Здравствуйте, дорогие друзья! Сегодня поговорим про виды трансформаторов, рассмотрим их общее устройство и принцип работы, узнаем где применяются. И так…
В энергетике и электротехнике постоянно требуется преобразование тока из одного состояния в другое. В этих процессах активно участвуют различные виды трансформаторов, представляющие собой электромагнитные статические устройства, без каких-либо подвижных частей. В основе их действия лежит электромагнитная индукция, посредством которой переменный ток одного напряжения преобразуется в переменный ток другого напряжения. При этом частота остается неизменной, а потери мощности совсем незначительные.
Что такое трансформатор?
Если коротко, то это стационарное устройство, используемое для преобразования переменного напряжения с сохранением частоты тока. Действие трансформатора основано на свойствах электромагнитной индукции.
Немного исторических фактов
В основу действия трансформатора легло явление магнитной индукции, открытое М. Фарадеем в 1831 г. Физик, работая с постоянным электрическим током, заметил отклонение стрелки гальванометра, подключенного к одной из двух катушек, намотанных на сердечник. Причем гальванометр реагировал только в моменты коммутации первой катушки.
Поскольку опыты проводились от источника постоянного тока, Фарадей не смог объяснить открытое явление.
Прообраз трансформатора появился лишь в 1848 году. Его изобрел немецкий механик Г. Румкорф, называя устройство индукционной катушкой особой конструкции. Однако Румкорф не заметил трансформации выходных напряжений.Датой рождения первого трансформатора считается день выдачи патента П. Н. Яблочкову на изобретение устройства с разомкнутым сердечником. Это случилось 30.11.1876 года.
Типы аппаратов с замкнутыми сердечниками появились в 1884 году. Их создали англичане Джон и Эдуард Гопкнинсоны.
По большому счету, технический интерес у электромехаников к переменному току возник только благодаря изобретению трансформатора. Идеи российского электротехника М. О. Доливо-Добровольского и всемирно известного Николы Тесла победили в спорах о преимуществах переменных напряжений именно благодаря возможности трансформации тока.
С победой идей этих великих электротехников потребности в трансформаторах резко выросла, что привело к их усовершенствованию и созданию новых типов приборов.
Сборка повышающего трансформатора
Особенностью повышающего трансформатора является большее сечение жил первичной обмотки трансформатора по отношению к вторичной. Ярким примером может служить любой агрегат, повышающий напряжение питания 220 Вольт до 400, 500, 1000 В и т.д., соответственно класс изоляции трансформатора выбирается по номиналу вторичной обмотки, как в сетевых трансформаторах.
Заметьте, что проводник большого сечения не получится намотать самодельным станком, поскольку вы не сможете выдать достаточное усилие. Определить это довольно просто – если первые витки свободно двигаются по каркасу катушки или хуже того, вы видите явный зазор между жилой и каркасом, переходите к ручной намотке.
Для сборки вам потребуется выполнить такую последовательность действий:
- Соберите основание из диэлектрического материала, для этого можно вырезать его по лекалу из картона. Сборка каркаса производится внахлест при помощи клея.
Рис. 2: изготовьте каркас для трансформатора
Если у вас имеется готовый образец, можете переходить к следующему этапу.
- Сделайте отверстия в щеке катушки под выводы в электрическую сеть и к потребителю. Проденьте в них выводы.
Рис. 3: проденьте вывод первичной обмотки - Уложите первый слой изоляции под первичку.
Рис. 4: нанесите слой изоляции на катушку - Намотайте первичную обмотку трансформатора – если позволяет толщина, используйте станок, в противном случае, сделайте это руками. При намотке каждые 4 -5 витков проверяйте жесткость фиксации и плотность прилегания.
Рис. 5: намотайте первичку
В случае наличия видимых зазоров рекомендуется придавливать витки деревянной пресс-плашкой или прибивать их через плашку молотком.
- Посчитайте количество витков, оно должно соответствовать расчетному, выводы проденьте в отверстия. Уложите слой изоляции на первичку.
- После слоя изоляции намотайте вторичку, так как здесь будет использоваться более тонкий провод, эту процедуру проще выполнять на станке. Рис. 6: намотайте вторичную обмотку
Периодически проверяйте плотность витков и их фиксацию на стержне. Хорошая фиксация не должна прогибаться и деформироваться при нажатии пальцами.
- Если все витки не помещаются в один слой, их выкладывают в несколько, тогда важно соблюдать одно и то же количество витков в каждом из них. Слои перекладываются диэлектрическим материалом, заметьте, что толщина изоляции не должна существенно влиять на общие габариты катушек.
Рис. 7: заизолируйте первый слой - Выведете концы вторичной обмотки на щечку каркаса.
- Поместите магнитопровод в окно каркаса, сборка сердечника выполняется поочередно с каждой стороны, иначе потери окажутся слишком большими. Затем сердечник распирается для плотности фиксации.
Рис. 8: поместите катушки на сердечник
Мощные трансформаторы на большой номинал напряжения дополнительно пропитывается парафиновой изоляцией. Такая процедура приводит к повышению емкостных потерь, но создает дополнительную защиту от электрического тока.
Общее устройство и принцип работы
Рассмотрим конструкцию простого трансформатора, с двумя катушками насаженных на замкнутый магнитопровод (см. Рис. 2). Катушку, на которую поступает ток, будем называть первичной, а выходную катушку – вторичной.
Рисунок 2. Устройство трансформатора
Фактически все типы трансформаторов используют электромагнитную индукцию для преобразования напряжения поступающего в цепь первичной обмотки. При этом выходное напряжение снимается из вторичных обмоток. Они различаются только по форме, материалам магнитопроводов и способам наматывания катушек.
Ферромагнитные сердечники применяются в низкочастотных моделях. Для таких сердечников используются материалы:
- сталь;
- пермаллой;
- феррит.
В некоторых высокочастотных моделях магнитопроводы могут отсутствовать, а в некоторых изделиях применяют материалы из высокочастотного феррита или альсифера.
В связи с тем, что для характеристик ферромагнетиков характерна нелинейность намагничивания, сердечники набирают из листовых материалов, на которые надевают обмотки. Нелинейная индуктивность приводит к гистерезису, для уменьшения которого применяют метод шихтования магнитопроводов.
Форма сердечника может быть Ш-образной или торроидальной.
