Недостатки
Кроме положительных качеств твердотельных реле, стоит выделить и ряд недостатков:
- В открытом виде происходит нагрев изделия из-за высокого сопротивления в цепи p-n перехода. Чтобы избежать негативных последствий в приборах, пропускающих через себя повышенные токи, требуется предусмотреть охлаждение.
- В закрытом виде сопротивление увеличивается, и появляется обратный ток утечки (измеряется в мА).
- При съеме вольтамперной характеристики заметен ее нелинейный характер.
- Некоторые виды твердотельных реле требуют строго соблюдения полярности при подключении выходных цепей. Это касается тех приборов, которые рассчитаны на работу в условиях постоянного тока.
- В случае поломки высок риск перекрытия контактов на входе. Причиной может стать пробой силового ключа. Для сравнения контакты классических реле (при выходе из строя) остаются в разомкнутом виде.
- Требуется защита от ошибочных срабатываний, вызванных бросками напряжения. Это обусловлено высокой скоростью срабатывания.
- Твердотельные реле пропускают ток по обратному пути с небольшой задержкой, что обусловлено применением полупроводниковых элементов в схеме.
Советы по выбору
Предохранитель от повышения нагрузок
Купить твердотельные реле можно только в специализированном магазине электронной техники. Опытные специалисты помогут подобрать лучшее устройство для определенных целей. На стоимость изделия влияют следующие факторы:
- тип реле;
- наличие фиксирующих механизмов;
- материал корпуса;
- время включения;
- фирма-изготовитель и страна производства;
- мощность;
- необходимая энергия;
- габариты.
При покупке важно учесть, что должен быть запас по мощности, превышающий рабочую в несколько раз. Это убережет реле от поломок
Также дополнительно используются специальные предохранители. К самым надежным относятся:
- G R – используются в широком диапазоне нагрузок, отличаются высоким быстродействием.
- G S – работают во всем диапазоне токов. Надежно защищают устройство от превышения нагрузки электросети.
- A R – защищают компоненты полупроводникового устройства от короткого замыкания.
Такие приборы обеспечивают высокую защиту от поломок. Их стоимость сопоставима с ценой самого реле. Меньшими защитными свойствами и, соответственно, меньшей стоимостью обладают предохранители классов B, C, D.
Конструкция
Устройство твердотельного реле — это электронная плата, состоящая из силового ключа, элемента развязки и узла управления. В качестве силовых элементов могут быть использованы:
- для цепей постоянного тока: транзисторы, полевые транзисторы, составные транзисторы MOSFET или модули IGBT.
- для управления цепями с переменным напряжением устанавливают симисторные ключи или тиристорные сборки.
В качестве элемента развязки устанавливают оптроны — это устройство состоит из светоизлучающего элемента и фото приемника, разделенных прозрачным диэлектриком. Узел управления представляет собой схему стабилизации напряжения и тока для светоизлучающего элемента в оптроне.
Как видно из схемы, входы управления под номерами 3 и 4, а выход — клеммы 1 и 2. В данной схеме входной сигнал может быть от 70 вольт до 280 переменного напряжения, а напряжение на нагрузке может достигать 480 вольт. Не имеет значения, на каком контакте расположен потребитель, до или после реле.
Условное обозначение твердотельного реле на схеме может выглядеть так (для увеличения нажмите на картинку):
Что касается схемы подключения, в ней аппарат установлен после нагрузки, соединяя его с землей. При таком подключении в случае короткого замыкания на землю, реле исключается из цепочки протекания тока.
Напоследок рекомендуем просмотреть видео, на которых наглядно демонстрируется, как работает твердотельное реле и из чего оно состоит:
Вот мы и рассмотрели назначение, область применения и конструкцию твердотельного реле. Надеемся, предоставленная информация была полезной и понятной!
Наверняка вы не знаете:
- Для чего нужна релейная защита
- Как работает магнитный пускатель
- Системы дистанционного управления освещением
Известные модели
Расшифровка маркировки
Основные характеристики зависят от многих факторов. К популярным отечественным моделям, произведенным фирмами КИПпрбор, Протон, Cosmo, относятся:
- ТМ-О. Устройства со встраиваемой схемой «ноль», через которую проходит переход фазы.
- ТС. Модели, которые выключаются в любой момент времени.
- Наиболее популярные и используемые – ТМВ, ТСБ, ТСМ, ТМБ, ТСА. Они обладают выходной RC цепью.
