Трёхфазные асинхронные двигатели: методы торможения

Значительное число приводных систем используются при естественном замедлении работы двигателей в процессе остановки. Время, затрачиваемое на остановку ротора, измеряется исключительно инерционным моментом и моментом сопротивления вращению. Между тем нередко эксплуатация систем требует сокращать время остановки вала мотора и в этом случае электрическое торможение хода электродвигателя видится простым и эффективным решением. По сравнению устройствами, где применяются механический или гидравлический способы, электрическое торможение двигателей имеет явные преимущества в плане устойчивости действия и экономичности применения.

Варианты построения электрических тормозов

Рассмотрим несколько вариантов торможения двигателей электрическим способом, которые могут быть применимы на практике. При этом отметим возможности использования механизмов торможения по отношению к электродвигателям разных видов. Список рассматриваемых методик торможения включает следующие:

  • противотоком,
  • вводом постоянного тока,
  • электронным способом,
  • сверхсинхронной скоростью,
  • другими способами.

Схемы конденсаторного торможения электродвигателей

Конденсаторное торможение асинхронных двигателей

На рисунке приведена схема включения двигателя при конденсаторном торможении. Параллельно обмотке статора включают конденсаторы, обычно соединенные по схеме треугольника.

При отключении двигателя от сети токи разряда конденсаторов создают магнитное поле, вращающееся с низкой угловой скоростью. Машина переходит в режим генераторного торможения, частота вращения снижается до значения, соответствующего частоте вращения возбужденного поля. Во время разряда конденсаторов появляется большой тормозной момент, который с уменьшением частоты вращения падает.

В начале торможения происходит быстрое поглощение запасенной ротором кинетической энергии при малом тормозном пути. Торможение резкое, ударные моменты достигают 7 Мном. Значение пика тормозного тока при самых больших значениях емкости не превышает пускового тока.

С ростом емкости конденсаторов тормозной момент увеличивается и торможение длится до более низкой частоты вращения. Исследования показали, что оптимальное значение емкости лежит в пределах 4 — 6 Сном. Конденсаторное торможение прекращается при частоте вращения 30 — 40% номинальной, когда частота вращения ротора становится равной частоте вращения поля статора от возникающих в статоре свободных токов. При этом в процессе торможения поглощается более 3/4 кинетической энергии, запасенной приводом.

Для полной остановки двигателя по схеме на рисунке 1,а необходимо наличие на валу момента сопротивления. Описанная схема выгодно отличается отсутствием переключающих аппаратов, простотой обслуживания, надежностью и экономичностью.

При глухом подключении конденсаторов параллельно двигателю можно применять только такие типы конденсаторов, которые рассчитаны на длительную работу в цепи переменного тока.

Если торможение осуществляется по схеме рисунке 1 с подключением конденсаторов после отключения двигателя от сети, возможно применение более дешевых и малогабаритных металлобумажных конденсаторов типов МБГП и МБГО, предназначенных для работы в цепях постоянного и пульсирующего тока, а также сухих полярных электролитических конденсаторов (КЭ, КЭГ и др.).

Конденсаторное торможение с глухо подключенными по схеме треугольника конденсаторами целесообразно применять для быстрой и точной остановки электроприводов, на валу которых действует момент нагрузки не менее 25% номинального момента двигателя.

Для конденсаторного торможения может быть применена и упрощенная схема: однофазное включение конденсаторов (рис. 1,6). Для получения такого же тормозного эффекта, как при трехфазном включении емкости, необходимо, чтобы емкость конденсатора в однофазной схеме была в 2,1 раза больше емкости в каждой фазе в схеме на рис. 1,а. При этом, однако, емкость в однофазной схеме составляет лишь 70% суммарной емкости конденсаторов при их трехфазном включении.

Потери энергии в двигателе при конденсаторном торможении наименьшие по сравнению с другими видами торможения, поэтому оно рекомендуется для электроприводов с большим числом включений.

