Выпрямитель напряжения: принцип работы и разновидности


История изобретения

В 1873 году английский учёный Фредерик Гутри разработал принцип работы вакуумных ламповых диодов с прямым накалом. Уже через год в Германии физик Карл Фердинанд Браун предположил похожие свойства в твердотельных материалах и изобрел точечный выпрямитель.
В начале 1904 года Джон Флеминг создал первый полноценный ламповый диод. В качестве материала для его изготовления он использовал оксид меди. Диоды начали широко использоваться в радиочастотных детекторах. Изучение полупроводников привело к тому, что в 1906 году Гринлиф Виттер Пиккард изобрел кристаллический детектор.

В середине 30-х годов XX века основные исследования физиков были направлены на изучение явлений, проходящих на границе контакта металл-полупроводник. Их результатом стало получение слитка кремния, обладающего двумя типами проводимости. Изучая его, в 1939 году американский учёный Рассел Ол открыл явление, названное позже p-n переходом. Он установил, что в зависимости от примесей, существующих на границе соприкосновения двух полупроводников, изменяется приводимость. В начале 50-х годов инженеры компании Bell Telephone Labs разработали плоскостные диоды, а уже через пять лет в СССР появились диоды на основе германия с переходом менее 3 см.

Изобретателем же схемы выпрямительного моста считается электротехник из Польши Карол Поллак. Позже в журнале Elektronische Zeitung опубликовали результаты исследований Лео Гретца, поэтому в литературе можно встретить и другое название диодного моста — схема или мост Гретца.

Принцип действия

Что представляет собой сварочный выпрямитель

Простейшая схема выпрямителя состоит из диода, подключаемого между источником питания и нагрузкой. Работа схемы основана на свойстве диода проводить ток в одном направлении и не пропускать его в обратном. На выходе получается напряжение, складывающееся только из положительных полуволн, и, соответственно, выпрямленный ток. Если диод подключить в обратном направлении, сигнал сложится из отрицательных полуволн.

Полуволновое выпрямление

После выпрямления ток протекает в одном направлении, чередуя положительную полуволну с нулевыми значениями напряжения. Количественный показатель этого меняющегося напряжения будет равен эквивалентному постоянному напряжению 0,318 U, где U – максимальное значение входного синусоидального сигнала.

Недостатки схемы:

  1. Так как напряжение на нагрузке присутствует только в положительную половину цикла (50% входного сигнала), это приводит к низкому среднему значению постоянного тока, подаваемому на нагрузку;

Важно! Иногда эта особенность применяется в схемах ограничения мощности резистивной нагрузки, например, при двухуровневом регулировании освещения.

  1. Изменение выпрямляемого выходного сигнала создает форму волны, имеющую большое количество пульсаций, что является нежелательным.

Иногда для разглаживания пульсаций применяют конденсатор. Но существуют ограничения по стоимости и размерам используемых конденсаторов. На практике полуволновое выпрямление применяется редко и только для питания схем небольшой мощности.

Полноволновое выпрямление

Почти все схемы требуют устойчивого и плавного напряжения постоянного тока. Один из способов этого добиться – использовать каждый полупериод входного напряжения.

Полноволновые выпрямители имеют фундаментальные преимущества перед их полуволновыми аналогами:

  • среднее выходное напряжение выше, чем для полуволнового сигнала;
  • выход полноволнового выпрямителя имеет гораздо меньшую пульсацию.

В схеме используется два диода, по одному на каждую половину цикла. Другим главным компонентом является трансформатор, вторичная обмотка которого разделена на две половины с общим центральным соединением. Такая конфигурация приводит к тому, что каждый диод проводит ток в свою полуволну, когда его анодный вывод положителен относительно центральной точки трансформатора, и на нагрузке создается выход в течение обоих полупериодов.

В результате протекающий через нагрузку ток проходит в одном направлении для обоих полупериодов, а выходное напряжение представляет суммарную частоту двух сигналов. Этот тип схемы известен, как двухфазная.

Среднее выходное напряжение через резистор нагрузки теперь вдвое больше и равно 0,637 U, где U – максимальное входное напряжение, или 0,9 U от среднеквадратичного значения.

Важно! Для получения другого выходного напряжения можно использовать различные коэффициенты трансформации.

Главный недостаток схемы – необходимость применения большого трансформатора для заданной выходной мощности с двумя отдельными, но идентичными вторичными обмотками, что делает ее дорогостоящей по сравнению с полноволновым мостом.

Мостовая схема

Этот тип однофазного выпрямителя использует четыре отдельных диода, соединенных в конфигурацию «мост» с замкнутым контуром, для получения желаемого выхода.

Основное достоинство мостовой схемы – не требуется специальный главный запорный трансформатор. Одинарная вторичная обмотка подключается к одной стороне диодного моста, а нагрузка – к другой.

Особенности работы диодного моста:

  1. В продолжение положительного полуцикла одна пара диодов в противоположных плечах моста открыта, другая – заперта. Токовый сигнал проходит по нагрузке однонаправленно;
  2. Когда наступает отрицательный полуцикл, другая пара диодов открывается, а первая – запирается. На выходе ток идет в аналогичном направлении;
  3. Напряжение выхода постоянное и составляет 0,637 от максимального амплитудного значения;

Важно! В действительности на самих диодах также происходит некоторое падение напряжения (2 х 0,7 = 1,4В для кремния). Но этот недостаток имеет значение только в схемах малых напряжений.

  1. Частота пульсаций выпрямленного сигнала в два раза превышает частоту питания. Для 50 Гц на выходе получается 100 Гц.

При практической реализации данных схем можно использовать четыре отдельных диода, но также в продаже доступны готовые мостовые выпрямительные компоненты в разных значениях напряжения и тока. Скошенный уголок указывает, что ближайший выходной контакт является положительным (+), противоположный от него – отрицательный (-), а два других вывода предназначены для входного переменного напряжения от вторичной обмотки трансформатора.

Сглаживающий конденсатор

Можно улучшить среднее выходное напряжение постоянного тока выпрямителя, одновременно добавив плавности сигналу, с помощью сглаживающих конденсаторов, которые соединяются параллельно с нагрузкой.

Конденсатор заряжается до пикового напряжения выходного импульса. Но когда напряжение падает до нуля, он не может разряжаться мгновенно из-за постоянной времени RC схемы. Конденсатор разряжается только до некоторого значения, поддерживая напряжение на нагрузке до тех пор, пока он снова не зарядится при следующем пике. Таким образом, изменения напряжения невелики, но можно еще увеличить сглаживание путем увеличения емкости конденсатора.

Обычно для цепей питания постоянного тока применяют конденсатор алюминиевого или электролитического типа емкостью 100 мкФ и более.

При выборе сглаживающего конденсатора учитываются:

  1. Рабочее напряжение элемента, которое должно быть выше выходного значения выпрямителя без нагрузки;
  2. Емкость, определяющая величину пульсации. Если она слишком низкая, то мало будет влиять на выходной сигнал.

Важно! При большой емкости и маленьком токе нагрузки можно получить почти чистый постоянный сигнал.

Максимальное напряжение пульсации при наличии сглаживающего конденсатора зависит от частоты и тока нагрузки и определяется по формуле:

U = I / f x C, где f – частота входного напряжения.

Трехфазная схема выпрямления

Достоинством мостового выпрямительного устройства является его легкая трансформация в трехфазную версию. Провод каждой фазы присоединяется между двумя диодами. После выпрямления полнофазного токового сигнала импульсы с фазовым сдвигом перекрываются друг с другом, и получается намного более плавный выходной показатель постоянного тока. Это решающее достоинство в мощных выпрямительных электроцепях, в которых физические габариты фильтрующих компонентов будут непомерно большими с такими параметрами, но оборудование требует постоянного токового сигнала с максимально сглаженной пульсацией.

Однофазные управляемые выпрямители

В частично управляемых схемах в плечи моста устанавливаются два диода и два тиристора. В полностью управляемой схеме все диоды заменяются тиристорами. Когда на тиристоры подается ток управления немедленно, как только анод оказывается под напряжением положительной полуволны, он работает аналогично диоду. Если открывающий сигнал задерживается, то тиристор начинает пропускать ток позже. Соответственно, снижается средний показатель напряжения.

Такой тип выпрямительной цепи широко используется для управления скоростью двигателей постоянного тока.

Это только основные схемы выпрямителей разного предназначения: от блоков питания ПК и радиоэлектронных схем до снабжения постоянным током контактной сети электротранспорта, электролизных установок и сварочных аппаратов.

Устройство и структура выпрямителя

Чтобы сгладить полученные импульсы выпрямленного напряжения, после выхода выпрямителя подключают выравнивающий фильтр, состоящий из емкостей, дросселей и сопротивлений. Для выравнивания и регулировки полученного тока и напряжения к выходу сглаживающего фильтра подключают схему стабилизатора. Такие устройства часто подключают и на входе устройства на переменный ток.

Режимы функционирования и свойства отдельных компонентов выпрямителя, стабилизатора, регулятора и фильтра согласовывают с определенными условиями эксплуатации нагрузки потребителя. Поэтому главной задачей при проектировании устройств выпрямления является расчет соотношений, дающих возможность определить по режиму эксплуатации потребителя электрические свойства и параметры компонентов стабилизатора и других частей. Далее необходимо рассчитать эти элементы и выбрать по каталогу в торговой сети.

Сравнение однофазных и трехфазных устройств

При сравнении трехфазных схем выпрямления со однофазными аналогами важно отметить следующие моменты:

  • первые используются только в силовых сетях 380 Вольт, а вторую разновидность допускается устанавливать и в однофазные и в трехфазные цепи (по одному на каждую из фаз);
  • выпрямители 380 Вольт позволяют преобразовывать большую мощность и развивать значительные токи в нагрузке;
  • с другой стороны самостоятельно сделать трехфазный выпрямитель несколько труднее, поскольку он состоит из большего числа комплектующих изделий.

Расчет трехфазного выпрямителя также будет сложнее, так как в этом случае учитываются векторные составляющие действующих токов и напряжений. Это объясняется тем, что в цепях 380 Вольт фазные параметры смещены относительно друга на 120 градусов.

Какие бывают выпрямители

Построение устройств, выпрямляющих переменный ток, базируется на функции итогового агрегата. При необходимости только выравнивать колебания сборка на печатных платах производится за счет неуправляемых полупроводниковых элементов – диодов. Таким образом строятся простейшие выравнивающие элементы.