- Тс/ТМ – силовые. Токи достигают значений 25 мА.
- ТСА, ТМА – применяются в чувствительных приборах.
- ТСБ, ТМБ – низковольтные модели. Напряжение не превышает 30 В.
- ТСВ, ТМВ – высоковольтные. Напряжение достигает 280 В.
К иностранным аналогам относятся изделия, произведенные фирмами Carlo Gavazzi, Gefran, CPC.
Расшифровка
Модели SSR, TSR (однофазные и трехфазные соответственно) являются самыми популярными. Их сопротивление равно 50 Мом и более при напряжении 500 В.
Записывается обозначение как SSR -40 D A H. SSR или TSR обозначает число фаз. 40 – нагрузка в Амперах. Буквой обозначается сигнал на входе (L 4-20 мА, D – 3-32 В при постоянном токе, V – переменное сопротивление, A – 80-250 В при переменном токе). Следующая буква – входное напряжение (А – переменное, D – постоянное). Последняя буква – диапазон выходных напряжений (Н – 90-480 В, нет буквы – 24-380 В).
Трехфазное твердотельное реле
Особенности реле
- Длительный срок службы
- Управление с коммутацией при переходе тока через ноль
- Управляющее напряжение 3 — 32 V DC, 70 — 280 V AC
- Коммутация по 3-м фазам
- Отсутствие дребезга контактов и искрения при переключениях
- Низкий уровень электромагнитных помех
- Высокое сопротивление изоляции между коммутируемой и управляющей цепью
- Отсутствие акустического шума
- Высокое быстродействие
Твердотельные реле с коммутацией при переходе через ноль пропускают 0 или 100% мощности. При работе термоконтроллера с такими твердотельными реле поддержание установленной температуры возможно при двухпозиционном регулировании путем изменения соотношения времени вкл/выкл нагрузки. Для плавной регулировки мощности применяются 3-фазные твердотельные реле с фазовым управлением.
Расшифровка номенклатуры
- GDH — Вид твердотельного реле
- GDH— однофазное твердотельное реле (10 — 120 А)
- GDM — однофазные твердотельные реле в корпусе промышленного исполнения (100 — 500 А)
- GTH — трехфазные твердотельные реле (10 — 120 А)
- GTR — трехфазные реверсивные твердотельные реле (10 — 40 А)
- 40 — рабочий ток 40 А (от 10 до 500 А)
- 48 — рабочее напряжение 24 — 480 V AC, 38 — 24 — 380 V AC, 23 — 5 — 220 V DC
- ZD3 — тип управляющего сигнала (способ коммутации
)- VA— переменный резистор 470 — 560 кОм / 2 Вт (фазовое управление
) - LA — аналоговый сигнал 4 — 20 мА (фазовое управление
) - VD — аналоговый сигнал 0 — 10 V DC (фазовое управление
) - ZD — управление 10 — 30 V DC (коммутация при переходе через ноль
) - ZD3 — управление 3 — 32 V DC (коммутация при переходе через ноль
) - ZA2 — управление 70 — 280 V AC (коммутация при переходе через ноль
) - DD3 — управление 3 — 32 V DC (коммутация напряжения постоянного тока
)
Варианты исполнений
Выходное напряжение | Управляющее напряжение | Номинальный коммутируемый ток | ||
10 A | 25 A | 40 A | ||
480 V AC «перекл. в 0» | 3 — 32 V DC | GTH1048ZD3 | GTH2548ZD3 | GTH4048ZD3 |
70 — 280 V AC | GTH1048ZA2 | GTH2548ZA2 | GTH4048ZA2 |
Выходное напряжение | Управляющее напряжение | Номинальный коммутируемый ток | |||
60 A | 80 A | 100 A | 120 A | ||
480 V AC «перекл. в 0» | 3 — 32 V DC | GTH6048ZD3 | GTH8048ZD3 | GTH10048ZD3 | GTH12048ZD3 |
70 — 280 V AC | GTH6048ZA2 | GTH8048ZA2 | GTH10048ZA2 | GTH12048ZA2 |
Технические характеристики и условия эксплуатации
Модификация твердотельного реле | GTHxxxxxZD3 | GTHxxxxxZA2 |
Коммутируемое напряжение | 24 — 480 V AC | |
Управляющее напряжение | 3 — 32 V DC | 70 — 280 V AC |
Потребляемый ток в цепи управления | 10 — 68 mA | ≤12 mA |
Напряжение вкл./выкл. | 3 V DC / 1,5 V DC | 70 V AC / 10 V AC |
Максимальное пиковое напряжение | 1000 V AC | |
Падение напряжения в цепи нагрузки | ≤1,6 V AC | |
Ток утечки (выключенное состояние) | ≤10 mА | |
