при движении по направлению тока – сопротивление r (см. рис. 3.15). Откладываем на топографической диаграмме вектор напря­жения на сопротивлении , который совпадает по направлению с вектором тока (рис. 3.18).

Рис. 3.17

Рис. 3.18

Конец вектора определяет величину комплексного потенциала точки d на векторной диаграмме.

Следующий элемент цепи при движении по направлению тока – индуктивность L (см. рис. 3.15). Откладываем на топографической диаграмме вектор напряжения на индуктивности , который опережает вектор тока (рис. 3.19). Конец вектора определяет величину комплексного потенциала точки h на векторной диаграмме.

Разность потенциалов точек a и h равна входному напряжению цепи (см. рис. 3.15). Для получения соответствующего вектора на диаграмме необходимо соединить прямой линией точки a и h. Конец вектора на диаграмме должен быть направлен так же, как и стрелка напряжения на схеме, – от точки а к точке h (рис. 3.20).

Рис. 3.19

Рис. 3.20

Угол между векторами напряжения и тока (рис. 3.20) равен углу сдвига фаз . В данном случае входное напряжение опережает ток и цепь имеет активно-индуктивный характер.

2 способ.

Строят, двигаясь по элементам цепи в направлении, противоположном направлению тока. В этом случае вектор напряжения на диаграмме направлен от точки низшего потенциала к точке высшего потенциала. Это же напряжение на схеме указывается стрелкой противоположного направления.

Итак, будем совершать обход цепи рис. 3.21 в направлении, противоположном току, принимая комплексный потенциал точки h равным нулю.

Рис. 3.21

Последнее приводит к тому, что на комплексной плоскости точка h расположена в начале координат (рис. 3.22).

Рис. 3.22

При движении в выбранном направлении по элементам цепи из точки h (рис. 3.21) первым элементом цепи является индуктивность L. Откладываем на топографической диаграмме из точки h вектор напряжения на индуктивности , который опережает вектор тока (рис. 3.23). Конец вектора определяет величину комплексного потенциала точки d на векторной диаграмме.

Рис. 3.23

Продолжая движение в выбранном направлении по элементам цепи и осуществляя аналогичные построения, получим результирующую топографическую диаграмму рис. 3.24.

Рис. 3.24

Сравнение векторных диаграмм рис. 3.20 и 3.24, построенных двумя способами, показывает их полную идентичность (векторы одноименных величин на диаграммах имеют одинаковое направление). Область преимущественного использования второго способа – трехфазные цепи.

Векторные диаграммы и комплексное представление

Метод контурных токов

Такой инструментарий помогает строить наглядные графические схемы колебательных процессов. Аналогичный результат обеспечивает применение комплексных числовых выражений. В этом варианте, кроме оси с действительными, применяют дополнительный координатный отрезок с мнимыми значениями. Для представления вектора пользуются формулой A*ei(wt+f0), где:

  • А – длина;
  • W – угловая скорость;
  • f0 – начальный угол.

Значение действительной части равно A*cos*(w*t+f0). Это выражение описывает типичное гармоническое колебание с базовыми характеристиками.

Примеры применения

Условия резонанса

В следующих разделах приведены описания задач, которые решают с помощью представленной методики. Следует подчеркнуть, что применение комплексных чисел пригодно для сложных расчетов с высокой точностью. Однако на практике достаточно часто сравнительно простой векторной графики с наглядным отображением исходной информации на одном рисунке.

Механика, гармонический осциллятор

Таким термином обозначают устройство, которое можно вывести из равновесного состояния. После этого система возвращается в сторону исходного положения, причем сила (F) соответствующего воздействия зависит от дальности первичного перемещения (d) прямо пропорционально. Величину ее можно уточнить с помощью постоянного корректирующего коэффициента (k). Отмеченные определения связаны формулой F=-d*k

К сведению. Аналогичные процессы происходят в системах иной природы. Пример – создание аналога на основе электротехнического колебательного контура (последовательного или параллельного). Формулы остаются теми же с заменой соответствующих параметров.

Свободные гармонические колебания без затухания

Продолжая изучение темы на примерах механических процессов, можно отметить возможность построения двухмерной схемы. Скорость в этом случае на оси Х отображается так же, как и в одномерном варианте. Однако здесь можно учесть дополнительно фактор ускорения, которое направляют под углом 90° к предыдущему вектору.

Гармонический осциллятор с затуханием и внешней вынуждающей силой

В этом случае также можно воспользоваться для изучения взаимного влияния дополнительных факторов векторной графикой. Как и в предыдущем примере, скорость и другие величины представляют в двухмерном виде. Чтобы правильно моделировать процесс, проверяют суммарное воздействие внешних сил. Его направляют к центру системы (точке равновесия). С применением геометрических формул вычисляют амплитуду механических колебаний после начального воздействия с учетом коэффициента затухания и других значимых факторов.

Расчет электрических цепей

Векторную графику применяют для сравнительно несложных цепей, которые созданы из набора элементов линейной категории: конденсаторы, резисторы, катушки индуктивности. Для более сложных схем пользуются методикой расчета «Комплексных амплитуд», в которой реактивные компоненты определяют с помощью импедансов.