Базовые принципы действия
Когда на выводы первичных обмоток поступает синусоидальный ток, то он во второй катушке создает переменное магнитное поле, пронизывающее магнитопровод. В свою очередь, изменение магнитного потока провоцирует наведение ЭДС в катушках. При этом величина напряжения ЭДС в обмотках находится в пропорциональной зависимости от количества витков и частоты тока. Отношение количества витков в цепи первичной обмотки к числу витков вторичной катушки называется коэффициентом трансформации: k = W1 / W2, где символами W1 и W2обозначено количество витков в катушках.
Если k > 1, то трансформатор повышающий, а при 0 < k < 1 – понижающий. Например, когда число витков, из которых состоит первичная обмотка, в три раза меньше количества вторичных витков, то k = 1/3, тогда U2 = 1/3 U1.
Трансформаторы на схемах
Обозначается на принципиальных схемах трансформатор так:
Обозначение трансформатора на схемах
На следующем рисунке изображен трансформатор с несколькими вторичными обмотками:
Трансформатор с двумя вторичными обмотками
Цифрой «1» обозначена первичная обмотка (слева), цифрами 2 и 3 обозначены вторичные обмотки (справа).
Режимы работы
Характеристики трансформаторов определяются условиями работы, где ключевая роль отводится сопротивлению нагрузки. За основу берутся следующие режимы:
- Холостого хода. Выводы вторичной цепи находятся в разомкнутом состоянии, сопротивление нагрузки приравнивается бесконечности. Измерения тока намагничивания, протекающего в первичной обмотке, даёт возможность подсчитать КПД трансформатора. При помощи этого режима вычисляется коэффициент трансформации, а также потери в сердечнике;
- Под нагрузкой (рабочий). Вторичная цепь нагружается определённым сопротивлением. Параметры протекающего по ней тока напрямую связаны с соотношением витков катушек.
- Короткого замыкания. Концы вторичной обмотки закорочены, сопротивление нагрузки равно нулю. Режим информирует о потерях, которые вызываются нагревом обмоток, что на профессиональном языке значится «потерями в меди».
Режим короткого замыкания
Информация о поведении трансформатора в различных режимах получаются опытным путём с использованием схем замещения.
Холостой ход (ХХ)
Такой порядок работы реализуется от размыкания вторичной сети, после чего в ней прекращается течение электротока. В первичной обмотке течет ток холостого хода, составной его элемент — ток намагничивающий.
Когда вторичный ток равен нулю, электродвижущая сила индукции в первичной обмотке целиком возмещает напряжение питающего источника, а потому при пропаже нагрузочных токов, идущий сквозь первичную обмотку ток по своему значению соответствует току намагничивающему.
Функциональное назначение работы трансформаторов вхолостую — определение их важнейших параметров:
- КПД;
- показателя трансформирования;
- потерь в магнитопроводе.
Режим нагрузки
Режим характеризуется функционированием устройства при подаче напряжения на вводы первичной цепи и подключении нагрузки во вторичной. Нагружающий ток идет по «вторичке», а в первичной — суммарный ток нагрузки и ток холостой работы. Этот режим функционирования считается для прибора преобладающим.
На вопрос, как работает трансформатор в основном режиме, отвечает основной закон ЭДС индукции. Принцип таков: подача нагрузки к вторичной обмотке вызывает образование во вторичной цепи магнитного потока, образующего в сердечнике нагружающий электроток. Направлен он в сторону, противоположную его течению, создающегося первичной обмоткой. В первичной цепи паритет электродвижущих сил поставщика электроэнергии и индукции не соблюдается, в первичной обмотке осуществляется повышение электротока до того времени, пока магнитный поток не вернется к своему исходному значению.
Короткое замыкание (КЗ)
Переход прибора в этот режим осуществляется при кратковременном замыкании вторичной цепи. Короткое замыкание — особый тип нагрузки, прилагаемая нагрузка — сопротивление вторичной обмотки — единственная.
Принцип работы трансформатора в режиме КЗ таков: к первичной обмотке приходит незначительное переменное напряжение, выводы вторичной соединяются накоротко. Напряжение на входе устанавливается с таким расчетом, чтобы величина замыкающего тока соответствовала величине номинального электротока устройства. Величина напряжения определяет энергопотери, приходящиеся на разогрев обмоток, а также на активное сопротивление.
Такой режим характерен для приборов измерительного типа.
Исходя из многообразия устройств и видов назначения трансформаторов, можно с уверенностью сказать, что на сегодня они — незаменимые, использующиеся практически повсеместно устройства, благодаря которым обеспечивается стабильность и достижение необходимых потребителю значений напряжения, как гражданских сетей, так и сетей предприятий промышленности.
Применение
Вольтодобавочное оборудование относится к классу электрического тс с переменными показателями трансформации. Он подключается своей вторичной обмоткой в цепь вторичной основного прибора, который служит источником подачи электроэнергии потребителям. Обязательно подключение ведется последовательным образом.
Основное предназначение устройства — это регулировка напряжений, если речь идет об одной конкретной линии или о целых группах линий. В тоже время нужно понимать, что рационально и пользование приборов только в сетях, в которых используется главный трансформатор без возможности регулировки под нагрузкой.
По сути, применение трансформатора такого типа выравнивает напряжение в сети за счет своего действия — это основной положительный момент. Дополнительно при помощи прибора можно устранить некоторую асимметричность, которая возникает на участке цепи, или же уменьшить действие от обгорания нулевого проводника и некоторые другие аспекты. Особенности применения различаются, если речь идет о распределительных сетях или компенсирующих устройствах.
В распределительных сетях
По последним данным, в стране устройства распределения уже отслужили как минимум два срока, при этом более половины из них работают на износ и требуют ремонта или полной смены на новые. Дело в том, что потребляемая мощность увеличивается с каждым днем и старые устройства не могут справиться с этим. Процесс не контролируется службами, и сказать однозначно, какая из распределительных сетей испытывает наибольшие проблемы нельзя. Но по отзывам электриков наибольшее негативное давление наблюдается на линии электропередач сетей с показателями 0,4кВ.
Логично решить данную проблему путем постройки разветвления сети с минимальными длинами фидеров. Но реконструкция невозможна в виду дорогой стоимости работ специалистов и используемых ресурсов. В результате отсутствия плановых ремонтных работы возникают значительные потери мощностных характеристик, падение напряжения и другие неурядицы. Разрешить проблему помогает установка в конце линии электропередачи вольтодобавочного трансформатора с требуемыми показателями.