При выборе аппаратуры следует учесть, что контакторы в цепи статора должны быть рассчитаны на ток, протекающий по конденсаторам. Для устранения недостатка конденсаторного торможения — прекращения действия до полной остановки электродвигателя — используют его сочетания с динамическим имагнитным торможением.

Принцип торможения противотоком

Мотор отключается от электросети, и пока ротор продолжает вращаться, вновь подключается противофазой. Такая система создаёт эффективный момент блокировки, обычно превышающий пусковой момент.

Между тем, этот эффективный момент торможения должен быть быстро нивелирован, чтобы двигатель после остановки не вращался в противоположном направлении. Несколько устройств контроля и автоматики привлекаются для обеспечения замедления вращения вала электродвигателя до его полной остановки:

  • датчики остановки фрикциона,
  • датчики центробежного останова,
  • хронометрические приборы,
  • реле частоты,
  • реле напряжения ротора (для двигателей с фазным ротором) и т. д.

Торможение двигателя с короткозамкнутым ротором

Прежде чем выбирать систему противотока для асинхронного мотора с КЗ ротором, важно обеспечить устойчивость двигателя к противоточному способу с учётом требуемой нагрузки.

Помимо механических напряжений, этот процесс подвергает ротор воздействию высоких тепловых нагрузок, так как энергия, выделяемая при каждой операции, рассеивается в теле ротора.

Тепловое напряжение на противотоке в три раза больше, чем при наборе скорости вращения. Здесь пики тока и крутящего момента заметно выше, если сравнивать с моментом пуска.

Поэтому для обеспечения плавного останова двигателя системой противотока, как правило, последовательно с каждой фазой статора устанавливают резистор. Благодаря такому добавлению, при переключении уменьшается крутящий момент и ток, до значений, равных тем, что отмечаются на статоре в режиме пуска.

Однако противоточная система торможения имеет ряд серьёзных недостатков. Поэтому этот способ для асинхронных двигателей с короткозамкнутым ротором используется в редких случаях и преимущественно на маломощных моторах.

Противоточное торможение на двигателях с фазным ротором

Чтобы ограничить ток и крутящий момент, прежде чем статор будет переключен на противоточный ход, крайне важно использовать резисторы ротора, используемые для запуска.

При этом следует периодично добавлять дополнительную резистивную секцию торможения. При правильно подобранном значении роторного резистора, регулировать тормозной момент до требуемого значения несложно.

Момент переключения тока даёт напряжение ротора практически в два раза большее, чем когда ротор находится в состоянии покоя, что иногда требует особых мер при изоляции.

Как и в случае с силовыми двигателями, цепь ротора выделяет значительное количество энергии. Вся выделенная энергия полностью рассеивается на резисторах (за исключением небольших потерь).

Двигатель может быть остановлен автоматически одним из вышеупомянутых устройств контроля. Например, с помощью реле напряжения или частоты в цепи ротора. С помощью схемы противотока удаётся поддерживать ведущую нагрузку с умеренной скоростью.

Однако характеристика крайне неустойчива (значительные колебания скорости по отношению к малым изменениям крутящего момента).

Режим рекуперации в асинхронных электрических машинах

Режим рекуперации применяется не только в двигателях постоянного тока. Его можно применять и в асинхронных двигателях.

При этом такой режим возможен в следующих случаях:

  1. Если изменить частоту питающего напряжения при помощи частотного преобразователя. Что возможно при условии питания асинхронного электродвигателя от устройства с возможностью регулирования частоты питающей сети. Эффект торможения наступает при уменьшении частоты питающего напряжения. При этом переход в генераторный режим происходит, когда скорость вращения ротора становится больше номинальной (синхронной).
  2. Асинхронные машины, которые конструктивно имеют возможность переключения обмоток, для изменения скорости.
  3. В грузоподъёмных механизмах, где применяется силовой спуск. В них монтируется электромотор с фазным ротором. В этом случае скорость регулируется с помощью изменения величины резистора, подсоединяемого к обмоткам ротора. Магнитный поток начинает обгонять поле статора, а скольжение становится больше 1. Электромотор переходит в режим генератора, вырабатываемая электроэнергия возвращается в сеть, возникает тормозной эффект.