При необходимости изменений уровня мощности, которая передается на принимающее оборудование, устройство собирают с использованием контролируемых вентилей (тиристоров). Такие выпрямители тока требуются для работы некоторых двигателей, работающих за счет электричества. За счет регулировки подаваемого напряжения изменяется скорость вращения ротора.

N-фазные выпрямители

В подобных устройствах насчитывают более 3 фаз для выпрямления тока. Другие конструктивные особенности различаются. Многофазный выпрямитель может состоять как из полноценного моста, так и из четверти и половины. По количеству входов и распараллеливанию их делят на раздельные, объединенные звездами или кольцами. Кроме того, существуют последовательные виды.

Классификация по назначению и устройству

Генератор тока переменного

Выпрямители переменного тока разделяют на несколько различных видов, в зависимости от характеристик, использования периодов переменного тока, схем, по количеству фаз и типу пропускающего элемента. В общем виде классификация имеет следующий вид:

  • По количеству периодов, задействованных в работе (одно,- и двухполупериодные, а также с полным и неполным использованием волны);
  • По типажу устройства делят на включающие электронный мост, умножающие напряжение, с наличием или отсутствием трансформаторов;
  • По количеству фаз разделяют на однофазные, двух, трех,- и N-фазные;
  • Согласно типу устройства, пропускающего синусоиду, делят на полупроводниковые диодные и тиристорные, механические и вакуумные, ртутные;
  • По виду пропускаемой волны делят на импульсные, аналоговые и цифровые.

Что такое выпрямитель

Выпрямители переменного тока – это схемы с использованием полупроводниковых элементов для преобразования питания переменного тока в однонаправленное питание постоянного тока. Этот преобразовательный процесс называется еще выпрямлением.

Область применения выпрямителей:

  • контактная сеть электрифицированного транспорта;
  • электроприводы, работающие на постоянном токе;
  • компьютерные блоки питания;
  • зарядные устройства для электронных приборов и т. д.

Обычно в качестве выпрямляющего элемента применяется диод. Вторая используемая деталь – тиристор. Выбор выпрямителя зависит от требований нагрузки. При этом учитываются характеристики компонентов схемы выпрямителя тока: напряжение пробоя, номинальный ток, мгновенный ток, диапазоны температур, требования к монтажу и т. д.

Выпрямляющие устройства классифицируются по разным признакам.

По числу фаз:

  • однофазные;
  • трехфазные.

По управляемости:

  • неуправляемые на диодах;
  • управляемые на тиристорах (если требуется как выпрямление переменного тока, так и контроль напряжения);
  • частично управляемые с использованием в схеме диодов и тиристоров.

По значению мощности:

  • силовые;
  • выпрямители сигналов в устройствах малой мощности.

Принцип действия однополупериодного выпрямителя

В этом примере сопротивление RL представляет нагрузку, хотя, на самом деле, нагрузкой может быть любой элемент или группа элементов, которая может вызвать падение напряжения.

Схема однополупериодного выпрямителя

В течение первой половины цикла переменного тока диод D1 находится в состоянии прямого подключения — положительный электрический потенциал воздействует на его анод, а отрицательный потенциал воздействует на его катод. Когда D1 находится в состоянии прямого подключения, ток протекает от отрицательной стороны вторичной обмотки трансформатора, через сопротивление нагрузки, через диод, обратно к положительной стороне вторичной обмотки. Поскольку ток протекает через сопротивление нагрузки, в нём происходит падение напряжения; ток, выходящий из выпрямительного контура появляется в виде положительной полуволны на сопротивлении нагрузки.

Путь тока через однополупериодный находится в состоянии прямого подключения D1

В течение второй половины цикла переменного тока диод D1 находится в состоянии обратного подключения — на его анод воздействует отрицательный электрический потенциал, а положительный электрический потенциал воздействует на его катод. Этот диод не проводит, поэтому в сопротивлении нагрузки RL никакое напряжение не присутствует.

Советуем к прочтению: Подключение электродвигателя с 380 на 220: схемы и способы подключения электродвигателя с фото и видео

Однополупериодный выпрямитель в состоянии обратной проводимости D1

Как видно по форме кривой, у однополупериодных выпрямителей только одна полуволна постоянного тока на выходе при каждом полном цикле переменного тока на входе. По этой причине в оборудованиях обычно не применяются однополупериодные выпрямители; когда они используются, они обычно устанавливаются в оборудовании или контурах, где требуется ток невысокого напряжения и где колебания напряжения не бывают причиной для беспокойства.

Форма кривой выходного сигнала однополупериодного выпрямителя

Полупроводниковые схемы

Любой выпрямитель — это схема. Она включает в себя вторичную обмотку трансформатора, выпрямляющий элемент, электрический фильтр и нагрузку. При этом существует возможность получать умножение напряжения. Выпрямленное напряжение — это сумма постоянного и переменного напряжений. Переменная составляющая — это нежелательная компонента, которую уменьшают тем или иным способом. Но поскольку используются полуволны переменного напряжения, иначе быть не может.

Его можно уменьшить двумя способами:

  • улучшая эффективность электрического фильтра;
  • улучшая параметры выпрямляемого переменного напряжения.

Простейший выпрямитель однополупериодный. Он отсекает одну из полуволн переменного напряжения. Поэтому коэффициент пульсаций в такой схеме получается самым большим. Но если выпрямляется трехфазное напряжение с одним диодом в каждой фазе, а также одним и тем же фильтром, получится в три раза меньший коэффициент пульсаций. Однако наилучшими характеристиками обладают двухполупериодные выпрямители.

Использовать обе полуволны переменного напряжения можно двумя способами:

  • по схеме моста;
  • по схеме со средней точкой обмотки (схема Миткевича).

Сравним обе эти схемы для одного и того же значения выпрямленного напряжения. В схеме моста используется меньше витков вторичной обмотки трансформатора, что является преимуществом. Но при этом в однофазном выпрямительном мосте необходимы четыре диода. В схеме со средней точкой необходимо в два раза больше витков вторичной обмотки со средней точкой, что является недостатком. Еще один недостаток этой схемы — необходимость симметрии частей обмотки относительно средней точки.

Асимметрия будет дополнительным источником пульсаций. Но зато в этой схеме нужны только два диода, что является преимуществом. При выпрямлении на диоде существует напряжение. Его величина почти не изменяется в зависимости от силы тока, протекающего через этот диод. Поэтому мощность, рассеиваемая на полупроводниковом диоде, растет по мере увеличения силы выпрямленного тока.

Это весьма ощутимо при большой силе тока, и поэтому полупроводниковые диоды размещаются на охлаждающих радиаторах и при необходимости обдуваются.

При выпрямлении тока большой силы два диода схемы со средней точкой будут экономичнее и компактнее в сравнении с четырьмя диодами выпрямительного моста. Схемы выпрямителей в свое время не появились из ниоткуда. Их изобрели инженеры. Поэтому схемы выпрямителей в литературе иногда называются в связи с именами своих первооткрывателей. Мостовая схема именуется как «полный мост Гретца». Схема со средней точкой — «выпрямитель Миткевича».

Силовой трансформатор

Это устройство предназначено для согласования напряжений на входе и выходе выпрямительного устройства. Другими словами, трансформатор осуществляет разделение сети нагрузки и сети питания. Существуют всевозможные варианты схем соединения обмоток этого трансформатора, выбор которых зависит от типа схемы выпрямления устройством. На величину выходного напряжения трансформатора U2 влияет величина напряжения на выходе выпрямительного моста Uн.

Трансформатор способен выполнить гальваническую развязку частоты f1 с сетью питания U1, I1, и нагрузочную цепь с Uн, Iн одновременно. В настоящее время появилась возможность проектировать и производить инверторы высокого напряжения, функционирующие на повышенной частоте и выпрямляющие напряжение. Для этого применяются схемы бестрансформаторного выпрямления, в которых блок вентилей подключается сразу к первичной сети питания.

Диодный мост

Этот блок выполняет основную функцию в устройстве выпрямителя, преобразуя переменный ток в постоянный. В блоке применяются чаще всего элементы в виде диодов. На выходе блока вентилей снимается постоянное напряжение, имеющее повышенный уровень импульсов, который зависит от числа фаз сети питания и схемой выпрямителя.

Устройство фильтрования

Фильтрующая часть выпрямителя обеспечивает необходимый уровень пульсаций напряжения на выходе выпрямителя в соответствии с предъявляемыми требованиями нагрузки. В схеме фильтрующего устройства применяются сглаживающий дроссель или сопротивление, подключенные последовательно, и конденсаторы, подключенные параллельно выходу питания.

Однако чаще всего фильтры выполняют по схемам несколько сложнее. В маломощных выпрямителях нет необходимости в применении дросселя и резистора. В схемах выпрямителей для трехфазной сети величина импульсов меньше, тем самым становятся легче условия функционирования фильтра.

Электрические параметры

У каждого типа диодов есть свои рабочие и предельно допустимые параметры, согласно которым их выбирают для работы в той или иной схеме:

  • Iобр – постоянный обратный ток, мкА;
  • Uпр – постоянное прямое напряжение, В;
  • Iпр max – максимально допустимый прямой ток, А;
  • Uобр max – максимально допустимое обратное напряжение, В;
  • Р max – максимально допустимая мощность, рассеиваемая на диоде;
  • Рабочая частота, кГц;
  • Рабочая температура, С.

Здесь приведены далеко не все параметры диодов, но, как правило, если надо найти замену, то этих параметров хватает.

Схема простого выпрямителя переменного тока на одном диоде

На вход выпрямителя подадим сетевое переменное напряжение, в котором положительные полупериоды выделены красным цветом, а отрицательные – синим. К выходу выпрямителя подключим нагрузку (Rн), а функцию выпрямляющего элемента будет выполнять диод (VD). При положительных полупериодах напряжения, поступающих на анод диода диод открывается.

В эти моменты времени через диод, а значит, и через нагрузку (Rн), питающуюся от выпрямителя, течет прямой ток диода Iпр (на правом графике волна полупериода показана красным цветом). При отрицательных полупериодах напряжения, поступающих на анод диода диод закрывается, и во всей цепи будет протекать незначительный обратный ток диода (Iобр). Здесь, диод как бы отсекает отрицательную полуволну переменного тока (на правом графике такая полуволна показана синей пунктирной линией).

В итоге получается, что через нагрузку (Rн), подключенную к сети через диод (VD), течет уже не переменный, поскольку этот ток протекает только в положительные полупериоды, а пульсирующий ток – ток одного направления. Это и есть выпрямление переменного тока. Но таким напряжением можно питать лишь маломощную нагрузку, питающуюся от сети переменного тока и не предъявляющую к питанию особых требований, например, лампу накаливания.