Применение оборудование в дополнении к стандартному трансформатору на линии позволит улучшить качество обслуживания потребителей. Особенно если речь идет о некрупных населенных пунктах, где ЛЭП располагаются в отдаленных районах. Эксплуатация оправдана ввиду таких признаков:
- невозможность реконструкции линии электропередач из-за нестандартного рельефа, нагрузки сезонного типа, невозможности по другим причинам существенной модернизации сооружения;
- необходимость увеличения напряжения при низком порогом значении, если ЛЭП протяженностью свыше одного километра.
Преимущества
Использование вольтодобавочного трансформатора в распределительных сетях дает массу преимуществ. В том числе и:
- минимальные денежные затраты на ввод в эксплуатацию дополнительного оборудования;
- наличие приборов регуляции в том числе и восстановительных вариантов при компенсации ликвидации или включение аварийного режима;
- включение режима аварийной работы.
Магнитный принцип, по которому работает вольтодобавочное оборудование, дает возможность устранить полупроводники силового типа и сменить движущиеся части техники на монолитные. Тем самым надежность прибора повышается и наблюдается значительно меньшее число поломок.
Но, как утверждают электрики, это только малый список продуктивности вольтодобавочного тс. Есть и другие не очевидные преимущества, которыми оснащен прибор:
- минимизация негативных последствий при смене контакта или обрывания сигнала нулевого проводника;
- снижение серьезности проблем, которые могут возникнуть при скачках напряжения в сети и работе пусковых механизмов;
- увеличение защиты длинных линий электропередач за счет смены показателей мощности однофазных кз;
- устранение скачков напряжения и асимметричности показателей в результате плохого и нерегулярного распределения фазовой нагрузки.
Не очевидным плюсом использования данной категории оборудования является то, что его можно использовать не один раз. Владельцы организации могут использовать прибор в случае необходимости и при проведении и модернизации ЛЭП снимать его и использовать на другой. План реконструкции соблюдается, при этом стоит отметить, что монтаж трансформатора такого типа осуществляется за несколько часов (до 4-5).
Компенсирующие устройства
Применение данного вида трансформаторов в качестве компенсирующих устройств экономически оправдано. Дело в том, что устройства позволяют получить непрерывную и устойчивую характеристику, не допуская при этом большого расхода энергии.
Вольтодобавочное оборудование, если компенсация продольного вида, позволяет сменить напряжение. Не обязательно речь идет об увеличении показателя. Фаза напряжение меняет характеристики, если у трансформатора установлена поперечная компенсация.
Эта особенность позволяет использовать приборы не только для распределительных сетей, хотя нужно признать, что эта область наиболее востребована. Их применяют в системах в замкнутыми контурами, благодаря чему происходит перераспределение реактивной энергии и активной между системными элементами.
Принцип работы
Принцип работы трансформатора базируется на эффекте взаимоиндукции. Поступление тока переменной частоты от стороннего поставщика электроэнергии на вводы первичной обмотки формирует в сердечнике магнитное поле с переменным потоком, проходящего через вторичную обмотку и индуцирующее образование электродвижущей силы в ней. Закорачивание на приемнике электроэнергии вторичной обмотки обуславливает прохождение сквозь приемник электротока из-за влияния электродвижущей силы, вместе с тем в первичной обмотке образуется ток нагрузки.
Назначение трансформатора — перемещение преобразованной электрической энергии (без перемены ее частоты) к вторичной обмотке из первичной с подходящим для функционирования потребителей напряжением.
Конструкция
Устройство трансформатора предполагает наличие одной либо большего числа отдельных катушек (ленточных или проволочных), находящихся под единым магнитным потоком, накрученных на сердечник, изготовленный из ферромагнетика.
Важнейшие конструктивные части следующие:
- обмотка;
- каркас;
- магнитопровод (сердечник);
- охлаждающая система;
- изоляционная система;
- дополнительные части, необходимые в защитных целях, для установки, обеспечения подхода к выводящим частям.
В приборах чаще всего можно увидеть обмотку двух типов: первичную, получающую электроток от стороннего питающего источника, и вторичную, с которой напряжение снимается.
Сердечник обеспечивает улучшенный обратный контакт обмоток, обладает пониженным сопротивлением магнитному потоку.
Некоторые виды приборов, работающие на сверхвысокой и высокой частоте, производятся без сердечника.
Производство приборов налажено в трех базовых концепциях обмоток:
- броневой;
- тороидальной;
- стержневой.
Устройство трансформаторов стержневых подразумевает накручивание обмотки на сердечник строго горизонтальное. В приборах броневого типа она заключена в магнитопроводе, размещается горизонтально либо вертикально.
Надежность, эксплуатационные особенности, устройство и принцип действия трансформатора принимаются без какого-либо влияния принципа его изготовления.
Особенности и конструкция
Вольтодобавочные трансформаторы предназначаются для обеспечения качества электроэнергии в соответствии с принятыми требованиями для определенной установки. Основное назначение — стабилизация и уравновешивание уровня напряжения. Также модели могут выступить в роли компенсатора асимметричной нагрузки.
Оборудование монтируется на разрыв линии, относится к установкам наружного типа. В зависимости от вида тс различаются по климатическим условиям. Но большая часть вольтодобавочных моделей предназначена для установки не больше тысячи метров над уровнем моря, вне среды, которая проводит токопроводящую пыль и потенциально взрывоопасная. При эксплуатации любого тс такого типа следует избегать тряски и вибрации, не допускать ударов и получения сколов. Температура работы не должна превышать 40 градусов и отпускаться ниже -45 градусов.
Основные технические характеристики и другие особенности указываются к конкретной модели трансформатора в техническом паспорте устройства. Также содержится информация об установочных и габаритных размерах оборудования.
Простейший вольтодобавочный трансформатор состоит из активной и конструктивной части. Последняя включает в себя бак с крышкой, отсек электронного блока управления. Бак обычно изготовляется прямоугольной формы, но могут быть исключения. Его собираются из гофрированного стального листа с высокими показателями жесткости и коррозийной устойчивости. В баке дополнительно установлены клеммы заземления, покрывает его крышка, выполненная в виде ящика и служащая одновременно и отсеком для блока управления.
Через крышки передаются вводы первичной и вторичной обмотки. Рама прикрепляется к крышке трансформатора. В большинстве случаев выводы и вводы съемные, поэтому их легко заменять в случае естественного износа или поломки. Конструктивная часть вольтодобавочного оборудования выполняется из металла с антикоррозийным покрытием, чтоб не допустить появления ответных реакций. Если речь идет о масляном тс, то емкость наполняться маслом с определенным пробивным показателем.
