В электронике и сложных электрических цепях часто требуется деление входящего напряжения. Для этих целей в схему вносится устройство, которое называется делитель. Статья даст описание, что такое делитель напряжения, для чего нужен этот элемент и где он применяется. Будут приведены различные варианты этого устройства, формулы, а так же способы расчета его параметров.
Формула делителя напряжения
По этой причине последовательную цепь часто называют делителем напряжения из-за ее способности пропорционально делить общее напряжение на дробные части с постоянными коэффициентами. Применив немного алгебры, мы можем вывести формулу для определения падения напряжения на последовательном резисторе, не учитывая ничего, кроме общего напряжения, сопротивления отдельного резистора и общего сопротивления.
Падение напряжения на любом резисторе:
\[E_n = I_n R_n\]
Сила тока в последовательной цепи:
\[I_{общ} = \frac{E_{общ}}{R_{общ}}\]
Подставляем Eобщ/Rобщ вместо In в первую формулу…
Падение напряжения на любом резисторе в последовательнй цепи:
\[E_n = \frac{E_{общ}}{R_{общ}} R_n\]
или
\[\large E_n = \frac{R_n}{R_{общ}} E_{общ}\]
В схеме делителя напряжения отношение отдельного сопротивления к общему сопротивлению равно отношению отдельного падения напряжения к общему напряжению питания. Эта формула известна как формула делителя напряжения, и это сокращенный метод определения падения напряжения в последовательной цепи без проведения расчетов тока по закону Ома.
Сила тока в цепи при последовательном соединении резисторов
Давайте убедимся, что сила тока при последовательном соединении резисторов везде одинакова. Как измерить силу тока постоянного напряжения, я писал здесь. Как видим, мультиметр показал значение 0,04 А или 40 мА в начале цепи, в середине цепи и даже в конце цепи. Где бы мы не обрывали нашу цепь, везде одно и то же значение силы тока.
Пример использования формулы делителя напряжения
Используя эту формулу, мы можем повторно проанализировать падение напряжения в примере схемы за меньшее количество шагов:
Рисунок 7 – Схема последовательной цепи
\[E_{R1} = 45 \ В \ \frac{5 \ кОм}{22,5 \ кОм} = 10 В\]
\[E_{R2} = 45 \ В \ \frac{10 \ кОм}{22,5 \ кОм} = 20 В\]
\[E_{R3} = 45 \ В \ \frac{7,5 \ кОм}{22,5 \ кОм} = 15 В\]
Формула емкостного реактивного сопротивления
Мы уже знаем, что емкостное реактивное сопротивление обратно пропорционально частоте и значению емкости конденсатора. Таким образом, формула реактивного сопротивления:
Х С = 1 / 2πfC
XC = реактивное сопротивление конденсатора в омах (Ом)
f = частота в герцах (Гц)
C = емкость конденсатора в фарадах (Ф)
π = числовая константа (22/7 = 3,142)
Потенциометры как компоненты, делящие напряжение
Одним из устройств, часто используемых в качестве элемента деления напряжения, является потенциометр, который представляет собой резистор с подвижным элементом, перемещаемым ручкой или рычагом. Подвижный элемент, обычно называемый ползунком, вступает в контакт с резистивной полосой материала в любой, выбранной вручную точке:
Рисунок 9 – Потенциометр
Контакт ползунка – это обращенная влево стрелка, нарисованная в середине вертикального обозначения резистора. При перемещении вверх он контактирует с резистивной полосой ближе к клемме 1 и дальше от клеммы 2, уменьшая сопротивление от него до клеммы 1 и повышая сопротивление от него до клеммы 2. При перемещении вниз происходит противоположный эффект. Сопротивление, измеренное между клеммами 1 и 2, постоянно для любого положения ползунка.
Рисунок 10 – Принцип действия потенциометра
Поворотные и линейные потенциометры
Ниже показано внутреннее устройство двух типов потенциометров: поворотного и линейного.
Линейные потенциометры
Рисунок 11 – Конструкция линейного потенциометра
Некоторые линейные потенциометры приводятся в действие прямолинейным движением рычага или ползунковой кнопки. Другие, подобные изображенному на рисунке выше, приводятся в действие поворотным винтом для точной регулировки. Потенциометры последнего типа иногда называют «подстроечниками» потому, что они хорошо работают в приложениях, требующих «подстройки» переменного сопротивления до некоторого точного значения.
Следует отметить, что не все линейные потенциометры имеют такое же назначение выводов, как показано на этом рисунке. У некоторых вывод ползунка находится посередине между двумя крайними выводами.
Поворотный потенциометр
На изображении ниже показана конструкция поворотного потенциометра.