Время переключения | ≤10 мс | |
Индикация включения | есть | |
Напряжение пробоя | 2500 V AC в теч. 1 минуты | |
Сопротивление изоляции | 500 МОм при 500 V DC | |
Температура окружающей среды | — 30…+ 75°C | |
Относительная влажность | ≤95% (без образования конденсата) | |
Габаритные размеры | 105х74х33мм | |
Способ монтажа | Винтами на монтажную поверхность | |
Масса | ≤450 г |
Схемы подключения
GTHxxxxxZD3
GTHxxxxxZA2
Внешний вид и габаритные размеры
Название | Цена | Заказать |
GTH1048ZD3 10A, управление 3…32V DC, 480V AC | 34$ | |
GTH2548ZD3 25A, управление 3…32V DC, 480V AC | 44$ | |
GTH4048ZD3 40A, управление 3…32V DC, 480V AC | 53$ | |
GTH6048ZD3 60A, управление 3…32V DC, 480V AC | 62$ | |
GTH8048ZD3 80A, управление 3…32V DC, 480V AC | 75$ | |
GTH10048ZD3 100A, управление 3…32V DC, 480V AC | 93$ | |
GTH12048ZD3 120A, управление 3…32V DC, 480V AC | 107$ | |
GTH1048ZA2 10A, управление 90…250V AC, 480V AC | 37$ | |
GTH2548ZA2 25A, управление 90…250V AC, 480V AC | 46$ | |
GTH4048ZA2 40A, управление 90…250V AC, 480V AC | 55$ | |
GTH6048ZA2 60A, управление 90…250V AC, 480V AC | 64$ | |
GTH8048ZA2 80A, управление 90…250V AC, 480V AC | 76$ | |
GTH10048ZA2 100A, управление 90…250V AC, 480V AC | 94$ | |
GTH12048ZA2 120A, управление 90…250V AC, 480V AC | 117$ |
Подключение твердотельного реле
Принцип подключения прост. В приборе предусмотрены управляющие входы (на них подается напряжение с четким соблюдением полярности) и выход для подключения нагрузки. Важный момент — качество соединения. Здесь применяется винтовой способ (пайка исключена).
Чтобы избежать повреждения ТТР, важно исключить попадание на контакты пыли, а также посторонних механических элементов. Стоит предусмотреть меры, препятствующие негативному воздействию на кожух прибора (во включенном или отключенном состоянии)
После включения запрещено прикасаться к корпусу, который может быть горячим
Обратите внимание, чтобы ТТР не располагалось вблизи легковозгораемых материалов. Кроме того, в процессе подключения убедитесь, что коммутация выполнена без ошибок
Если после включения изделие набирает температуру выше 60 градусов Цельсия, установите на него радиатор для охлаждения (причины и особенности этой защитной меры рассмотрены выше).
Если ничего не предпринять, при достижении 80 градусов Цельсия прибор перестанет работать. Управление осуществляется при помощи цепочки с различными вариантами исполнения.
Практическое применение устройств
Сфера использования твердотельных реле довольно обширна. Из-за высокой надежности и отсутствия потребности в регулярном обслуживании их часто устанавливают в труднодоступных местах оборудования.
Во многих реле подключение проводов управляющего контура требует соблюдения полярности, что необходимо учитывать в процессе монтажа оборудования
Основными же сферами применения ТТР являются:
- система терморегуляции с применением ТЭНов;
- поддержание стабильной температуры в технологических процессах;
- контроль работы трансформаторов;
- регулировка освещения;
- схемы датчиков движения, освещения, фотодатчиков для уличного освещения и т.п.;
- управление электродвигателями;
- источники бесперебойного питания.
С увеличением автоматизации бытовой техники твердотельные реле приобретают все большее распространение, а развивающиеся полупроводниковые технологии постоянно открывают новые сферы их применения.
Виды ТТР
Твердотельные реле по устройству и принципу работы можно разделить на следующие разновидности:
- По виду управляющего напряжения – переменное или постоянное (дискретные). Иногда на вход подключается переменный резистор, т.е. используется аналоговое управление, соответственно и выходное напряжение меняется плавно, как в диммере для освещения.