Конструктивные особенности трансформаторов
В основе конструкции прибора находятся вторичные и первичные обмотки, сердечник из ферромагнитного сплава (обычно замкнутого типа). Обмотки располагают на магнитном проводе, они связаны между собой индуктивным способом. Благодаря наличию магнитопривода аккумулируется значительная часть магнитного поля, и КПД устройства возрастает. Сам магнитопровод представляет собой комплекс металлических пластин, покрытых изоляцией. Изоляция нужна для предотвращения появления паразитных токов в сердечнике.
Виды трансформаторов
С целью решения вопросов трансформации напряжения в различных цепях изобретены трансформаторы самых разных конструкций. Производители выбирают свои концепции магнитопроводов (см. рис. 4), которые не влияют на работу и параметры приборов:
- стержневой тип (применяется в основном для трехфазных конструкций);
- броневой тип (трехфазные аппараты);
- тороидальный тип сердечника часто используется в трансформаторах, применяемых в различных электротехнических устройствах.
Виды магнитопроводов
Более широкий спектр охватывает классификация по назначению.
Силовые
Силовой трансформатор переменного электротока — это прибор, использующийся в целях трансформирования электроэнергии в подводящих сетях и электроустановках значительной мощности.
Необходимость в силовых установках объясняется серьезным различием рабочих напряжений магистральных линий электропередач и городских сетей, приходящих к конечным потребителям, требующимся для функционирования работающих от электроэнергии машин и механизмов.
Автотрансформаторы
Устройство и принцип работы трансформатора в таком исполнении подразумевает прямое сопряжение первичной и вторичной обмоток, благодаря этому одновременно обеспечивается их электромагнитный и электрический контакт. Обмотки устройств имеют не менее трех выводов, отличающихся своим напряжением.
Основным достоинством этих приборов следует назвать хороший КПД, потому как преобразуется далеко не вся мощность — это значимо для малых расхождениях напряжений ввода и вывода. Минус — неизолированность цепей трансформатора (отсутсвтие разделения) между собой.
Тока
Можно первичную обмотку подключить последовательно в электрическую цепь с другими устройствами и получить гальваническую развязку. Такие приборы получили названия трансформаторов тока. Первичную цепь таких устройств контролируют путём изменения однофазной нагрузки, а вторичную катушку используют в цепях измерительных приборов или сигнализации. Второе название приборов – измерительные трансформаторы.
Особенностью работы измерительных трансформаторов является особый режим выходной обмотки. Она функционирует в критическом режиме короткого замыкания. При разрыве вторичной цепи возникает резкое повышение напряжения в ней, что может вызвать пробои или повреждение изоляции.
Трансформатор тока
Напряжения
Типичное применение – изоляция логических цепей защиты измерительных приборов от высокого напряжения. Трансформатор напряжения – это понижающий прибор, преобразующий высокое напряжение в более низкое.
Импульсные
Данные виды трансформаторов необходимы для изменения коротких по времени видеоимпульсов, как правило, имеющих повторение в определенном периоде со значительной скважностью, с приведенным к минимуму изменением их формы. Цель использования — перенос ортогонального электроимпульса с наиболее крутым срезом и фронтом, неизменным показателем амплитуды.
Главным требованием, предъявляющимся к приборам данного типа, является отсутствие искажений при переносе формы преобразованных импульсов напряжения. Действие на вход напряжения какой-либо формы обуславливает получение на выходе импульса напряжения идентичной формы, но, вероятно, с другим диапазоном либо измененной полярностью.
Разделительный
Для разделительных трансформаторов взаимодействие между обмотками исключено. Устройства повышают безопасность электрооборудования при повреждённой изоляции.
Разделительный трансформатор
Сварочный
Помимо вышеперечисленных, существует понятие сварочные трансформаторы. Специализированные приборы для сварочных работ понижают напряжение бытовой сети при одновременном повышении тока, измеряемого тысячами ампер. Регулировка последнего осуществляется разделением обмоток на сектора, что отражается на индуктивном сопротивлении.
Сварочный трансформатор
Согласующий
Согласующие трансформаторы применяются для выравнивания сопротивлений между каскадами схем электроники. Сохраняя форму сигнала, они играют роль гальванической развязки.
Пик-трансформатор
С помощью пик-трансформатора синусоидальное напряжение преобразуется в импульсное. При этом импульсы меняют полярность с каждым полупериодом.
Сдвоенный дроссель
Особенностью сдвоенного дросселя является идентичность обмоток. Взаимная индукция катушек делает его более эффективным, по отношению стандартным дросселям. Устройства используются как входные фильтры в блоках питания, в звуко- и цифровой технике.
Сдвоенный дроссель
Воздушные и масляные
Силовые трансформаторы бывают сухими (с воздушным охлаждением) (см. рис. 7) и масляными (см. рис. 8).
Модели сухих силовых трансформаторов чаще всего используют для преобразований сетевых напряжений, в том числе и в схемах трехфазных сетей.
Рисунок 7. Сухой трехфазный трансформатор
При подключении нагрузки происходит нагревание обмоток, что грозит разрушением электрической изоляции. Поэтому в сетях с напряжениями свыше 6 кВ работают приборы с масляным охлаждением. Специальное трансформаторное масло повышает надежность изоляции, что очень важно при больших выходных мощностях.
Рис. 8. Строение промышленного трансформатора с масляным охлаждением
Вращающиеся
Применяются для обмена сигналами с вращающимися барабанами. Конструктивно состоят из двух половинок магнитопровода с катушками. Эти части вращаются относительно друг друга. Обмен сигналами происходит при больших скоростях вращения.
Трансформаторы — назначение, виды и характеристики
В закладки
Введение
Трансформатор — это статическое устройство, имеющее две или более обмотки, предназначенное для преобразования посредством электромагнитной индукции одной или нескольких систем переменного напряжения и тока в одну или несколько других систем переменного напряжения и тока, имеющих обычно другие значения при той же частоте, с целью передачи мощности. (Источник: ГОСТ 30830-2002)
Рис.1 Общий вид трансформатора
Значение трансформаторов как в электроэнергетике в целом, так и в повседневной жизни каждого человека трудно переоценить, они применяются повсеместно: на подстанциях, в городах и поселках, стоят силовые трансформаторы, понижающие высокое напряжение в тысячи и даже десятки тысяч Вольт до привычных нам 380/220 Вольт, на предприятиях стоят сварочные трансформаторы которые совершенно незаменимы на производстве, трансформаторы так же применяются и у нас дома в бытовой технике: в СВЧ-печах, блоках питания компьютеров и даже зарядных устройствах для телефонов.