Торможение вводом постоянного тока

Этот вариант используется на двигателях с фазным и короткозамкнутым ротором. Если сравнивать с противоточной системой, стоимость применения источника выпрямленного тока компенсируется меньшим количеством резисторов.

Благодаря электронным регуляторам скорости и стартерам, этот способ торможения асинхронных электродвигателей видится вполне экономичным.

Методика предполагает отключение обмоток статора от сети и подачу на обмотки выпрямленного тока. Прохождение выпрямленного тока по обмоткам статора сопровождается образованием фиксированного потока в воздушном зазоре между ротором и статорным кольцом двигателя.

Для достижения значения этого потока, способного обеспечить надлежащее торможение, ток должен быть примерно в 1,3 раза выше номинального тока. Избыток тепловых потерь, неизбежно вызываемых этим незначительным превышением, обычно компенсируется временной паузой после останова мотора.

Критерии применения метода вводом постоянного тока

Поскольку значение тока зависит от сопротивления обмотки статора, напряжение на источнике выпрямленного тока невысокое. Обычно источником выступает схема выпрямителя или контроллера скорости.

Эти источники выпрямленного тока должны быть адаптированы к переходным скачкам напряжения, происходящим на обмотках в момент отсоединения от переменного источника питания.

Движение ротора здесь следует рассматривать скольжением относительно поля, зафиксированного в пространстве. Поведение двигателя аналогично синхронному генератору с разгрузкой на роторе. Поэтому важны отличия характеристик, полученных на торможении вводом выпрямленного тока, по сравнению с противоточной схемой:

  1. Меньше энергии рассеивается на резисторах ротора или в теле ротора. Процесс эквивалентен механической энергии, массово выделяемой при движении. Единственная мощность, потребляемая от сети, — возбуждение статора.
  2. Когда нагрузка не является управляемой, двигатель не запускается в противоположном направлении.
  3. Если нагрузка является управляемой, система действует постоянно и удерживает нагрузку на низкой скорости. То есть достигается фактор замедления, а не полного торможения. Характеристика намного стабильнее, чем у системы противотока.

На моторах с фазным ротором характеристики крутящего момента зависят от выбора резисторов.

На двигателях с короткозамкнутым ротором система позволяет легко регулировать момент торможения электродвигателя, воздействуя на энергетику постоянного тока. Тем не менее, тормозной момент остаётся низким, если мотор имеет высокие обороты.

Асинхронные двигатели с фазным ротором:плюсы и минусы

Как уже указывалось выше, если сравнивать его с двигателем с короткозамкнутым ротором, имеет два основных преимущества:

  • возможность запуска двигателя с уже подключенной к валу значительной нагрузкой – двигатель с самого начала создает большой вращающий момент
  • ограничение по току включения позволяет устанавливать асинхронные двигатели с фазовым ротором в маломощных сетях.

Кроме того, следует отметить и другие достоинства:

  • возможность работы с большой перегрузкой
  • малые колебания скорости вращения – при разных нагрузках скорость вращения остается приблизительно одинаковой
  • возможность установки автоматики – пусковых приспособлений

Отметим и недостатки:

  • введение резисторов в цепь ротора усложняет и удорожает двигатель
  • большие габариты
  • меньший, чем у короткозамкнутых двигателей, показатель КПД и cos φ
  • при недогрузках значение cos φ имеет минимальные значения

На практике асинхронные двигатели с фазным ротором оптимально подходят для случаев, когда нет необходимости в широкой и плавной регулировке скорости и требуется очень большая (особенно на первоначальном этапе) мощность двигателя.