- По виду коммутируемого напряжения – переменное или постоянное.
- По количеству фаз для переменного напряжения – одна или три.
- Для трехфазных – с реверсом или без.
- По конструкции – монтаж на поверхность или на ДИН-рейку. Хотя, практически все производители предлагают переходные планки для универсального монтажа.
Кроме того, стандартной опцией для коммутации переменного напряжения является переключение в момент перехода через ноль.
Выше уже было фото ТТЛ, у которого вход – постоянное напряжение, выход – переменное (АС-DC). Вот ещё какие реле у меня есть сейчас под рукой:
SSR OMRON DC-DC. Вход – постоянное напряжение до 24 В, выход – тоже постоянное, до 200 В
SSR FOTEK DC-DC – твёрдотельные реле постоянного тока
Этими двумя моделями реле удобно коммутировать нагрузку с постоянным напряжением 24 Вольта, когда управляющий сигнал (тоже 24 В) приходит с выхода контроллера или с датчика. Можно сказать, что это такие компактные усилители тока. Причем коэффициент усиления при этом – около 1000, поскольку ток управляющей цепи – менее 10 мА.
Дальше-больше. Ниже показано трехфазное твердотельное реле. На его входы R, S, T подается три фазы 380В, а с его выходов U, V, W напряжение подается на асинхронный двигатель или трехфазный ТЭН.
Fotek 3 phase. Трехфазное твердотельное реле
Это реле работает (по результатам работы) примерно, как магнитный пускатель с катушкой 24 VDC.
Как подключить электродвигатель через магнитный пускатель – подробно расписано на СамЭлектрике здесь.
Управляющие контакты показаны поближе:
Fotek 3 phase. Входные управляющие контакты
Видите на фото, под управляющие контакты предусмотрено ещё одно место, которое в данном случае не используется? На этом месте у другой модели подается сигнал реверса. То есть, при подаче на один вход фазы через реле коммутируются для прямого вращения двигателя, при подаче на другой вход – для обратного.
Кто не в курсе – прямое вращение – это когда двигатель крутится по часовой стрелке, если смотреть ему “в зад”. Как поменять направление вращения двигателя – поменять местами любые две фазы.
По теме рекомендую почитать мою статью по трем фазам и отличии трехфазного питания от однофазного.
Трехфазные реле с реверсом бывают с коммутацией двух фаз, третья подключена к двигателю постоянно.
А теперь представьте, столько места занимает и сколько шума при работе создает обычное реверсивное реле на такой ток? То-то и оно!
Вот такое же ТТЛ, но помощнее и с управлением от переменки 220В.
Fotek TSR-40AA-H 3 phase 40A
Вроде всё, пишите, у кого какой опыт по применению!
Вот нарыл в свободном доступе файлы, возможно, написано информативнее, чем у меня:
Твердотельные реле по типу переключения
С коммутацией перехода через ноль
Посмотрите внимательно на диаграмму
Такие ТТР на выходе коммутируют переменный ток. Как вы здесь можете заметить, когда мы подаем на вход такого реле постоянное напряжение, у нас коммутация на выходе происходит не сразу, а только тогда, когда переменный ток достигнет нуля. Выключение происходит подобным образом.
Для чего это делается? Для того, чтобы уменьшить влияние помех на нагрузках и уменьшить импульсный бросок тока, который может привести к выходу нагрузки из строя, если тем более нагрузкой будет являться схема на полупроводниковых радиоэлементах.
Схема подключения и внутреннее строение такого ТТР выглядит примерно вот так:
управление постоянным током
управление переменным током
Мгновенного включения
Здесь все намного проще. Такое реле сразу начинает коммутировать нагрузку при появлении на нем управляющего напряжения. На диаграмме видно, что выходное напряжение появилось сразу, как только мы подали управляющее напряжение на вход. Когда мы уже снимаем управляющее напряжение, реле выключается также, как и ТТР с контролем перехода через ноль.
В чем минус данного ТТР? При подаче на вход управляющего напряжения, у нас на выходе могут возникнуть броски тока, а в следствии и электромагнитные помехи. Поэтому, данный тип реле не рекомендуется использовать в радиоэлектронных устройствах, где есть шины передачи данных, так как в этом случае помехи могут существенно помешать передаче информационных сигналов.