Напряжение через лампу будет проходить только во время положительных полуволн (импульсов), поэтому лампа будет слабо мерцать с частотой 50 Гц. Однако, за счет тепловой инертности нить не будет успевать остывать в промежутках между импульсами, и поэтому мерцание будет слабо заметным. Если же запитать таким напряжением приемник или усилитель мощности, то в громкоговорителе или колонках мы будем слышать гул низкого тона с частотой 50 Гц, называемый фоном переменного тока. Это будет происходить потому, что пульсирующий ток, проходя через нагрузку, создает в ней пульсирующее напряжение, которое и является источником фона.

Этот недостаток можно частично устранить, если параллельно нагрузке подключить фильтрующий электролитический конденсатор (Cф) большой емкости. Заряжаясь импульсами тока во время положительных полупериодов, конденсатор (Cф) во время отрицательных полупериодов разряжается через нагрузку (Rн)

. Если конденсатор будет достаточно большой емкости, то за время между импульсами тока он не будет успевать полностью разряжаться, а значит, на нагрузке (Rн) будет непрерывно поддерживаться ток как во время положительных, так и во время отрицательных полупериодов. Ток, поддерживаемый за счет зарядки конденсатора, показан на правом графике сплошной волнистой красной линией.

Принцип работы выпрямителя тока

Основной функцией выпрямителя тока является преобразование переменного напряжения в постоянное. Принцип работы этих устройств основан на свойствах переменного тока, величина и направление которого изменяются во времени.

Согласно стандартного значения изменение направления тока в сети составляет 50 раз в течение одной секунды. Такое колебание является частотой и составляет 50 герц или периодов. То есть значение электротока в определенный период достигает нулевой отметки, а затем постепенно набирает максимальное значение. Этот процесс постоянно повторяется и протекает в периодической форме. Значение тока постоянно изменяется в соответствии с синусоидальным законом.

Основная задача выпрямителя заключается в получении устойчивого постоянного напряжения, не изменяющего своей величины и направления. Сам процесс выпрямления заключается в работе вентиля, пропускающего ток лишь в одном направлении. В результате односторонней проводимости вентиля, прохождение тока через него осуществляется исключительно в положительные полупериоды. Во время отрицательных периодов ток в цепи отсутствует.

При наличии положительной полуволны, сопротивление в вентиле минимальное, что обеспечивает свободное прохождение тока. Отрицательная полуволна подвергается значительному сопротивлению, задерживается и не проходит через вентиль. В результате включения вентиля в цепь, переменный ток будет полностью отсутствовать. Изменения оставшегося в цепи тока будут касаться только его величины, а направление останется неизменным. Это так называемый первичный или пульсирующий ток. С его помощью можно зарядить аккумулятор, но, он не годится для питания, например, радиоэлектронной аппаратуры. Необходимо выполнить процедуру сглаживания, чтобы пульсирующий ток превратился в постоянный. С этой целью используется специальный фильтр.

Применение диодов

Не следует думать, что диоды применяются лишь как выпрямительные и детекторные приборы. Кроме этого можно выделить еще множество их профессий. ВАХ диодов позволяет использовать их там, где требуется нелинейная обработка аналоговых сигналов. Это преобразователи частоты, логарифмические усилители, детекторы и другие устройства. Диоды в таких устройствах используются либо непосредственно как преобразователь, либо формируют характеристики устройства, будучи включенными в цепь обратной связи. Широкое применение диоды находят в стабилизированных источниках питания, как источники опорного напряжения (стабилитроны), либо как коммутирующие элементы накопительной катушки индуктивности (импульсные стабилизаторы напряжения).

Советуем к прочтению: Тиристоры: принцип работы, проверка и характеристики

С помощью диодов очень просто создать ограничители сигнала: два диода включенные встречно – параллельно служат прекрасной защитой входа усилителя, например, микрофонного, от подачи повышенного уровня сигнала. Кроме перечисленных устройств диоды очень часто используются в коммутаторах сигналов, а также в логических устройствах. Достаточно вспомнить логические операции И, ИЛИ и их сочетания. Одной из разновидностей диодов являются светодиоды. Когда-то они применялись лишь как индикаторы в различных устройствах. Теперь они везде и повсюду от простейших фонариков до телевизоров с LED – подсветкой, не заметить их просто невозможно.

Схема диодного моста

Одной из важнейших частей электронных приборов питающихся от сети переменного тока 220 вольт является так называемый диодный мост. Диодный мост – это одно из схемотехнических решений, на основе которого выполняется функция выпрямления переменного тока.

Как известно, для работы большинства приборов требуется не переменный ток, а постоянный. Поэтому возникает необходимость в выпрямлении переменного тока.

Например, в составе блока питания, о котором уже заходила речь на страницах сайта, присутствует однофазный полномостовый выпрямитель – диодный мост. На принципиальной схеме диодный мост изображается следующим образом.

Схема диодного моста

Это так называемый однофазный выпрямительный мост, один из нескольких типов выпрямителей, которые активно применяются в электронике. С его помощью производят двухполупериодное выпрямление переменного тока.

В железе это выглядит следующим образом.

Диодный мост из отдельных диодов S1J37

Схему эту придумал немецкий физик Лео Гретц, поэтому данное схемотехническое решение иногда называют «схема Гретца» или «мост Гретца». В электронике данная схема применяется в настоящее время повсеместно. С появлением дешёвых полупроводниковых диодов эту схему стали применять всё чаще и чаще. Сейчас ею уже никого не удивишь, но в эпоху радиоламп «мост Гретца» игнорировали, поскольку она требовала применения аж 4 ламповых диодов, которые стоили по тем временам довольно дорого.

Расчет мостовой схемы выпрямления

Заданными или известными величинами являются напряжение на нагрузке (Uср.зад, ток через нагрузку Iср, коэффициент пульсации выпрямленного напряжения Kп.зад на выходе, напряжение и частота питающей сети.

Расчетные величины определяются по формулам:

Из справочника выбирается вентиль с допустимым обратным напряжением

Uобр ≥ 1,6Uср.р

и током через вентиль

I’ср ≥ 0,6Iср

Далее рассчитываются электрические величины, характеризующие вторичную обмотку трансформатора:

UII=(1,1÷1,3)Uср.р III = 0,8Iср; PII=UIIIII

С целью получения пологой внешней характеристики, желательно выбирать фильтр, начинающийся с индуктивности.

Коэффициент пульсаций напряжения на входе фильтра

Кп.вх = 0,67.

Коэффициент сглаживания

При токе нагрузки до 200 ма величина емкости звена фильтра не превышает 8—12 мкф. Задавшись емкостью звена фильтра Сф, можно определить индуктивность дросселя фильтра

(208)

Емкость конденсатора C1, шунтирующего дроссель, рассчитывается по формуле

(209)

Конденсатор С1 должен быть рассчитан на рабочее напряжение

Uраб = 4πƒLдрIср

В заключение нужно определить расчетную (габаритную) мощность силового трансформатора, используя формулу

\главная\р.л. конструкции\источники питания\…

Выпрямители переменного напряжения.

Выпрямители используются в блоках питания радиоэлектронных устройств для преобразования переменного напряжения в постоянное. Схема любого выпрямителя содержит 3 основных элемента:

  • Силовой трансформатор – устройство для понижения или повышения напряжения питающей сети и гальванической развязки сети с аппаратурой.
  • Выпрямительный элемент (вентиль), имеющий одностороннюю проводимость – для преобразования переменного напряжения в пульсирующее.
  • Фильтр – для сглаживания пульсирующего напряжения.

Выпрямители могут быть классифицированы по ряду признаков:

  • по схеме выпрямления – однополупериодные, двухполупериодные, мостовые, с удвоением (умножением) напряжения, многофазные и др.
  • По типу выпрямительного элемента – ламповые(кенотронные), полупроводниковые, газотронные и др.
  • По величине выпрямленного напряжения – низкого напряжения и высокого.
  • По назначению –для питания анодных цепей, цепей экранирующих сеток, цепей управляющих сеток, коллекторных цепей транзисторов, для зарядки аккумуляторов и др.

Основные характеристики выпрямителей:

Основными характеристиками выпрямителей являются:

  • Номинальное напряжение постоянного тока – среднее значение выпрямленного напряжения, заданное техническими требованиями. Обычно указывается напряжение до фильтра U0 и напряжение после фильтра (или отдельных его звеньев – U. Определяется значением напряжения, необходимым для питаемых выпрямителем устройств.
  • Номинальный выпрямленный ток I0 – среднее значение выпрямленного тока, т.е. его постоянная составляющая, заданная техническими требованиями. Определяется результирующим током всех цепей питаемых выпрямителем.
  • Напряжение сети Uсети – напряжение сети переменного тока, питающей выпрямитель. Стандартное значение этого напряжения для бытовой сети –220 вольт с допускаемыми отклонениями не более 10 %.
  • Пульсация – переменная составляющая напряжения или тока на выходе выпрямителя. Это качественный показатель выпрямителя.
  • Частота пульсаций – частота наиболее резко выраженной гармонической составляющей напряжения или тока на выходе выпрямителя. Для самой простой-однополупериодной схемы выпрямителя частота пульсаций равна частоте питающей сети. Двухполупериодные, мостовые схемы и схемы удвоения напряжения дают пульсации, частота которых равна удвоенной частоте питающей сети. Многофазные схемы выпрямления имеют частоту пульсаций, зависящую от схемы выпрямителя и числа фаз.
  • Коэффициент пульсаций – отношение амплитуды наиболее резко выраженной гармонической составляющей напряжения или тока на выходе выпрямителя к среднему значению напряжения или тока. Различают коэффициент пульсаций на входе фильтра (p0 % ) и коэффициент пульсаций на выходе фильтра (p %). Допускаемые значения коэффициента пульсаций на выходе фильтра определяются характером нагрузки.
  • Коэффициент фильтрации (коэффициент сглаживания) – отношение коэффициента пульсаций на входе фильтра к коэффициенту пульсаций на выходе фильтра k с = p0 / p. Для многозвенных фильтров коэффициент фильтрации равен произведению коэффициентов фильтрации отдельных звеньев.
  • Колебания (нестабильность) напряжения на выходе выпрямителя –изменение напряжения постоянного тока относительно номинального. При отсутствии стабилизаторов напряжения определяются отклонениями напряжения сети.

Схемы выпрямителей.