В этой статье мы разберемся в том как устроены и как работают трансформаторы, какие бывают виды трансформаторов, а так же приведем их общие характеристики.
Общее устройство и принцип работы трансформаторов
В общем виде трансформатор представляет собой две обмотки расположенных на общем магнитопроводе. Обмотки выполняются из медного или алюминиевого провода в эмалевой изоляции, а магнитопровод изготовлен из тонких изолированных лаком пластин электротехнической стали, для уменьшения потерь электроэнергии на вихревые токи (так называемые токи Фуко).
Та обмотка, которая подключается к источнику питания, называется первичной обмоткой, а обмотка к которой подключается нагрузка — соответственно вторичной. Если со вторичной обмотки (W2) трансформатора снимается напряжение (U2) ниже, чем напряжение (U1) которое подаётся на первичную обмотку (W1), то такой трансформатор считается понижающим, а если выше — повышающим.
Рис.2 Схема общего устройства трансформатора
Металлическая часть на которой располагается электрическая обмотка (катушка), т.е. которая находится в ее центре, называется сердечником, в трансформаторах этот сердечник имеет замкнутое исполнение и является общим для всех обмоток трансформатора, такой сердечник называется магнитопроводом.
Как уже было сказано выше принцип работы трансформаторов основан на законе электромагнитной индукции, для понимания того как это работает представим самый простой трансформатор, аналогичный тому который представлен на рисунке 2, т.е. у нас есть магнитопровод на котором располагаются 2 обмотки, представим, что первая обмотка состоит всего из одного витка, а вторая — из двух.
Теперь подадим напряжение 1 Вольт на первую обмотку, ее единственный виток условно создаст магнитный поток величиной в 1 Вб (Справочно: Вебер (Вб) — единица измерения магнитного потока) в магнитопроводе, так как магнитопровод имеет замкнутое исполнение магнитный поток будет протекать в нем по кругу при этом пересекая 2 витка второй обмотки, при этом в каждом из этих витков за счет электромагнитной индукции наводит (индуктирует) электродвижущую силу (ЭДС) в 1 Вольт, ЭДС этих двух витков складывается и на выходе со второй обмотки мы получаем 2 Вольта.
Таким образом, подав на первичную обмотку 1 Вольт на вторичной обмотке мы получили 2 Вольта, т.е. в данном случае трансформатор будет называться повышающим, т.к. он повышает поданное на него напряжение.
Но этот трансформатор может работать и в обратную сторону, т.е. если на вторую обмотку (с двумя витками) подать 2 Вольта, то с первой обмотки по тому же принципу мы получим 1 Вольт, в этом случае трансформатор будет называться понижающим.
Общие характеристики трансформаторов
К основным техническим характеристиками трансформаторов можно отнести:
- номинальную мощность;
- номинальное напряжение обмоток;
- номинальный ток обмоток;
- коэффициент трансформации;
- коэффициент полезного действия;
- число обмоток;
- рабочую частоту;
- количество фаз.
Мощность является одним из главных параметров трансформаторов. В паспортных (заводских) данных трансформатора указывается его полная мощность (обозначается буквой S), она зависит от типа используемого магнитопровода, количества и диаметра витков в обмотках, то есть от массогабаритных показателей электромагнитного аппарата.
Измеряется мощность в единицах В∙А (Вольт-Ампер). На практике для трансформаторов больших мощностей, как правило используются кратные Вольт-Амперам величины Киловольт-ампер — кВА (103 В∙А) и Мегавольт-ампер — МВА (106 В∙А).
Фактически каждый трансформатор имеет 2 значения мощности: входную (S1) — мощность, которую трансформатор потребляет из питающей его сети и выходную (S2) — мощность, которую трансформатор отдает подключенной к нему нагрузке, при этом выходная мощность всегда меньше входной за счет электрических потерь в самом трансформаторе (потери на нагрев обмоток, потери на вихревые токи и т.д.) величина этих потерь определяется другим основным параметром — коэффициентом полезного действия, сокращенно — КПД (обозначается буквой η), данный параметр указывается в процентах.
Например если КПД указано 92% — это значит, что выходная мощность трансформатора будет меньше входной на 8%, т.е. 8% -это потери в трансформаторе.
Формулы расчета мощности:
- Входная мощность: S1=U1х I1 ,ВА;
- Выходная мощность: S2=U2х I2 ,ВА;
где:
- I1,I2 — соответственно, токи в первичной и вторичной обмотках трансформатора в Амперах;
- U1,U2 — соответственно, напряжения первичной и вторичной обмоток трансформатора в Вольтах.
Следует помнить, что полная мощность состоит из активной (P) и реактивной (Q) мощностей:
- Активная мощность определяется по формуле: P=U х I х cosφ ,Ватт (Вт)
- Реактивная мощность определяется по формуле: Q=U х I х sinφ ,вольт-ампер реактивный (Вар)
- Коэффициент мощности: cosφ=P/S;
- Коэффициент реактивной мощности:sinφ=Q/S
Формулы расчета КПД (η) трансформатора:
Как уже было указано выше КПД определяет величину потерь в трансформаторе или иными словами эффективность работы трансформатора и определяется оно отношением выходной мощности (P2) к входной (P1):
η=P2/P1
В результате данного расчета значение КПД определяется в относительных единицах (в виде десятичной дроби), например — 0,92, чтобы получить значение КПД в процентах рассчитанную величину необходимо умножить на 100% (0,92*100%=92%).
Чем ближе КПД к 100% тем лучше, т.е. идеальный трансформатор — это трансформатор в котором P2=P1, однако в реальности из-за потерь в трансформаторе выходная мощность всегда ниже входной.
Это хорошо видно из так называемой энергетической диаграммы трансформатора (рис.3):
- P1 — активная мощность, потребляемая трансформатором от источника;
- P2 — активная (полезная) мощность, отдаваемая трансформатором приемнику;
- ∆Pэл — электрические потери в обмотках трансформатора;
- ∆Рм — магнитные потери в магнитопроводе трансформатора;
- ∆Рдоп — дополнительные потери в остальных элементах конструкции.