Векторная диаграмма в данном случае выполняет функцию вспомогательного чертежа, который упрощает решение геометрических задач. Для катушек и конденсаторов, чтобы не пользоваться комплексным исчислением, вводят специальный термин – реактивное сопротивление. При синусоидальном токе изменение напряжения на индуктивном элементе описывается формулой U=-L*w*I0sin(w*t+f0).

Несложно увидеть подобие с классическим законом Ома. Однако в данном примере изменяется фаза. По этому параметру на конденсаторе напряжение отстает от тока на 90°. В индуктивности – обратное распределение. Эти особенности учитывают при размещении векторов на рисунке. В формуле учитывается частота, которая оказывает влияние на величину этого элемента.

Преобразование Фурье

Векторные технологии применяют для анализа спектров радиосигналов в определенном диапазоне. Несмотря на простоту методики, она вполне подходит для получения достаточно точных результатов.

Сложение двух синусоидальных колебаний

В ходе изучения таких источников сигналов рекомендуется работать со сравнительно небольшой разницей частот. Это поможет создать график в удобном для пользователя масштабе.

Фурье-образ прямоугольного сигнала

В этом примере оперируют суммой синусоидальных сигналов. Последовательное сложение векторов образует многоугольник, вращающийся вокруг единой точки. Для правильных расчетов следует учитывать отличия непрерывного и дискретного распределения спектра.

Дифракция

Для этого случая пользуются тем же отображением отдельных синусоид в виде векторов, как и в предыдущем примере. Суммарное значение также вписывается в окружность.

Построение векторной диаграммы напряжений и токов

Последовательное и параллельное соединение аккумуляторов

Для изучения технологии выберем однофазный источник синусоидального напряжения (U). Ток изменяется по формуле I=Im*cos w*t. Подключенная цепь содержит последовательно подключенные компоненты со следующими значениями:

  • резистор: Ur=Im*R*cos w*t;
  • конденсатор: Uc=Im*Rc*cos (w*t-π/2), Rc=1/w*C;
  • катушка: UL= Im*RL*cos(w*t+π/2), RL=w*L.

При прохождении по цепи переменного тока на реактивных элементах будет соответствующий сдвиг фаз. Чтобы построить вектора правильно, рассчитывают амплитуды и учитывают изменение направлений. Ниже приведена последовательность создания графики вручную.

Далее с применением элементарных правил геометрии проверяют взаимное влияние векторов.

На первом рисунке приведен результат сложения двух векторов при условии, когда Uc меньше UL. Добавив значение на сопротивление, получим результирующее напряжение Um. На третьей иллюстрации отмечен общий фазовый сдвиг.

В топографической диаграмме начало координат совмещают с так называемой точкой «нулевого потенциала». Такое решение упрощает изучение отдельных участков сложных схем.

В интернете можно найти программу для построения векторных диаграмм в режиме online.

Что такое векторная диаграмма токов и напряжений? Как построить график

Использование векторных диаграмм при анализе, расчете цепей переменного тока делает возможным рассмотреть более доступно и наглядно происходящие процессы, а также в некоторых случаях значительно упростить выполняемые расчеты.
Векторной диаграммой принято называть геометрическое представление изменяющихся по синусоидальному (либо косинусоидальному) закону направленных отрезков — векторов, отображающих параметры и величины действующих синусоидальных токов, напряжений либо их амплитудных величин.

Широкое применение векторные диаграммы нашли в электротехнике, теории колебаний, акустике, оптике и т.д.

Различают 2-х вида векторных диаграмм:

  • точные;
  • качественные.

Интересное видео о векторных диаграммах смотрите ниже:

Точные изображаются по результатам численных расчетов при условии соответствия масштабов действующих значений. При их построении можно геометрически определить фазы и амплитудные значения искомых величин.

Васильев Дмитрий Петрович

Профессор электротехники СПбГПУ

Качественные диаграммы изображаются с учетом взаимных соотношений между электрическими величинами, без указания численных характеристик.

Они являются одним из основных средств анализа электрических цепей, позволяя наглядно иллюстрировать и качественно контролировать ход решения задачи и легко установить квадрант, в котором располагается искомый вектор.

Векторы, изображаемые на такой диаграмме, характеризуются равновеликой угловой частотой ω. В виду чего при вращении их взаимное расположение не изменяется.

Ещё одно полезное видео о векторных диаграммах:

Поэтому при изображении векторных диаграмм один вектор можно направить произвольным образом (например, по оси ОХ).

А остальные — изображать по отношению к исходному под различными углами, соответственно равными углам сдвига фаз.

Таким образом, векторная диаграмма дает отчетливое представление об опережении либо отставании различных электрических величин.

Допустим у нас есть ток, величина которого изменяется по некоторому закону:

i = Im sin (ω t + φ).

С начала координат 0 под углом φ проведем вектор Im, величина которого соответствует Im. Его направление выбирается так, чтобы с положительным направлением оси OX вектор составлял угол — соответствующий фазе φ.

Абрамян Евгений Павлович

Доцент кафедры электротехники СПбГПУ

Проекция вектора на вертикальную ось и определяет значение мгновенного тока в начальный момент времени.

В основном векторные диаграммы изображают для действующих значений, а не амплитудных. Векторы действующих значений количественно отличаются от амплитудных значений — масштабом, поскольку:

I = Im /√2.

Рейтинг
( 2 оценки, среднее 4 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]