Выпрямители, применяемые для однофазной бытовой сети выполняются по 4 основным схемам: однополупериодной, двухполупериодной с нулевой точкой(или просто- двухполупериодной), двухполупериодной мостовой(или просто –мостовой, реже называется как “схема Греца”), и схема удвоения(умножения) напряжения(схема Латура). Для многофазных промышленных сетей применяются две разновидности схем: Однополупериодная многофазная и схема Ларионова.

Чаще всего используются трехфазные схемы выпрямителей.

Основные показатели, характеризующие схемы выпрямителей могут быть разбиты на 3 группы:

  • Относящиеся ко всему выпрямителю в целом: U0 -напряжение постоянного тока до фильтра, I0 – среднее значение выпрямленного тока, p0 – коэффициент пульсаций на входе фильтра.
  • Определяющие выбор выпрямительного элемента (вентиля): Uобр – обратное напряжение (напряжение на выпрямительном элементе(вентиле) в непроводящую часть периода), Iмакс – максимальный ток проходящий через выпрямительный элемент (вентиль) в проводящую часть периода.
  • Определяющие выбор трансформатора: U2 – действующее значение напряжения на вторичной обмотке трансформатора, I2 – действующее значение тока во вторичной обмотке трансформатора, Pтр – расчетная мощность трансформатора.

Основные характеристики различных схем выпрямления.

Сравнение схем выпрямления и ориентировочный расчет выпрямителя можно сделать используя данные из таблицы.

Тип схемы Uобр I макс I 2 U 2 C 0 * P0 % U C0
Однополупериодная 3 U0 7 I 0 2 I 0 0,75U0 60 I 0/U0 600 I0¯¯¯¯¯¯U0 *C0 1,2U0
Двухполупериодная 3 U0 3,5 I 0 I 0 0,75U0 30 I 0/U0 300 I0¯¯¯¯¯¯ U0 *C0 1,2U0
Мостовая 1,5 U0 3,5 I 0 1,41 I 0 0,75U0 30 I 0/U0 300 I0¯¯¯¯¯¯ U0 *C0 1.2U0
Удвоения напряжения 1,5 U0 7 I 0 2,8 I 0 0,38U0 125 I 0/U0 1250 I0¯¯¯¯¯¯ U0 *C0 0,6U0

* Значение емкости конденсатора рассчитано для P0 % = 10 %

Задавшись значением напряжения на выходе выпрямителя U0 и значением номинального тока в нагрузке(среднего значения выпрямленного тока) I 0, можно без труда определить напряжение вторичной обмотки трансформатора, ток во вторичной обмотке, максимально допустимый ток вентилей, обратное напряжение на вентилях, а также рабочее напряжение конденсатора фильтра. Задавшись необходимым коэффициентом пульсаций, можно рассчитать значение емкости на выходе выпрямителя.

Однополупериодный выпрямитель.

Принципиальная схема и осциллограммы напряжения в различных точках выпрямителя приведены на рисунке.

U2 — Напряжение на вторичной обмотке трансформатора

Uн – Напряжение на нагрузке.

Uн0 – Напряжение на нагрузке при отсутствии конденсатора.

Как видно на осциллограммах напряжение со вторичной обмотки трансформатора проходит через вентиль на нагрузку только в положительные полупериоды переменного напряжения. В отрицательные полупериоды вентиль закрыт и напряжение в нагрузку подается только с заряженного в предыдущий полупериод конденсатора. При отсутствии конденсатора пульсации выпрямленного напряжения довольно значительны.

Недостатками такой схемы выпрямления являются: Высокий уровень пульсации выпрямленного напряжения, низкий КПД, значительно больший, чем в других схемах, вес трансформатора и нерациональное использование в трансформаторе меди и стали.

Данная схема выпрямителя применяется крайне редко и только в тех случаях, когда выпрямитель используется для питания цепей с низким током потребления.

Двухполупериодный выпрямитель с нулевой точкой.

Принципиальная схема и осциллограммы напряжения в различных точках выпрямителя приведены на рисунке.

U2 — Напряжение на одной половине вторичной обмотки трансформатора

Uн – Напряжение на нагрузке.

Uн0 – Напряжение на нагрузке при отсутствии конденсатора.

В этом выпрямителе используются два вентиля, имеющие общую нагрузку и две одинаковые вторичные обмотки трансформатора(или одну со средней точкой).

Практически схема представляет собой два однополупериодных выпрямителя, имеющих два разных источника и общую нагрузку. В одном полупериоде переменного напряжения ток в нагрузку проходит с одной половины вторичной обмотки через один вентиль, в другом полупериоде — с другой половины обмотки, через другой вентиль.

Преимущество: Эта схема выпрямителя имеет в 2 раза меньше пульсации по сравнению с однополупериодной схемой выпрямления. Емкость конденсатора при одинаковом с однополупериодной схемой коэффициенте пульсаций может быть в 2 раза меньше.

Недостатки: Более сложная конструкция трансформатора и нерациональное использование в трансформаторе меди и стали.

Мостовая схема выпрямителя.

Принципиальная схема и осциллограммы напряжения в различных точках выпрямителя приведены на рисунке

U2 — Напряжение вторичной обмотки трансформатора

Uн – Напряжение на нагрузке.

Uн0 – Напряжение на нагрузке при отсутствии конденсатора.

Основная особенность данной схемы – использование одной обмотки трансформатора при выпрямлении обоих полупериодов переменного напряжения.

При выпрямлении положительного полупериода переменного напряжения ток проходит по следующей цепи: Верхний вывод вторичной обмотки – вентиль V2 – верхний вывод нагрузки – нагрузка — нижний вывод нагрузки — вентиль V3 – нижний вывод вторичной обмотки – обмотка.

При выпрямлении отрицательного полупериода переменного напряжения ток проходит по следующей цепи: Нижний вывод вторичной обмотки – вентиль V4 – верхний вывод нагрузки — нагрузка – нижний вывод нагрузки – вентиль V1 – верхний вывод вторичной обмотки – обмотка.

Как мы видим, в обоих случаях направление тока через нагрузку (выделено курсивом) одинаково.

Преимущества: По сравнению с однополупериодной схемой мостовая схема имеет в 2 раза меньший уровень пульсаций, более высокий КПД, более рациональное использование трансформатора и уменьшение его расчетной мощности. По сравнению с двухполупериодной схемой мостовая имеет более простую конструкцию трансформатора при таком же уровне пульсаций. Обратное напряжение вентилей может быть значительно ниже, чем в первых двух схемах.

Недостатки: Увеличение числа вентилей и необходимость шунтирования вентилей для выравнивания обратного напряжения на каждом из них.

Эта схема выпрямителя наиболее часто применяется в самых различных устройствах. На основе этой схемы, при наличии среднего вывода с вторичной обмотки трансформатора можно получить еще два варианта схем выпрямления:

На левой схеме отвод от средины вторичной обмотки позволяет получить еще одно напряжение, меньше основного в 2 раза. Таким образом основное напряжение получается с мостовой схемы выпрямления, дополнительное – с двухполупериодной.

На правой схеме получается двуполярное напряжение амплитудой в 2 раза меньше чем получаемое в основной схеме. Оба напряжения получаются с помощью двуполупериодных схем выпрямления.

Схема удвоения напряжения.

Принципиальная схема и осциллограммы напряжения в различных точках выпрямителя приведены на рисунке.

U2 — Напряжение вторичной обмотки трансформатора

Uн – Напряжение на нагрузке.

Отличительной особенностью данной схемы является то, что в одном полупериоде переменного напряжения от вторичной обмотки трансформатора “заряжается” один конденсатор, а во втором полупериоде от той же обмотки– другой. Поскольку конденсаторы включены последовательно, то результирующее напряжение на обоих конденсаторах ( на нагрузке) в два раза выше, чем можно получить от той же вторичной обмотки в схеме с однополупериодным выпрямителем.

Преимущества: Вторичную обмотку трансформатора можно расчитывать на значительно меньшее напряжение.

Недостатки: Значительные токи через вентили выпрямителя, Уровень пульсаций значительно выше, чем в схемах двухполупериодных выпрямителей.

Эта же схема может использоваться еще в двух вариантах:

Левая схема предназначена для получения двух напряжений питания одной полярности, правая – для получения двуполярного напряжения с общей точкой.

Во втором варианте схемы характеристики выпрямителя соответствуют характеристикам однополупериодного выпрямителя.

Многофазные выпрямители.

Многофазные выпрямители применяются как правило только в промышленной и специальной аппаратуре.

Обычно в промышленной аппаратуре применяются трехфазные выпрямители двух типов – трехфазный выпрямитель и выпрямитель Ларионова.

Трехфазный выпрямитель.

Принципиальная схема и осциллограммы напряжения в различных точках выпрямителя приведены на рисунке.

ФА, ФС, ФВ – напряжения на вторичных обмотках трехфазного трансформатора.

U va Uvb Uvc напряжение на нагрузке получаемое с соответствующего вентиля.

Uн – Суммарное напряжение на нагрузке.

Выпрямитель представляет собой однополупериодный выпрямитель для каждой из трех фазных вторичных обмоток. Все три вентиля имеют общую нагрузку.

Если рассмотреть осциллограммы напряжения на нагрузке при отключенном конденсаторе для каждой из трех фаз, то можно заметить, что напряжение на нагрузке имеет такой же уровень пульсаций как и в схеме однополупериодного выпрямления. Сдвиг фаз(т.е. сдвиг по времени) напряжений выпрямителей между собой в результате даст в 3 раза меньший уровень пульсаций, чем в однофазной однополупериодной схеме выпрямления.

Достоинства: Низкий уровень пульсаций выпрямленного напряжения.

Недостатки: Так же как и в однофазной однополупериодной схеме выпрямления низкий КПД, нерациональное использование трансформатора. Данный выпрямитель неприменим для обычной однофазной сети.

Схема Ларионова.

Принципиальная схема и осциллограммы напряжения в различных точках выпрямителя приведены на рисунке.

Этот выпрямитель представляет собой мостовые выпрямители для каждой пары трехфазных обмоток, работающие на общую нагрузку. Соединяя в себе достоинства мостового выпрямителя и трехфазного питания, он имеет настолько низкий уровень пульсаций, что позволяет работать почти без сглаживающего конденсатора или с небольшой его емкостью.

Недостатки: Увеличенное количество вентилей. Выпрямитель также не может быть применен для работы в однофазной бытовой сети.

Выпрямители для безтрансформаторного питания аппаратуры.

Безтрансформаторные выпрямители являются простейшими неавтономными источниками постоянного тока. Они применяются при напряжениях близких к напряжению сети или превышающих его в 1,5 – 2,5 раза и токах до нескольких десятков миллиампер.