В режиме холостого хода (работы без подключенной к трансформатору нагрузки) КПД трансформатора η = 0. Мощность холостого хода P0, потребляемая трансформатором в этом режиме, расходуется на компенсацию магнитных потерь. С увеличением нагрузки в достаточно небольшом диапазоне (приблизительно β = 0,2) КПД достигает больших значений. В остальной части рабочего диапазона КПД трансформатора держится на высоком уровне. В режимах, близких к номинальному, КПД трансформатора η ном = 0,9 — 0,98.
Зависимость КПД от нагрузки представлена на следующем графике (рис.4):
Первичное номинальное напряжение U1н — это напряжение, которое требуется подать на первичную катушку трансформатора, чтобы в режиме холостого хода получить номинальное вторичное напряжение U2н.
Вторичное номинальное напряжение U2н — это значение, которое устанавливается на выводах вторичной обмотки при подаче на первичную обмотку номинального первичного напряжения U1н, в режиме холостого хода.
Номинальный первичный ток I1н — это максимальный ток, протекающий в первичной обмотке, т.е. потребляемый трансформатором из сети, на который рассчитан данный трансформатор и при котором возможна его длительная работа.
Номинальный вторичный ток I2н — это максимальный ток нагрузки, протекающий во вторичной обмотке, на который рассчитан данный трансформатор и при котором возможна его длительная работа.
Коэффициент трансформации (kт) — это отношение числа витков в первичной обмотке к числу витков во вторичной обмотке k=W1/W2.
Так же kт определяется как отношение напряжений на зажимах обмоток: kт=U1н/U2н.
Для понижающего трансформатора коэффициент трансформации больше 1, а для повышающего — меньше 1.
Примечание: для трансформаторов тока kт определяется как отношение номинальных значений первичного и вторичного токов kт=I1н/I2н
Число обмоток у однофазных трансформаторов чаще две, но может быть и больше. На первичную обмотку подают одно значение напряжения, а с вторичной обмотки снимают другое значение.
Когда требуются различные напряжения для питания нескольких приборов, то в этом случае вторичных обмоток может быть несколько. Также есть трансформаторы с общей точкой на вторичной обмотке для двуполярного питания.
Рабочая частота трансформаторов может быть различной. Но при одинаковых напряжениях первичной обмотки, трансформатор, разработанный для частоты 50 Гц, может использоваться при частоте сети 60 Гц, но не наоборот. При частоте меньше номинальной увеличивается индукция в магнитопроводе, что может повлечь его насыщение и как следствие резкое увеличение тока холостого хода и изменение его формы. При частоте больше номинальной повышается величина паразитных токов в магнитопроводе, повышается нагрев магнитопровода и обмоток, приводящий к ускоренному старению и разрушению изоляции.
Габариты трансформатора напрямую зависят от частоты тока в цепи, в которой он будет установлен. Конечно, трансформатор должен быть рассчитан на эту частоту. Зависимость эта обратная, т.е. с увеличением частоты габариты трансформатора значительно уменьшаются. Именно поэтому, импульсные блоки питания (с импульсными высокочастотными трансформаторами) намного компактнее.
В зависимости от назначения трансформаторы изготавливают однофазными и трехфазными.
Однофазный трансформатор представляет собой устройство для трансформирования электрической энергии в однофазной цепи. В основном имеет две обмотки, первичную и вторичную, но вторичных обмоток может быть и несколько.
Трехфазный трансформатор представляет собой устройство для трансформирования электрической энергии в трёхфазной цепи. Конструктивно состоит из трёх стержней магнитопровода, соединённых верхним и нижним ярмом. На каждый стержень надеты обмотки W1 и W2 высшего (U1) и низшего (U2) напряжений каждой фазы (рис.5).
Виды трансформаторов
Все трансформаторы можно разделить на следующие виды:
- силовые;
- автотрансформаторы;
- измерительные;
- разделительные;
- согласующие;
- импульсные;
- пик-трансформаторы;
- сварочные.
Силовые трансформаторы являются наиболее распространенным типом промышленных трансформаторов. Они применяются для повышения или понижения напряжения. Являются неотъемлемой частью сети электроснабжения предприятий, населенных пунктов и т.д.
Автотрансформатором называется такой трансформатор, у которого имеется только одна обмотка с числом витков W1. Часть этой обмотки с числом витков W2 принадлежит одновременно первичной и вторичной цепям:
Данный тип трансформаторов применяется в приборах автоматического регулирования напряжения. Эти устройства используются, например, в образовательных учреждениях для проведения лабораторных работ, их можно встретить в электролабораториях различных предприятий для проведения тестовых работ.
Внешний вид автотрансформаторов:
Измерительные трансформаторы подразделяются на трансформаторы напряжения и трансформаторы тока. Они обеспечивают гальваническую развязку между цепями высокого и низкого напряжений. Как видно из названия, основное применение — снижение первичного напряжения или тока до величины, используемой в измерительных цепях, например для подключение амперметров, вольтметров, счетчиков электрической энергии. Также они могут применяться в различных цепях защиты, управления и сигнализации. От других типов трансформаторов отличаются повышенной точностью и стабильностью коэффициента трансформации.
Пример измерительных трансформаторов:
→ Подробнее об измерительных трансформаторах читайте здесь.
Разделительные трансформаторы, данные устройства мало чем отличается от обычных понижающих или повышающих трансформаторов. Единственное различие заключено в том, что на общем магнитопроводе размещаются абсолютно идентичные обмотки. То есть у них полностью совпадают такие параметры как сечение провода, количество витков, изоляция. Поэтому коэффициент трансформации у них равен единице.
Задачей этих устройств является обеспечение гальванической развязки, т.е. исключение непосредственной электрической связи между электрической сетью и подключаемому к ней, через данный трансформатор, оборудованию.
Применяются в тех областях где предъявляются повышенные требования к электробезопасности, например подключение медицинского оборудования.
Согласующие трансформаторы применяются для согласования сопротивления различных частей каскадов электронных схем, а также для подключения нагрузки, не соответствующей по сопротивлению допустимым значениям источника сигнала, что позволяют передать максимум мощности в такую нагрузку. При этом само непосредственное изменение показателей силы тока и напряжения не имеет значения.
Они применяются в усилителях низкой частоты в качестве входных, межкаскадных и выходных трансформаторов.
В качестве входных, согласующие трансформаоры применяются в звуковоспроизводящей аппаратуре для подключения микрофонов и звукоснимателей различных типов.
Трансформаторы этого типа используются для согласования сигнала при подключении антенн к приёмным и передающим устройствам.