Внутреннее строение ТТР и схема подключения нагрузки выглядят примерно вот так:
С фазовым управлением
Здесь все намного проще. Меняя значение сопротивления, мы тем самым меняем мощность на нагрузке.
Примерная схема подключения выглядит вот так:
Преимущества и недостатки
В отличие от других типов реле, твердотельное лишено подвижных контактов. Коммутация электроцепей в этом приборе выполняется по принципу электронного ключа, выполненного на полупроводниках. Чтобы при создании твердотельного реле не возникло проблем, необходимо разобраться с принципом работы прибора и его конструкцией.
Однако начать стоит с его описания основных преимуществ:
- Возможность коммутировать мощные нагрузки.
- Переключение происходит с высокой скоростью.
- Качественная гальваническая развязка.
- Способно выдерживает серьезные перегрузки на коротком временном отрезке.
Ни одно механическое реле не обладает аналогичными параметрами. Область применения твердотельного реле (ТТР) практически неограничена. Отсутствие подвижных элементов в конструкции существенно увеличивает срок службы устройства. Однако следует помнить, что прибор имеет не только преимущества. Некоторые свойства ТТР являются недостатками. Например, во время эксплуатации мощных устройств возникает необходимость в применении дополнительного элемента для отвода тепловой энергии.
Зачастую размеры радиатора существенно превышают габариты самого реле. В такой ситуации монтаж прибора несколько затрудняется. Когда устройство закрыто, то в нем наблюдается утечка тока, что приводит к появлению нелинейной вольт-амперной характеристики
Таким образом, при использовании ТТР следует обращать внимание на характеристики переключаемых напряжений. Некоторые виды устройств способны работать только в сетях с постоянным током
При подключении твердотельного реле к цепи нужно предусмотреть способы защиты от ложных срабатываний.
Типы нагрузок твердотельных реле. Общая классификация
Индуктивная нагрузка – электрическая нагрузка с большой индуктивной составляющей. К такой нагрузке относятся электрические аппараты, в составе которых имеются электрические катушки либо обмотки: соленоиды клапанов, трансформаторы, электродвигатели, дроссели и пр.
Особенностью индуктивной нагрузки являются высокие потребляемые токи при её включении (пусковые токи), вызванные переходными электрическими процессами. Пусковые токи высокоиндуктивной нагрузки могут превышать номинальный ток в несколько десятков раз и быть достаточно длительными, поэтому при применении твердотельного реле для коммутации индуктивной нагрузки необходимо выбирать номинал твердотельного реле (ТТР) с учетом пусковых токов нагрузки.
Резистивная нагрузка – электрическая нагрузка в виде сопротивления (резистора), на котором происходит преобразование электрической энергии в тепловую.
К резистивной нагрузке относится большинство нагревателей (ТЭНов). Нагрузка регистивного типа характеризуется относительно низкими пусковыми токами, что позволяет использовать для коммутации регистивной нагрузки твердотельные реле с минимальным запасом по току (как правило с запасом в 25%). Но есть исключения, яркий пример — лампы накаливания, хоть и являются по сути резистивной нагрузкой, но имеют достаточно высокие пусковые токи (до 12 * Iном), что обусловлено очень большим разбросом сопротивления нихромовой спирали при разных температурах.
ТЭН – нагреватель в виде металлической трубки, заполненный теплопроводящим электрическим изолятором, в центре которого установлен нагревательный элемент определенного сопротивления. В качестве нагревательного элемента обычно используется нихромовая нить. ТЭН относится к нагрузке резистивного типа с малыми пусковыми токами.
Реверсивные твердотельные реле
Существуют также специальные трехфазные твердотельные реле для реверса двигателей, у которых два управляющих входа.
Пример включения трехфазного реле – на фото ниже:
Включение трехфазного твердотельного реле
Как видно, реле не совсем трехфазное, одна фаза подается на двигатель постоянно, что может стать причиной опасности.
На корпусе реле напечатана его схема включения, где всё понятно. Реле реверсивное, и у него два входа – Forward и Reverse (Вперёд/Назад). Для реверса фазы L1 и L2 меняются местами.
Важно – внутри реле нет блокировки от одновременного включения в обоих направлениях, и ее надо обеспечить аппаратно (блокировочные контакты кнопок/реле) и программно (если управление – от контроллера). Если это не предусмотреть, то вероятна ситуация, когда силовые выходы 1, 2, 3, 4 будут замкнуты накоротко