Ограниченное применение безтрансформаторных выпрямителей объясняется в первую очередь требованиями техники безопасности, так как оба полюса выпрямленного напряжения гальванически связаны с сетью. Второй недостаток таких выпрямителей – отсутствие гибкости при выборе выпрямленного напряжения. Для радиоаппаратуры можно использовать в качестве безтрансформаторных выпрямители: Однополупериодный, мостовой, удвоения напряжения. Основные характеристики такие же как и в случае с трансформаторным питанием. Сетевое напряжение подключают к точкам подключения вторичных обмоток трансформаторов(вместо трансформатора).

Безтрансформаторные схемы опасны для использования!

Для питания малогабаритной портативной аппаратуры с токами до 15-20 миллиампер можно применять однополупериодные или мостовые схемы с гасящими конденсаторами.

В этой схеме конденсатор Сгас выполняет роль “безваттного” реактивного сопротивления, образующий с активным сопротивлением нагрузки своеобразный делитель напряжения.

Реактивное сопротивление гасящего конденсатора указано в формуле.

Данная схема может найти применение для заряда малогабаритных аккумуляторов радиоприемников, радиостанций и радиотелефонов.

При конструировании и эксплуатации выпрямителя также необходимо соблюдать осторожность!

Некоторые рекомендации по работе с выпрямителями.

Вторичные обмотки трансформаторов необходимо всегда защищать плавкими предохранителями. В этом случае короткое замыкание в цепи нагрузки не приведет к таким последствиям как выход из строя трансформатора и тем более не приведет к возгоранию аппаратуры.

Часто при конструировании выпрямителей оказывается, что нет нужных вентилей(диодов) или конденсаторов.с нужными характеристиками. В таком случае можно применить параллельное или последовательное соединение вентилей или конденсаторов.

Что при этом нужно помнить?

Если имеющиеся вентили (диоды) по допустимому току меньше расчетного максимального тока, можно применить параллельное соединение таких диодов, умножив их допустимый ток на количество диодов в “связке”.

В случае, если допустимое обратное напряжение вентилей (диодов) меньше рассчитанного значения, можно применить их последовательное соединение, включив параллельно каждому диоду шунтирующие резисторы, которые выровняют обратное напряжение между диодами. Величину сопротивления шунта рассчитывают по формуле:

Rш = 700 * Uобр / N для диодов с Uобр меньше 200 В и Iмакс = 1 – 10 Ампер

Или

Rш = 150 * Uобр / N для диодов с Uобр более 200 В и Iмакс менее 0,3 Ампер

В случае если емкость конденсатора меньше расчетной, можно применить параллельное включение нескольких конденсаторов, имеющих рабочее напряжение не меньше расчетного.

В случае, если рабочее напряжение конденсаторов меньше допустимого для конкретной схемы, можно применить последовательное включение конденсаторов, не забывая, что общая емкость в этом случае уменьшится во столько раз, сколько конденсаторов будет включено в последовательную цепь.

Такую схему применять можно только в крайнем случае, поскольку в такой схеме пробой(короткое замыкание) одного конденсатора вызовет “цепную реакцию”, так как на оставшиеся в работе конденсаторы будет приложено большее напряжение, чем было до замыкания одного из них. Шунтирование конденсаторов резисторами в этом случае не спасает аппаратуру от последовательного выхода из строя конденсаторов во всей цепочке. Лучше применить последовательное соединение нескольких выпрямителей, рассчитанных на более низкое напряжение. Тогда при пробое одного из конденсаторов выходное напряжение просто снизится.

В этой статье приведена только краткая информация по схемам выпрямителей. Более подробно о расчете выпрямителей можно прочесть в самой различной литературе.

При подготовке статьи использована литература:

В.Я. Брускин “Номограммы для радиолюбителей” МРБ 1972 год.

Б.Богданович, Э.Ваксер “Краткий радиотехнический справочник” Беларусь 1968 год.

Всего вам доброго!

73! Н.Филенко (UA9XBI)

Глас народа
25.02.2015 01:28 спасибо! но я уже давным давно это знаю с 1967-го года… — 10.11.2014 11:57 схема… — 11.10.2013 19:01 УДВОЕНИЯ НПРИЖЕНИЕ ПО ТРОНФОМАТОРНОЙ СХЕМЕ… — аюб 02.09.2013 11:58 Спасибо я в электроники новичек а эта статья мне много прояснила… — Славик 10.03.2013 18:53 СПАСИБО, ХОРОШАЯ СТАТЬЯ. СХЕМЫ ПАРАЛЛЕЛЬНОГО И ПОСЛЕДОВАТЕЛЬНОГО… — Геннадий 14.02.2013 09:40 Уж если решил заняться просвещением, то выдерживал бы буквенно-ци… — ВАК 26.12.2012 02:02 В трехфазной сети сдвиг между любыми фазами равен 120градусов. А … — ABC 08.02.2012 06:27 я себе собрал зарядное для автомобильных аккумуляторов благодаря… — 08.02.2012 06:27 я себе собрал зарядное для автомобильных аккумуляторов благодаря… — 22.11.2011 15:40 Автору 5+молодчина дружище!!!давно искал подобные схемки.Помниц… — турбина 11.10.2011 00:50 Замечательная статья)правда только направляющая.спасибо… — Nonamerz 11.10.2011 00:50 Замечательная статья)правда только направляющая.спасибо… — Nonamerz 09.06.2011 20:05 подскажите где найти эл.схему аэродромного выпрямителя ВА-2х750- … — topor 07.05.2011 16:28 Здраствуйте у меня токой вопрос можно ли из выпрямителя УБП 400 с… — александр к… 13.04.2011 09:05 Хорошая, годная, кошерная статья. Спасибо вам!… — Василий 01.03.2011 11:21 Афтар — убей себя ап стену! Переменным явтяется ток а не напряже… — Tranced, первый… 16.12.2010 20:19 Спасибо. Даже не помогли, а спасли…. — Саня Дьяк 16.12.2010 20:19 Спасибо. Даже не помогли, а спасли…. — Саня Дьяк 29.06.2010 20:51 нужна схема двухполупериодного выпрямителя переменного тока с дву… — 12.06.2010 15:20 БРЕД… — ВАСЯ 20.02.2010 10:05 Нужна принципиальная схема ВДМ 1202… — tnv50 13.01.2010 16:27 Классная статья… — Айра 07.07.2009 20:31 Большое спасибо за информацию. Если есть возможность схема выпрям… — Андрей 26.05.2009 23:40 Здравствуйте, уважаемый Н. Филенко! у меня вот какой вопрос по да… — Евгений 16.04.2009 19:26 Вход на выпрямитель напряжения (2-х фазный переменного тока) 220… — Наталия 02.07.2008 22:14 собсна, не вижу самого расчета… — Юннат 26.05.2008 16:47 Уважаемый Н.Филенко (UA9XBI), в разделе «Выпрямитель Ларионова» В… — 11.02.2008 16:33 В разделе «Трёхфазные выпрямители» не описаны выпрямители «три па… — Андрей 10.12.2007 23:20 Мало информации о схемах удвоения напряжения…. — Miss 17.11.2007 17:22 В компьютерном блоке питания используется импульсный генератор. Р… — Профи 08.11.2007 01:04 Спасибо, чувак…. — Товарищ 21.07.2007 22:46 просто ипонятно адля кого это бесполезняк ищите пользу в другом м… — 06.05.2007 21:25 у меня вопрос : как бы устроить попроще переключение нагрузки с о… — Rognier 31.01.2007 20:30 баян…… — «Мастер оф Пюпе… 17.12.2006 05:48 Офигенно, для инста покатит, автор неимоверное спасибо… — Вовка 30.10.2006 17:34 Выпейка йаду)))) сынок…….. — Девилс Дэнс… 01.04.2006 17:22 НЕ ЗНАЮ ,НЕ ЧИТАЛ… — Я 31.03.2006 08:20 Бесполезная статья, не несущая практически никакой поезной информ… — Bill Gates 29.09.2005 11:18 Действительно, публикация полезнаяю Однако, в разделе об удвоител… — Vladimir 24.03.2005 15:23 У меня вопрос. Есть у меня выпрямитель от старого компа. На 200 в… — ZiRO 26.08.2004 19:08 Отличная статья, всё просто и ясно!!! :)… — Sashko

Работа мостовой схемы

Разбираемся с электроизмерительными приборами

Устройство состоит из четырех полупроводниковых вентилей, объединенных в мост. В таком случае вторичная обмотка трансформирующего устройства объединяется с противоположными плечами диодного моста. Нагрузочные резисторы подключат посредством других плеч. При этом выходные характеристики значительно выше, чем у двухпериодных, из-за течения через прибор всей волны напряжений переменного тока.

Во время положительной полуволны сигнал движется от отрицательной части вторичной обмотки трансформирующего устройства через вентили и нагрузочный резистор к положительной части совокупности витков трансформирующего устройства. При негативной полуволне процесс происходит в обратном порядке.

Схема простого выпрямителя

Синусоидальное напряжение представляет собой периодический сигнал, изменяющийся во времени. С математической точки зрения он описывается функцией, в которой начало координат соответствует времени равным нулю. Сигнал состоит из двух полуволн. Находящаяся полуволна в верхней части координат относительно нуля называется положительным полупериодом, а в нижней части — отрицательным.

При подаче переменного напряжения на диод через подключённую к его выводам нагрузку, начинает протекать ток. Этот ток обусловлен тем, что в момент поступления положительного полупериода входного сигнала диод открывается. В этом случае к аноду прикладывается положительный потенциал, а к катоду отрицательный. При смене волны на отрицательный полупериод диод запирается, так как меняется полярность сигнала на его выводах.

Таким образом, получается, что диод как бы отрезает отрицательную полуволну, не пропуская её на нагрузку и на ней появляется пульсирующий ток только одной полярности. В зависимости от частоты приложенного напряжения, а для промышленных сетей она составляет 50 Гц, изменяется и расстояние между импульсами. Такого вида ток называется выпрямленным, а сам процесс —однополупериодным выпрямлением.

Выпрямляя сигнал, используя один диод, можно питать нагрузку, не предъявляющую особых требований к качеству напряжения. Например, нить накала. Но если запитать, например, приёмник, то появится низкочастотный гул, источником которого и будет промежуток, возникающий между импульсами. В некоторой мере для избавления от недостатков однополупериодного выпрямления совместно с диодом применяется параллельно включённый нагрузке конденсатор. Этот конденсатор будет заряжаться при поступлении импульсов и разряжаться при их отсутствии на нагрузку. А значит, чем больше значение ёмкости конденсатора, тем ток на нагрузке будет более сглажен.