Импульсные трансформаторы — это устройства с ферромагнитным сердечником, которые используются для изменения импульсов тока или напряжения. Преобразуют получаемый сигнал в прямоугольный импульс. Применяются для предотвращения высокочастотных помех. Импульсные трансформаторы наиболее часто используются в электронно-вычислительных устройствах, системах радиолокации, импульсной радиосвязи, в качестве измерительных устройств в счетчиках электроэнергии
Пик-трансформаторы — преобразуют напряжение синусоидальной формы в импульсные пики с сохранением их полярности и частоты колебаний.
Незаменимы там, где для запуска исполнительного устройства требуется единичный импульс с установленной амплитудой напряжения. Это, например, управляющие электронные схемы, собранные на тиристорах. Так же применяются в качестве генераторов импульсов, главным образом в высоковольтных исследовательских установках, в технике связи и радиолокации. Наибольшее применение пиковые трансформаторы получили в автоматизации технологических процессов.
Сварочные трансформаторы — являются основными источникам питания для ручной дуговой сварки на переменном токе. Они служат для понижения напряжения сети с 220В или 380В до безопасного и вместе с тем повышения величины тока для увеличения температуры электрической дуги.
→ Подробнее о сварочных трансформаторах читайте здесь.
Была ли Вам полезна данная статья? Или может быть у Вас остались вопросы? Пишите в комментариях!
Не нашли на сайте статьи на интересующую Вас тему касающуюся электрики? Напишите нам здесь. Мы обязательно Вам ответим.
↑ Наверх
0
https://elektroshkola.ru/transformatory/transformatory-naznachenie-vidy-i-xarakteristiki/
Немного истории
Благодаря английскому физику Майклу Фарадею в 1831 году человечество познакомилось с электромагнитной индукцией. Великому учёному не суждено было стать изобретателем трансформатора, поскольку в его опытах фигурировал постоянный ток. Прообразом устройства можно считать необычную индукционную катушку француза Г. Румкорфа, которая была представлена учёному миру в 1848-м.
В 1876 году русский электротехник П. Н. Яблочков запатентовал трансформатор переменного тока с разомкнутым сердечником. Современному виду устройство обязано англичанам братьям Гопкинсон, а также румынами К. Циперановскому и О. Блати. С их помощью конструкция приобрела замкнутый магнитопровод и сохранила схему до наших дней.
Виды магнитопроводов
Расшифровка основных параметров
Разнообразие в конструкции и широкий диапазон параметров трансформаторов привели к необходимости их маркировки по специальному стандарту. Не имея под рукой технического описания, характеристики устройства можно выяснить по нанесённой на его поверхности информации, выраженной буквенно-цифровым кодом.
Маркировка силовых трансформаторов содержит 4 блока.
Расшифруем первые три блока:
Расшифровка маркировки: 1,2,3 блока
- Первая буква «А» прикреплена за автотрансформаторами. При её отсутствии буквы «Т» и «О» соответствуют трёхфазным и однофазным трансформаторам.
- Наличие далее буквы «Р» информирует об устройствах с расщеплённой обмоткой.
- Третья буква означает охлаждение, масляной естественной системе охлаждения присвоена литера «М». Естественному воздушному охлаждению выделена буква «С», масляное с принудительным обдувом обозначается «Д», с принудительной циркуляцией масла – «Ц». Сочетание «ДЦ» указывает на наличие принудительной циркуляции масла с одновременным воздушным обдувом.
- Литерой «Т» помечаются трёхобмоточные преобразователи.
- Последний знак характеризует особенности трансформатора:
- «Н» – РПН(регулировка напряжения под нагрузкой);
- пробел – переключение без возбуждения;
- «Г» – грозозащищенный.
Общие технические требования
Выбор технических характеристик связан с некоторым трудностями и необходимостью сложных расчетов. Потребуется вычислять затраты с эффектом энергетических потерь в сетевом кабеле с учетом минимизации проводимых затрат.
Напряжение 6-35 кВ
Категория размещения — 1,2, 3 и 4. Климатические исполнение У, УХЛ и ХЛ. Основные технические требования:
- максимальные и минимальные температурные показатели — от плюс 40 до минус 60 при УХЛ и ХЛ1, при УХЛ4 -1;
- высота над уровнем моря — 1000 метров;
- сейсмостойкость — до 6 баллов;
- класс напряжения — 6, 10, 15, 20 и 35 кВ;
- номинальное напряжение — 6,6; 11; 17,5; 22 и 38,5 кВ;
- наибольшее рабочее напряжение — 7,2; 12; 17,5; 24 и 40,5 кВ;
- номинальная проходная мощность — 10000, 16000, 25000, 40000, 63000 кВ;
- максимальный нагрев обмоток — до 65 градусов;
- нагрузки и перегрузки — по ГОСТу 14209;
- давление бака — 50 кПа.
Обеспечивается конструкция вводом с демонтажем и плановым ремонтом, есть встроенный трансформатор тока, М система охлаждения, система защита масла от соприкосновения с окружающим воздухом, устройства регуляции напряжения, устройство контроля масляного положения и защиты от примесей, перекачки и подъема.
6-20 кВ
Категория размещения — 1,2, 3 и 4. Климатические исполнения У, УХЛ и ХЛ. Основные технические требования:
- максимальные и минимальные температурные показатели — от плюс 40 до минус 60 при УХЛ и ХЛ1, при УХЛ4 -1;
- высота над уровнем моря — 1000 метров;
- сейсмостойкость — до 6 баллов;
- класс напряжения — 6, 10, 15, 20 кВ;
- номинальное напряжение — 6; 10; 15 и 20 кВ;
- наибольшее рабочее напряжение — 7,2; 12; 17,5; 24 кВ;
- номинальная проходная мощность — требования;
- максимальный нагрев обмоток — до 65 градусов;
- ток — 100, 150, 200, 300, 400, 500 и 600.
Устанавливаются требования к отдельным составным частям механизма. Установка блока управления индивидуальна.
0,4 кВ
Категория размещения — 1,2, 3 и 4, климатическое исполнение стандартное.
- класс напряжения — 6, 10, 15 кВ;
- наибольшее рабочее напряжение — 6, 10, 15 кВ;
- нагрузки и перегрузки — по ГОСТу 14209;
- давление бака — 50 кПа;
- заземление М12.
Снабжается встроенными тс тока, все ответвления вводятся в коробку. Устанавливается система защиты масла от соприкосновения с воздухом.