Для правильного подключения асинхронного двигателя важно правильно определить начала и концы фазных обмоток. Как это сделать – подробно рассмотрено на видео

Торможение двигателей электронным и сверхсинхронным способом

Эффект электронного торможения достигается относительно просто с помощью регулятора скорости, оснащенного тормозным резистором. Асинхронный двигатель действует как генератор. Механическая энергия рассеивается на ограничительном резисторе без увеличения потерь в самом двигателе.

Эффект торможения проявляется, когда двигатель достигает верхней точки синхронной скорости с переходом на более высокие значения. Здесь фактически инициируется режим асинхронного генератора и развивается тормозной момент. Возникающие при этом потери энергии восстанавливаются электросетью.

Подобный режим работы проявляется на двигателях подъёмников при спуске груза с номинальной скоростью. Тормозной момент полностью уравновешивается крутящим моментом от нагрузки.

За счёт этого равновесия удаётся тормозить не ослаблением скорости, а выводом двигателя в режим работы на постоянной скорости.

Для варианта эксплуатации моторов с фазным ротором, все или часть резисторов ротора должны быть накоротко замкнутыми, чтобы двигатель не развивал движение значительно выше номинальной скорости.

Сверхсинхронная система функционально видится идеальной для ограничения движения под нагрузкой, потому что:

  1. Скорость остаётся стабильной и практически не зависит от вращающего момента,
  2. Энергия восстанавливается и возобновляется в сети.

Тем не менее, сверхсинхронное торможение электродвигателей поддерживает только одну скорость вращения, как правило, номинальное вращение. На частотно-регулируемых двигателях используются сверхсинхронные схемы, благодаря которым изменяется скорость вращения вала от верхнего значения к нижнему значению.

Сверхсинхронное торможение легко достигается с помощью электронного регулятора скорости, который автоматически запускает эту систему при понижении частоты.

Другие тормозные системы

Редко, но всё-таки встречаются системы однофазного торможения. Эта методика включает питание двигателя между двумя фазами сети и подключает незанятый терминал к одному из двух других сетевых подключений.

Тормозной момент ограничивается 1/3 максимального крутящего момента двигателя. Этой системой невозможно остановить мотор на полной нагрузке.

Поэтому такая схема традиционно дополняется противоточным методом. Вариант однофазной блокировки характеризуется значительным дисбалансом и высокими потерями.

Также применяется торможение электродвигателей ослаблением вихревых токов. Здесь работает принцип, аналогичный тому, что используется на промышленных транспортных средствах в дополнение к механическому торможению (электрические редукторы).

Механическая энергия рассеивается в редукторе скорости. Замедление и остановка электродвигателя контролируется простым возбуждением обмотки. Выраженный недостаток этого метода — значительное увеличение инерции.

Рекуперативное торможение электрических машин

Рекуперативное торможение электродвигателя характеризуется переводом двигателя в генераторный режим. При этом вырабатываемая электроэнергия возвращается в сеть или используется для подзарядки аккумулятора.

Этот режим широко применяется в электровозах, электричках, трамваях и троллейбусах. В момент торможения, вырабатываемая электроэнергия возвращается в электрическую сеть.

Режим рекуперативного торможения применяется для подзарядки аккумуляторов в гибридных автомобилях, электромобилях, электросамокатах, электровелосипедах.

Этот режим является наиболее экономичным и возможен при условии: если частота вращения ротора превышает частоту вращения холостого хода. Это условие выполняется, когда ЭДС электродвигателя превышает напряжение питающей сети. А ток якоря и магнитный поток меняют свое направление. Электрическая машина переходит в генераторный режим, возникает момент торможения.

На рисунке представлена схема торможения тягового двигателя а) с независимым возбуждением и стабилизирующим сопротивлением, б) с противовозбуждением возбудителя.

Рейтинг
( 1 оценка, среднее 4 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]