Но наибольшего качества сигнала возможно достичь, если использовать для выпрямления одновременно две полуволны. Устройство, позволяющее это реализовать, получило название диодный мост, или по-другому — выпрямительный.

Двухполупериодный выпрямитель со средней точкой

Схема двухполупериодный выпрямитель со средней точкой

Для этой схемы необходим трансформатор, с двумя вторичными обмотками. Напряжение на диодах в два раза выше, чем при включении схемы с однополупериодным выпрямителем или при включении мостовой схемы. В этой схеме попеременно работают оба полупериода. В течении положительного полупериода работает одна часть схемы обозначенная В1, во время отрицательного полупериода работает вторая часть схемы обозначенная В2. Эта схема является менее экономичной, чем мостовая схема, в частности у неё более низкий коэффициент использования трансформатора. В этой схеме после диодов получается также пульсирующее напряжение, но частота пульсаций в два раза выше. Что мы и можем видеть на следующем графике:

График двухполупериодного выпрямителя

Назначение и практическое использование

Область использования моста, набранного из диодов, довольно широка. Это могут быть блоки питания и узлы управления. Он стоит во всех устройствах, питающихся от промышленной сети 220 вольт. Например, телевизоры, приёмники, зарядки, посудомоечные машины, светодиодные лампы.

Советуем к прочтению: Частотный преобразователь: конструкция, принцип действия

Не обходятся без него и автомобили. После запуска двигателя начинает работать генератор, вырабатывающий переменный ток. Так как бортовая сеть вся питается от постоянного напряжения, ставится выпрямительный мост, через который происходит подача выпрямленного напряжения. Этим же постоянным сигналом происходит и подзарядка аккумуляторной батареи.

Выпрямительное устройство используется для работы сварочного аппарата. Правда, для него применяются мощные устройства, способные выдерживать ток более 200 ампер. Использование в устройствах диодной сборки даёт ряд преимуществ по сравнению с простым диодом. Такое выпрямление позволяет:

  • увеличить частоту пульсаций, которую затем просто сгладить, используя электролитический конденсатор;
  • при совместной работе с трансформатором избавиться от тока подмагничивания, что даёт возможность эффективнее использовать габаритную мощность преобразователя;
  • пропустить большую мощность с меньшим нагревом, тем самым увеличивая коэффициент полезного действия.

Но также стоит отметить и недостаток, из-за которого в некоторых случаях мост не используют. Прежде всего, это двойное падение напряжения, что особенно чувствительно в низковольтных схемах. А также при перегорании части диодов устройство начинает работать в однополупериодном режиме, из-за чего в схему проникают паразитные гармоники, способные вывести из строя чувствительные радиоэлементы.

Блок питания

Ни один современный блок питания не обходится без выпрямительного устройства. Качественные источники изготавливаются с использованием мостовых выпрямителей. Классическая схема состоит всего из трёх частей:

  1. Понижающий трансформатор.
  2. Выпрямительный мост.
  3. Фильтр.

Синусоидальный сигнал с амплитудой 220 вольт подаётся на первичную обмотку трансформатора. Из-за явления электромагнитной индукции во вторичной его обмотке наводится электродвижущая сила, начинает течь ток. В зависимости от вида трансформатора величина напряжения за счёт коэффициента трансформации снижается на определённое значение.

Между выводами вторичной обмотки возникает переменный сигнал с пониженной амплитудой. В соответствии со схемой подключения диодного моста это напряжение подаётся на его вход. Проходя через диодную сборку, переменный сигнал преобразуется в пульсирующий.

Такая форма часто считается неприемлемой, например, для звукотехнической аппаратуры или источников освещения. Поэтому для сглаживания используется конденсатор, подключённый параллельно выходу выпрямителя.

Трёхфазный выпрямитель

На производствах и в местах, где используется трёхфазная сеть, применяют трёхфазный выпрямитель. Состоит он из шести диодов, по одной паре на каждую фазу. Использование такого рода устройства позволяет получить большее значение тока с малой пульсацией. А это, в свою очередь, снижает требования к выходному фильтру.

Наиболее популярными вариантами включения трёхфазных выпрямителей являются схемы Миткевича и Ларионова. При этом одновременно могут использоваться не только шесть диодов, но и 12 или даже 24. Трёхфазные мосты используются в тепловозах, электротранспорте, на буровых вышках, в промышленных установках очистки газов и воды.

Таким образом, использование мостовых выпрямителей позволяет преобразовывать переменный ток в постоянный, которым запитывается вся электронная аппаратура. Самостоятельно сделать диодный мост несложно. При этом его применение позволяет получить не только качественный сигнал, но и повысить надёжность устройства в целом.

Электронные выпрямители и стабилизаторы

Назначение, классификация.

По своим функциональным задачам полупроводниковые устройства можно разделить на три группы: преобразовательные, в том числе выпрямительные; усилительные и импульсные, в том числе логические.

Преобразовательные устройства

осуществляют преобразование напряжения и тока источника энергии в напряжение и ток, необходимые приемнику энергии.
Выпрямительные устройства
служат для преобразования синусоидальных напряжений и токов в постоянные. Обратное преобразование реализуют инверторы, а изменение значений постоянного напряжения и частоты синусоидального тока — преобразователи напряжения и частоты. Преобразовательные устройства широко применяются в электроприводе, устройствах электросварки, электротермии и т. д. В
усилительных устройствах
те или иные параметры сигналов увеличиваются до значений, необходимых для работы исполнительных органов. При помощи
импульсных и логических устройств
создают различные системы управления. Первые обеспечивают необходимую временную программу, а вторые — необходимую логическую программу совместной работы отдельных частей объекта управления.

Отметим, что деление полупроводниковых устройств по их функциональному назначению в известной степени условно. Реальные полупроводниковые устройства часто содержат элементы нескольких групп, а также генераторы синусоидальных колебаний, стабилизаторы напряжения и т. п.

В общем случае структурная схема выпрямительного устройства (рис. 1) содержит трансформатор Т, выпрямитель В, сглаживающий фильтр Ф и стабилизатор выпрямленного напряжения Ст. Трансформатор служит для изменения синусоидального напряжения сети С до необходимого уровня, которое затем выпрямляется. Сглаживающий фильтр уменьшает пульсации выпрямленного напряжения. Стабилизатор поддерживает неизменным напряжение на приемнике П при изменении напряжения сети. Отдельные узлы выпрямительного устройства могут отсутствовать, что зависит от условий работы.

Рис. 1

В дальнейшем вместо термина «выпрямительное устройство» будем пользоваться сокращенным — «выпрямитель». По числу фаз источника выпрямленного синусоидального напряжения различают однофазные и многофазные (чаще трехфазные) выпрямители, по схемотехническому решению — с выводом нулевой точки трансформатора и мостовые, по возможностям регулирования выпрямленного напряжения — неуправляемые и управляемые.

Неуправляемые выпрямители.

В неуправляемых выпрямителях для выпрямления синусоидального напряжения включаются диоды, т. е. неуправляемые вентили, а для сглаживания выпрямленного напряжения — обычно емкостные фильтры.

Для упрощения расчетов примем, что приемник представляет собой резистивный двухполюсник с сопротивлением нагрузки, а диоды — идеальные ключи, т. е. реализуют короткое замыкание цепи для тока в прямом направлении и ее разрыв для тока в обратном направлении.

Однофазные выпрямители: схемы, принцип действия, основные параметры

В однофазном выпрямителе с нулевым выводом трансформатора

приемник подключается к выводу от середины вторичной обмотки трансформатора (рис. 2). Рассмотрим сначала работу выпрямителя без сглаживающего фильтра (ключ К разомкнут). Если в каждой половине вторичной обмотки с числом витков w2 считать положительным то направление тока, при котором соответствующий диод открыт, то ток в каждой половине обмотки и в каждом диоде будет синусоидальным в течение положительного (для этой половины) полупериода и равным нулю в течение отрицательного полу периода (рис. 3 а). В приемнике положительные направления обоих токов совпадают, т.е. (рис. 3 б).

Рис. 2

При идеальном трансформаторе постоянная составляющая тока нагрузки

и его действующее значение

равны значениям соответствующих величин синусоидального тока той же амплитудой.

Рис. 3

Ток в первичной обмотке трансформатора с числом витков w1 синусоидальный

и совпадает по фазе с синусоидальным напряжением сети (рис. 3 в)

.

Рассмотрим, как изменится работа выпрямителя после включения сглаживающего фильтра (ключ К замкнут). По первому закону Кирхгофа для узла 1 цепи прямой ток диода VD1

или

где

и

— напряжение на конденсаторе фильтра и ток в нем.

Подставив в это уравнение значение тока i1 = 0, определим момент времени t1 закрывания диода

откуда

Начиная с момента времени t1 напряжение на приемнике будет изменяться по экспоненциальному закону:

,

как показано на рис. 4 а штриховой линией.

Рис. 4

В момент времени t2 напряжение на конденсаторе и на входе выпрямителя будут равны и откроется диод VD2. Далее процесс в цепи будет периодически повторяться. Происходит периодическая зарядка конденсатора фильтра током от источника энергии и его последующая разрядка на цепь приемника (рис. 4 б).

Включение сглаживающего фильтра увеличивает постоянную составляющую и уменьшает процентное содержание гармонических составляющих в кривой выпрямленного напряжения.

Рис. 5

Зависимость среднего значения выпрямленного напряжения от среднего значения выпрямленного тока называется внешней характеристикой выпрямителя

. На рис. 5 приведены внешние характеристики однофазного выпрямителя без сглаживающего фильтра (кривая 1) и со сглаживающим фильтром (кривая 2). Уменьшение напряжения при уменьшении сопротивления цепи нагрузки и увеличении выпрямленного тока объясняется увеличением падения напряжения на реальном диоде с нелинейной ВАХ, а во втором случае — также более быстрой разрядкой конденсатора.

Рис. 6

Рис. 7

В однофазной мостовой схеме

выпрямления (рис. 6) четыре диода образуют четыре плеча выпрямительного моста. Одну половину периода два диода в противолежащих плечах моста проводят ток , а другие два диода заперты. Вторую половину периода два других диода проводят ток , а первые два диода заперты (рис. 7 а). Для мостовой схемы справедливы все полученные выше соотношения для выпрямителя с нулевым выводом трансформатора. Ток нагрузки выпрямленный (рис. 7 б), а ток источника синусоидальный (рис. 7 а).