Техника безопасности
В процессе эксплуатации требуется соблюдение определенных правил:
- при появлении трещин на корпусе, шума или вибрации автотрансформатор немедленно отключается;
- запрещено оставлять без присмотра оборудование, для которого предусмотрен непрерывный контроль;
- нельзя подключать двигатель, мощность которого больше чем на 70% превышает мощность автотрансформатора;
- это приборы нельзя использовать открытыми, накрывать, закрывать отверстия для вентиляции, размещать на них другое оборудование или предметы.
При проведении ремонта автотрансформатора или прибора, в состав которого он входит, обязательно отключение от электросети.
Области различных технологий
Например, для питания электротермических установок применяют электропечные трансформаторы. Работают такие трансформаторы обычно на частоте 50Гц, а их мощность может достигать десятков тысяч киловольт-ампер при напряжении до 10кВ.
В области электросварки широко применяются сварочные трансформаторы, мощность которых гораздо меньше чем электропечных.
Как случай единичного применения, трансформатор Тесла, который применяется для создания спецэффектов в шоу индустрии.
Для подачи питания в различные электрические цепи радио и теле аппаратуры, автоматики и телемеханики, изделий связи, электробытовых приборов; а также для разделения и (или) согласования напряжений цепей различных элементов вышеуказанных устройств и т.д.
Эти трансформаторы обычно маломощные (от вольт-ампера до нескольких киловольт-ампер). Могут иметь две или более обмотки, работают при невысоких напряжениях в основном на частоте 50Гц, но гораздо реже и на более высоких частотах (до десятков килогерц). Условия работы вышеуказанных трансформаторов зачастую могут быть специфичны, что может вызывать повышенные требования при изготовлении и проектировании.
Виды трансформаторов
В зависимости от своего применения и характеристик трансформаторы бывают нескольких видов. К примеру, в электрических сетях населенных пунктов, промышленных предприятий применяют трансформаторы силовые, основной задачей которых является понижение напряжения в сети до общепринятого – 220 В. Если трансформатор предназначен для регулировки тока, он называется трансформатор тока, а если устройство регулирует напряжение – то это трансформатор напряжения. В обычных сетях применяются однофазные трансформаторы, в сетях на три провода (фаза, ноль, заземление) нужен трехфазный трансформатор. Бытовой трансформатор, 220В предназначается для защиты бытовой техники от перепадов напряжения.
Виды трансформаторов
Сварочный трансформатор предназначен для разделения сварочной и силовой сети, для понижения напряжения в сети до нужной для сварки величины. Масляный трансформатор предназначается для использования в сетях с напряжением выше 6 000 Вольт. Конструкция трансформатора включает в себя: магнитопровод, обмотки, бак, а также крышки с вводами. Магнитопровод состоит из 2 листов электротехнической стали, которые изолированы друг от друга, обмотки, как правило, делают из алюминиевого или медного провода. Регулировка напряжения производится с помощью ответвления, которое соединяется с переключателем. Существует два вида переключения ответвлений: переключение под нагрузкой — РПН (регулирование под нагрузкой), а также без нагрузки, после того, как трансформатор отключен от внешней сети (ПБВ, или переключение без возбуждения). Большее распространение получил второй способ регулировки напряжения.
Говоря о видах трансформаторов, нельзя не рассказать об электронном трансформаторе. Электронный трансформатор представляет собой специализированный источник питания, который служит для преобразования напряжения 220В в 12 (24)В, при большой мощности. Электронный трансформатор намного меньше обычного, при тех же самых параметрах нагрузки.
Источники
- https://www.asutpp.ru/transformator-prostymi-slovami.html
- https://OFaze.ru/elektrooborudovanie/transformator
- https://ProTransformatory.ru/vidy/naznachenie-i-ustrojstvo
- https://agregat-impuls.ru/info/24-tipy-i-klassifikacija-transformatorov.html
- https://oooevna.ru/vidy-transformatorov/
Силовые трансформаторы
Электроэнергия передается по высоковольтным линиям от генераторов, где она вырабатывается до высоковольтных подстанций потребителя, в целях сокращения потерь, при высоком напряжении равном 35-110 киловольт и выше. Перед тем, как мы сможем использовать эту энергию, её напряжение нужно понизить до 380 вольт, которое подводится к электрощитовым, находящимся в подвалах многоквартирных домов. Трехфазные трансформаторы обычно бывают рассчитаны на большую мощность. В электросетях на трансформаторных подстанциях стоят трансформаторы понижающие напряжение с 35 или 110 киловольт, до 6 или 10 киловольт, наверное все видели такие трансформаторы величиной с небольшой дом:
Фото высоковольтный трансформатор
Трансформаторы с 6-10 киловольт на 380 вольт расположены вблизи потребителей. Такие трансформаторы стоят на трансформаторных подстанциях расположенных во многих дворах. Они поменьше размерами, но вместе с ВН (выключателями нагрузки) которые ставятся перед трансформатором и вводными автоматами и фидерами могут занимать двух этажное здание.
Трансформатор 6 киловольт
У трехфазных трансформаторов обмотки соединяются не так, как у однофазных трансформаторов. Они могут соединяться в звезду, треугольник и звезду с выведенной нейтралью. На следующем рисунке приведена как пример одна из схем соединения обмоток высокого напряжении и низкого напряжения трехфазного трансформатора:
Пример соединения обмоток силового трансформатора
Трансформаторы существуют не только напряжения, но и тока. Такие трансформаторы применяют для безопасного измерения тока при высоком напряжении. Обозначаются на схемах трансформаторы тока следующим образом:
Изображение на схемах трансформатор тока
На фото далее изображены именно такие трансформаторы тока:
Трансформатор тока — фото
Существуют также, так называемые, автотрансформаторы. В этих трансформаторах обмотки имеют не только магнитную связь, но и электрическую. Так обозначается на схемах лабораторный автотрансформатор (ЛАТР):
Лабораторный автотрансформатор — изображение на схеме
Используется ЛАТР таким образом, что включая в работу часть обмотки, с помощью регулятора, можно получить различные напряжения на выходе. Фотографию лабораторного автотрансформатора можно видеть ниже:
Фото ЛАТР
В электротехнике существуют схемы безопасного включения ЛАТРа с гальванической развязкой с помощью трансформатора:
Безопасный ЛАТР изображение на схеме
Для согласования сопротивления разных частей схемы служит согласующий трансформатор. Также находят применение измерительные трансформаторы для измерения очень больших или очень маленьких величин напряжения и тока.