Рисунок 12 – Поворотный потенциометр
На фотографии ниже показан реальный поворотный потенциометр с открытыми для удобства просмотра ползунком и резистивным элементом. Вал, который перемещает ползунок, повернут почти до конца по часовой стрелке, поэтому ползунок почти касается левого конечного вывода резистивного элемента:
Рисунок 13 – Поворотный потенциометр с открытыми ползунком и резистивным элементом
Вот тот же потенциометр с валом ползунка, перемещенным почти до упора против часовой стрелки, поэтому ползунок теперь находится рядом с другим крайним концом хода:
Рисунок 14 – Потенциометр с валом ползунка, повернутым до упора против часовой стрелки
Влияние регулировки потенциометра на схему
Если между внешними выводами (по всей длине резистивного элемента) приложено постоянное напряжение, положение ползунка будет отводить часть приложенного напряжения, измеряемого между контактом ползунка и любым из двух других выводов. Значение коэффициента деления полностью зависит от физического положения ползунка:
Рисунок 15 – Потенциометр как переменный делитель напряжения
Пример применения схемы делителя тока: электрическая измерительная схема
Цепи делителей тока также находят применение в измерительных схемах, где требуется, чтобы часть измеряемого тока проходила через чувствительный прибор. Используя формулу делителя тока, можно подобрать подходящий шунтирующий резистор таким образом, чтобы через измерительный прибор всегда проходила точно заданная доля общего тока:
Рисунок 7 – Измерительная схема
Важность потенциометров
Как и в случае с фиксированным делителем напряжения, коэффициент деления напряжения потенциометра строго зависит от сопротивления, а не от величины приложенного напряжения. Другими словами, если ручка потенциометра или рычаг перемещается в положение 50 процентов (точное центральное положение), падение напряжения между ползунком и любым крайним выводом будет составлять ровно 1/2 от приложенного напряжения, независимо от того, что с этим напряжением происходит, или каково полное сопротивление потенциометра. Другими словами, потенциометр работает как регулируемый делитель напряжения, где коэффициент деления напряжения устанавливается положением ползунка.
Это применение потенциометра является очень полезным средством получения изменяемого напряжения от источника фиксированного напряжения, такого как аккумулятор. Если для схемы, которую вы собираете, требуется определенная величина напряжения, которая меньше, чем значение напряжения доступной батареи, вы можете подключить внешние выводы потенциометра к этой батарее и «выбрать» для использования в вашей цепи любое необходимое напряжение между ползунком и одним из внешних выводов потенциометра:
Рисунок 16 – Применение потенциометра
При таком использовании название «потенциометр» имеет смысл: он «измеряет» (контролирует) приложенный к нему потенциал (напряжение), создавая изменяемый коэффициент деления напряжения. Такое использование трехполюсного потенциометра в качестве переменного делителя напряжения очень популярно в схемотехнике.
Дополнение схем
При создании схем УНЧ, инженерам необходимо занижение высоковольтного значения тока для обеспечения нормальной работы транзистора. Справится с этой задачей помогает делитель. Например, такое резисторное устройство используется для питания базового контакта транзистора. Таким образом создается обратная отрицательная связь по электрическому току, которая возникает благодаря наличию резистора R3. Схема усилителя каскада по схеме с ОЭ представлена на рисунке ниже.
При проектировании стабилизаторов используется стабилитрон, как часть балансного делителя. Такая схема помогает снизить нагрузку на устройство, значительно выровнять выходной ток. Стабилитрон, как и диод работает на пробой, если обратный ток достигает определенной величины.
Основное отличие заключается в том, что при повышении порогового значения, в стабилитроне не происходит теплового, электрического пробоя из-за линейной разности потенциалов.
Примеры небольших потенциометров
Ниже показано несколько небольших потенциометров, которые обычно используются в бытовом электронном оборудовании, а также любителями и студентами при построении схем:
Рисунок 17 – Примеры небольших потенциометров
Меньшие устройства слева и справа предназначены для подключения к беспаечной макетной плате или для пайки в печатную плату. Устройства посередине предназначены для установки на плоской панели с проводами, припаянными к каждому из трех выводов.
Ниже показано еще три потенциометра, более специализированных, чем только что показанный набор:
Рисунок 18 – Примеры потенциометров размером побольше
Большое устройство «Helipot» – это лабораторный потенциометр, предназначенный для быстрого и легкого подключения к цепи. Устройство в нижнем левом углу фотографии представляет собой потенциометр того же типа, только без корпуса и поворотного счетного диска. Оба этих потенциометра представляют собой прецизионные устройства, в которых используются многооборотные спиралевидные резистивные ленты и ползунковые механизмы для точной регулировки. Устройство в правом нижнем углу представляет собой потенциометр для монтажа на панели, предназначенный для работы в тяжелых промышленных условиях.
Определение
Делитель электрического напряжения — это схема из комбинации электронных компонентов, необходимая для разделения действующего входящего напряжения на части и для дальнейшей передачи этих частей к разным участкам схемы. Его используют очень часто в усилителях различного предназначения.
Делители напряжения могут быть построены с использованием различных элементов. В их роли могут выступать резисторы, конденсаторы, катушки индуктивности. Независимо из каких компонентов построено устройство, оно состоит из 2 основных частей:
- Верхнее плечо. Оно включает в себя участок с положительным значением и точкой подключения к следующему участку цепи.
- Нижнее плечо. Оно состоит из участка с нулем, является средней точкой цепи.
Оба плеча имеют строго последовательное соединение. Сумма напряжений их выходов равна общему входящему значению за вычетом небольшой величины рассеивания.