Трехфазные выпрямители: схемы, принцип действия, основные параметры.

Многофазное выпрямление дает возможность значительно уменьшить пульсации выпрямленного напряжения. На рис. 8 показана схема трехфазного выпрямителя с нулевым выводом трансформатора. В каждый данный момент времени ток проводит только тот диод, анод которого соединен с выводом той вторичной обмотки трехфазного трансформатора (а, b или с), напряжение на которой ( , , или ) положительное и наибольшее (рис. 9 а).

Рис. 8

Рис. 9

Для идеального трансформатора токи вторичных обмоток , и представляют собой три последовательности импульсов с периодом повторения , длительностью и амплитудой каждая, сдвинутые относительно друг друга на 1/3 периода (рис. 9 б), токи первичных обмоток равны

, ,

ток нагрузки имеет постоянную составляющую , а выпрямленное напряжение совпадает с огибающей положительных полуволн напряжений вторичных обмоток (рис. 9 в). Заметим, что токи во вторичных и первичных обмотках трансформатора имеют постоянные составляющие и , а магнитный поток в его магнитопроводе переменный.

В трехфазной мостовой схеме

выпрямителя нулевой вывод вторичной обмотки трехфазного трансформатора не нужен, поэтому его вторичные обмотки могут быть соединены как звездой, так и треугольником или, если позволяют условия работы, трехфазный трансформатор может вообще отсутствовать. При отсутствии трехфазного трансформатора выпрямитель подключается к трехфазному источнику, например, как показано на рис. 10. Половина диодов выпрямителя (VD1, VD3 и VD5) образует группу, в которой соединены все катодные выводы, а у второй половины диодов (VD2, VD4 и VD6) соединены все анодные выводы.

Рис. 10

Примем значение потенциала нейтральной точки N трехфазного источника . При этом потенциалы его выводов соответственно равны

;

;

,

что показано на рис. 11 а. В каждый данный момент времени работает тот диод первой группы, у которого анодный вывод имеет наибольший положительный потенциал относительно потенциала нейтральной точки N. а вместе с ним — диод второй группы, у которого катодный вывод имеет наибольший по абсолютному значению отрицательный потенциал относительно потенциала этой же точки. Чтобы проследить порядок переключения диодов, разделим один период T работы цепи на шесть равных интервалов времени, как показано на рис. 11 а. В табл. 1 для каждого интервала времени приведены величины с наибольшим положительным потенциалом анодов диодов первой группы и с наибольшим по абсолютному значению отрицательным потенциалом катодов диодов второй группы, а также номера открытых диодов каждой группы. В течение одного периода происходит шесть переключений, т.е. в 2 раза больше числа фаз m=3.

Рис. 11

Таблица 1

Работу выпрямителя иллюстрируют совмещенные по времени кривые токов диодов первой группы i1, i3 и i5 (рис. 11 б) , токов диодов второй группы i2, i4 и i6 (рис. 11 в), тока нагрузки и выпрямленного напряжения (рис. 11 г) и переменные фазные токи трехфазного источника , и (рис. 11 д). Заметим, что максимальное значение выпрямленного напряжения равно амплитуде синусоидального линейного напряжения трехфазного источника , а максимальное значение выпрямленного тока .

Мощность многофазных неуправляемых выпрямителей обычно средняя или большая (от десятков до сотен киловатт и больше при токах до 100 000 А). Мощность однофазных неуправляемых выпрямителей малая или средняя (от единиц до десятков киловатт). Коэффициент полезного действия неуправляемых выпрямителей достигает 98%.

Электрические фильтры.

В цепи периодического несинусоидального тока для различных гармонических составляющих этого тока индуктивные сопротивления катушек и емкостные сопротивления конденсаторов зависят от номера гармонической составляющей.

На зависимости индуктивных и емкостных сопротивлений от частоты основан принцип работы электрических фильтров

— устройств, при помощи которых гармонические составляющие токов и напряжений определенной частоты или в пределах определенной полосы частот значительно уменьшаются.

Сглаживающие фильтры – это устройства, предназначенные для уменьшения пульсаций выпрямленного напряжения. В зависимости от назначения электронного блока коэффициент пульсаций напряжения питания не должен превышать определенных величин. Например, для усилительных каскадов Кп не должен превышать 10-2 – 10-4 %, а для автогенераторов – 10-3 – 10-4 %.

Основными элементами сглаживающих фильтров являются конденсаторы, индуктивные катушки, резисторы, транзисторы. Для постоянного тока сопротивление конденсатора стремится к бесконечности, а сопротивление катушки индуктивности очень мало и определяется ее активным сопротивлением. Для количественной оценки действия фильтра вводится коэффициент фильтрации

,

где — коэффициент пульсации без фильтра, — коэффициент пульсации после фильтра.

Например, для емкостного фильтра .

Сглаживающие фильтры служат для уменьшения процентного содержания на сопротивлении нагрузки гармонических составляющих выпрямленного напряжения или снижения процентного содержания высших гармоник в кривой переменного напряжения.

Физическая сущность работы в фильтре конденсатора и дросселя (катушки) состоит в том, что конденсатор (обычно большой емкости), подключенный параллельно нагрузке, заряжается при нарастании импульсов выпрямленного напряжения и разряжается при их убывании, сглаживая тем самым его пульсации. Дроссель, наоборот, при нарастании импульсов выпрямленного тока в результате действия ЭДС самоиндукции задерживает рост тока, а при убывании импульсов задерживает его убывание, сглаживая пульсации тока в цепи нагрузки. С другой стороны, конденсатор и дроссель можно рассматривать как некие резервуары энергии. Они запасают ее, когда ток в цепи нагрузки превышает среднее значение, и отдают, когда ток стремится уменьшиться ниже среднего значения. Это и приводит к сглаживанию пульсаций.

Рассмотрим работу простейшего сглаживающего фильтра (рис. 12), представляющего собой пассивный линейный четырехполюсник, к выходным выводам которого подключен приемник с сопротивлением нагрузки R2н. Коэффициент передачи напряжения фильтра, цепь которого вместе с приемником представляет собой цепь со смешанным соединением ветвей, равен

.

Рис. 12

Соответствующая амплитудно-частотная характеристика фильтра

приведена на рис. 13.

Рис. 13

Чем выше частота гармоники напряжения на входе и фильтра, тем меньше ее процентное содержание в напряжении на его выходе и (рис. 14).

Рис. 14

Угловая частота, при которой амплитуда синусоидального напряжения между выводами 2-2’ в раз меньше ее значения при угловой частоте, равной нулю, и постоянной амплитуде между выводами 1-1’, называется граничной угловой частотой

, а диапазон угловых частот —
полосой пропускания
сглаживающего фильтра. Часто вместо угловых частот пользуются соответствующими им циклическими частотами .

Свойствами сглаживающего фильтра обладает и пассивный четырехполюсник (рис. 15 а) с соответствующей ему амплитудно-частотными характеристиками (рис. 15 б) при разомкнутой цепи нагрузки ( ).

Рис. 15

Наиболее распространенными сглаживающими фильтрами в выпрямителях электронных приборов являются П-образные LC-фильтры (рис. 16 а). В них постоянная составляющая выпрямленного тока, свободно проходящая через дроссель Др, попадает затем в нагрузку и замыкается через трансформатор. Переменные составляющие, замыкаясь через большие емкости С1 и С2, в нагрузку не проходят.

При небольших токах нагрузки успешно работает Г-образный фильтр (рис. 16 б), а при малых токах нагрузки в качестве сглаживающего фильтра достаточно включить конденсатор (рис. 16 в), что и делается в переносных радиоприемниках и магнитолах. Во многих случаях дроссель заменяют резистором, что несколько снижает качество фильтрации, но зато значительно удешевляет фильтр (рис. 16 г, д). В наиболее ответственных случаях сглаживающий фильтр делают многозвенным, состоящим из нескольких П-образных или Г-образных LC или RC фильтров (рис. 16 е).

Рис. 16

Резонансные фильтры. В резонансных фильтрах используются явления резонансов напряжений и токов в электрических цепях для выделения или исключения в кривой напряжения на приемнике определенной полосы частот. Соответствующие фильтры называются полосовыми

и
заградительными
.

Рис. 17

На рис. 17 а приведена схема простейшего полосового фильтра

на основе явления резонанса напряжений, а на рис.17 б — его амплитудно-частотная характеристика, найденная по формуле:

.

Ширина полосы частот , выделяемая фильтром, на уровне тем меньше, чем больше добротность цепи .

Рис. 18

В заградительном фильтре

по схеме на рис. 18 а используется явление резонанса токов. Его амплитудно-частотная характеристика

приведена на рис. 18 б. Ширина полосы частот , заграждаемых фильтром, определяется на уровне .

Комбинации явлений резонансов напряжений и токов в различных ветвях фильтра позволяют создавать полосовые и заградительные фильтры высокого качества.

Избирательные RС-фильтры. Фильтры, содержащие только резисторы и конденсаторы, называются RС-фильтрами

. Отсутствие в них индуктивных элементов делает их привлекательными для реализации в виде интегральных микросхем. Примером полосового RС-фильтра может служить четырехполюсник (рис. 19 а), называемый
мостом Вина
, с коэффициентом передачи напряжения при разомкнутой цепи нагрузки

,

где и — комплексные сопротивления.

Рис. 19

Амплитудно-частотная и фазочастотная характеристики моста Вина приведены на рис. 19 б. Максимальное значение амплитудно-частотной характеристики равно 1/3 и достигается при угловой частоте

.

При этом фазочастотная характеристика пересекает ось абсцисс, т.е. .

Рис. 20

Заградительный RС-фильтр можно реализовать при помощи двойного Т-образного моста (рис. 20). При разомкнутой цепи нагрузки минимуму его амплитудно-частотной характеристики соответствует угловая частота .

Возможны и другие схемотехнические решения избирательных RС-фильтров.

Тиристорные выпрямители. Регулировочная характеристика/

Принципы построения управляемых однофазных и многофазных выпрямителей такие же, как и одноименных неуправляемых выпрямителей, но диоды, т. е. неуправляемые вентили, заменяются тиристорами, т. е. управляемыми вентилями. Программа включения последних задается соответствующей последовательностью управляющих импульсов напряжения системы управления.

Рассмотрим работу однофазного управляемого выпрямителя с нулевым выводом трансформатора

(рис. 21). Режим работы выпрямителя в общем случае зависит от значения параметров цепи нагрузки. Наиболее распространены два случая. Схема замещения цепи нагрузки содержит:

1) резистивный элемент с сопротивлением ;

2) последовательное соединение резистивного и индуктивного элементов.

Рис. 21

Примем для упрощения анализа, что трансформатор с числом витков первичной и каждой половины вторичной обмоток — идеальный с напряжениями на половинах вторичной обмотки и (рис. 22 а).

При отсутствии индуктивности цепи нагрузки два плеча выпрямителя работают независимо один от другого (рис. 22 в) как однофазные однополупериодные управляемые выпрямители, последовательности управляющих импульсов напряжения которых, поступающих от системы управления СУ (см. рис. 21), сдвинуты относительно друг друга на половину периода (рис. 22 б). При угле управления ток в первичной обмотке трансформатора не синусоидальный (рис. 22 д), а ток в цепи нагрузки представляет собой последовательность импульсов с длительностью и периодом повторения (рис. 22 г).

Наличие индуктивности цепи нагрузки (рис. 23) изменяет характер процесса в выпрямителе. После открывания тиристора VS1 или VS2 ток в нем и в цепи нагрузки плавно увеличивается и в магнитном поле индуктивного элемента запасается энергия. За счет этой энергии ток в соответствующем тиристоре и в цепи нагрузки не уменьшится до нуля при изменении полярности питающего напряжения. Следовательно, интервалы открытого состояния тиристоров VS1 и VS2 возрастут тем больше, чем больше значение индуктивности . При некотором значении индуктивности ток в цепи нагрузки становится непрерывным, а при — постоянным. Переключение тиристоров при принятых допущениях происходит мгновенно.

Рис. 22

Рис. 23

Рассмотрим работу выпрямителя подробнее, положив, что индуктивность и к моменту времени t=0 тиристор VS1 был закрыт, а тиристор VS2 открыт. Первый после момента времени t=0 импульс управления открывает тиристор VS1 и напряжение между его анодом и катодом становится равным нулю ( ). При значении угла управления (рис. 24 а) напряжение между анодом и катодом ранее проводившего тиристора, как следует из второго закона Кирхгофа для контура 1 цепи (рис. 23), будет иметь отрицательное значение ( ), что приводит к его запиранию. Одновременно положительное напряжение u1 > 0 (рис. 24 а), действующее в контуре 2 цепи, определяет ток в открытом тиристоре VS1 и в цепи нагрузки.

Рис. 24

Через 1/2 периода после включения тиристора VS1 и выключения тиристора VS2 под действием импульса управления (рис. 24 б) откроется тиристор VS2- Напряжение между анодом и катодом тиристора VS1 станет отрицательным ( ) (рис. 24 а) и он запирается. Далее процесс переключения тиристоров периодически повторяется, так что токи в них и представляют собой последовательность прямоугольных импульсов с амплитудой и длительностью Т/2 (рис. 24 в), ток нагрузки постоянный ( ) (рис. 24 г), а ток в первичной обмотке трансформатора получается в виде последовательности импульсов разного знака с амплитудой (рис. 24 д). Его первая гармоника , показанная штриховой линией, отстает по фазе от синусоидального напряжения сети u на угол управления α. Это означает, что индуктивная реактивная мощность выпрямителя отлична от нулевого значения.

При отсутствии естественной индуктивности цепи нагрузки аналогичный режим работы выпрямителя будет при включении последовательно в цепь нагрузки сглаживающего фильтра в виде катушки с индуктивностью .

Регулировочная характеристика выпрямителя по схеме на рис. 21 определяется зависимостью

,

а выпрямителя по схеме на рис. 23 при — зависимостью

(*)

и приведена на рис. 25 а. Регулировочные характеристики при и ограничивают область расположения регулировочных характеристик для промежуточных значений .

Рис. 25

На рис. 25 б приведены внешние характеристики управляемого однофазного двухполупериодного выпрямителя при различных значениях угла управления с учетом падения напряжения на реальном тиристоре.

Заметим, что вследствие индуктивности рассеяния обмоток реального трансформатора и инерционности процессов включения и выключения тиристоров последние переключаются не мгновенно.

Многофазные управляемые выпрямители имеют, как правило, большую мощность (сотни киловатт и больше) и применяются в электроприводе с машинами постоянного тока, в линиях электропередачи постоянного тока, для работы электролитических ванн и т.д.

Однофазные управляемые выпрямители имеют малую и среднюю мощность (от единиц до десятков киловатт) и применяются в сварочных устройствах, электровибраторах, для зарядки аккумуляторов. В последнем случае аккумулятор включается в цепь нагрузки последовательно со сглаживающим фильтром (рис. 26, где Е и rвт — постоянные ЭДС и внутреннее сопротивление аккумулятора). Если положить, что индуктивность сглаживающего фильтра , то процессы в выпрямителе совпадают с представленными на рис. 24. Изменяя среднее значение выпрямленного напряжения по регулировочной характеристике (*)

можно управлять током зарядки аккумулятора

.

Рис. 26

Инверторы. Преобразователи частоты. Инверторные источники питания.

Инвертированием называется процесс, обратный выпрямлению, т. е. преобразование постоянного тока в переменный, а инверторами — устройства, реализующие этот процесс.

Различают инверторы, ведомые сетью, и автономные инверторы. Первые служат для передачи энергии в сеть с переменным током заданной частоты, которая и определяет необходимую частоту преобразования. Вторые служат для питания автономных приемников, а частота преобразования задается системой управления инвертором.

Инверторы, ведомые сетью. У однофазного выпрямителя с нулевым выводом трансформатора для зарядки аккумулятора (рис. 26) угол управления 0 < α < 90° (см. рис. 24), постоянные ЭДС Е и ток iн = I0 аккумулятора направлены встречно, что соответствует передаче энергии из сети переменного тока в цепь постоянного тока.

Если увеличить угол управления 90° < α< 180° и изменить направление постоянной ЭДС Е аккумулятора на противоположное, то последний может не потреблять энергию и отдавать ее в сеть переменного тока, т. е. процесс выпрямления сменится на инвертирование.

Рис. 27

Рассмотрим условия возникновения установившегося процесса инвертирования подробнее, сохранив в цепи инвертора (рис. 27) обозначения и направления токов и напряжений, принятые для одноименного выпрямителя (см. рис. 26).

В установившемся режиме ток в ветви с аккумулятором постоянный (iн = I0), так как предполагается, что у сглаживающего фильтра индуктивность . Заметим, что если в выпрямителе сглаживающий фильтр может и отсутствовать (см. рис. 21), то в инверторе он определяет принцип его работы.

Рис. 28

Процесс переключения тиристоров в инверторе аналогичен их переключению в выпрямителе на рис. 24. Примем, что к моменту времени t =0 (рис. 28 а) тиристор VS2 был открыт, а тиристор VS1, закрыт. Последующие переключения тиристоров задаются двумя последовательностями импульсов управления uуп1 и uуп2 с периодом повторения , сдвинутыми относительно друг друга на половину периода Т/2 (рис. 28 б). Первый после момента времени t = 0 импульс управления uуп1 открывает тиристор VS1, и напряжение между его анодом и катодом станет равно нулю uVS1 = 0. Если при этом угол управления α < 180°, то напряжение между анодом и катодом ранее проводившего тиристора, как следует из второго закона Кирхгофа, составленного для контура 1 цепи, будет иметь отрицательное значение ( ), что приведет к его запиранию. Одновременно положительное напряжение u1 + Е > 0, действующее в контуре 2 цепи, определяет ток в открытом тиристоре VS1 и аккумуляторе i1 = iн = I0.

При значении угла управления α > 180° напряжение между анодом и катодом ранее проводившего тиристора VS2 будет иметь положительное значение ( ), и его запирания не произойдет. Это явление называется срывом инвертирования или опрокидыванием инвертора.

Запирание ранее проводившего тиристора под действием обратного напряжения, равного напряжению сети переменного тока, трансформированному на вторичной обмотке трансформатора, определяет название инвертора — ведомый сетью.

Через половину периода после включения тиристора VS1 и выключения тиристора VS2 под действием импульса управления uуп2 откроется тиристор VS2. Одновременно напряжение между анодом и катодом тиристора VS1 станет отрицательным ( ) и он запирается. Далее процесс переключения тиристоров периодически повторяется так, что токи в них представляют собой две последовательности прямоугольных импульсов длительностью Т/2 и амплитудой I0, сдвинутые относительно друг друга на 1/2 периода (рис. 28 в). При этом ток в цепи аккумулятора iн = i1 + i2 = I0 постоянный (рис. 28 г), а в первичной обмотке трансформатора i = w2/w1(i1 -i2) состоит из последовательности импульсов разного знака (рис. 28 г). Напряжение на ветви с последовательным соединением аккумулятора и сглаживающего фильтра равно напряжению на вторичной обмотке трансформатора uн = u1 в интервалах времени, когда тиристор VS1 открыт, а тиристор VS2 закрыт, и uн = u2 в интервалах времени, когда тиристор VS2 открыт, а тиристор VS1 закрыт (рис. 28 д). Переменная составляющая определяет напряжение на сглаживающем фильтре, а его постоянная составляющая — напряжение на аккумуляторе

. (1)

Из этой формулы видно, что ток аккумулятора

имеет положительное значение, если выполняется условие Е + U0 > 0 или с учетом соотношения

. (2)

Это условие и ограничение α < 180° определяют значение угла управления в режиме инвертирования

90° < α < 180°. (*)

При этом напряжение (U0 < 0 и развиваемая аккумулятором мощность имеет положительное значение, а мощность цепи первичной обмотки трансформатора, для вычисления которой надо определить первую гармонику тока (показана на рис. 28 г штриховой линией), — отрицательное значение, т. е. сеть переменного тока является приемником, а аккумулятор — источником энергии.

Если значение угла управления

0 < α < 90°,

то напряжение U0 > 0. В этом случае как мощность, развиваемая аккумулятором, так и мощность первичной цепи трансформатора имеет положительные значения. Энергия, поступающая из сети переменного тока и аккумулятора, преобразуется в тепловую энергию, которая рассеивается во внутреннем сопротивлении последнего.

Трансформаторная схема с двойной обмоткой и общим выводом

Принцип работы заключается в том, что во время положительной полуволны образуется такое же напряжение. В это время нижний вентиль под воздействием отрицательного сигнала остается закрытым, верхний – открывается. Таким образом, от него течет электрический ток.

При отрицательной части полуволны верхний запирательный диод находится в закрытом состоянии, за счет напряжения, текущего на катод от нижнего вентиля, который открыт за счет поступающего на анод положительного сигнала. При этом работают обе полуволны.

Рейтинг
( 2 оценки, среднее 5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]